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Abstract

This thesis describes recent advances in the combinatorial method for computing

π(x), the number of primes ≤ x. In particular, the memory usage has been reduced

by a factor of log x, and modifications for shared- and distributed-memory paral-

lelism have been incorporated. The resulting method computes π(x) with complexity

O(x2/3log−2x) in time and O(x1/3log2x) in space. The algorithm has been imple-

mented and used to compute π(10n) for 1 ≤ n ≤ 26 and π(2m) for 1 ≤ m ≤ 86. The

mathematics presented here is consistent with and builds on that of previous authors.
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Chapter 1

Introduction

1.1 Historical overview

Algorithms used in exact calculations of π(x) can be divided into roughly three cat-

egories. The simplest algorithms are based on identifying and counting each prime

p ≤ x, typically using some modification of the sieve of Eratosthenes. A näıve imple-

mentation of the sieve of Eratosthenes uses O(x log log x) arithmetic operations1 and

O(x) bits of memory. Modern variants based on bucket sieving reduce the memory

usage to roughly π(
√
x) storage locations, each of width log2 π(

√
x) bits, while leav-

ing the time complexity unchanged [1]. Given the prime number theorem, algorithms

that enumerate the primes p ≤ x are limited to time complexity Ω(x/ log x).

The first published algorithm capable of computing π(x) substantially faster than

the sieve of Eratosthenes was a combinatorial algorithm due to E. Meissel [2]. Given

that Meissel’s method involved decisions based on human judgement, it is not clear

what time complexity to attribute to it; despite this fact, authors usually estimate

the time complexity of Meissel’s original method as Ω(x1−ϵ) for any ϵ > 0 [3]. Meissel

used his method in hand calculations of π(108) and π(109) in the late 1800s [4–6]; the

method was substantially improved by multiple groups of authors, and used in record

computations of π(10n) for 10 ≤ n ≤ 23 between 1956 and 2007 [3, 7–12]. Meissel’s

method and its descendants are collectively known as “the” combinatorial algorithm

for computing π(x).

Analytic algorithms for computing π(x) based on the Riemann zeta function were

first presented by Lagarias and Odlyzko in the 1980s [13–15]. Despite the attractive

complexity of O(x1/2+ϵ) in time and O(x1/4+ϵ) in space, for any ϵ > 0, the implied

constants were large, and no-one succeeded in developing a practical implementation

of these methods until nearly 30 years later. The first record computation using

an analytic method was π(1024), under the assumption of the Riemann hypothesis,

1See Sect. 1.2 for the definition of an arithmetic operation used in this thesis.

1
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by Franke, Kleinjung, Büthe, and Jost in 2010 [16]. This was followed by a 2012

computation of the same value by Platt without assuming the Riemann hypothesis

[17]. Büthe et al. subsequently modified their algorithm to eliminate the assumption

of the Riemann hypothesis, and presented the first computation of π(1025) [16].

In Table 1.1 we provide a historical timeline of π(x) calculations dating to Meissel.

However, the problem of determining the number of primes up to some limit is directly

tied to the history of the primes themselves, which dates to antiquity. We direct the

interested reader to additional historical references on the topic [2, 18–21].
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x Date Authors Note Ref.

108 1871 Meissel Too large by 5 [4]
108 1882 Meissel [5]
109 1884 Meissel Too small by 56 [6]
109 1958 Lehmer [7]
1010 1958 Lehmer Too large by 1 [7]
1010 1972 Bohmann [9]
1011 1972 Bohmann [9]
1012 1972 Bohmann [9]
1013 1972 Bohmann Too small by 941 [9]
1013 1984 Lagarias, Miller, Odlyzko [3]
1014 1984 Lagarias, Miller, Odlyzko [3]
1015 1984 Lagarias, Miller, Odlyzko [3]
1016 1984 Lagarias, Miller, Odlyzko [3]
1017 1994 Deléglise and Rivat [10]
1018 1994 Deléglise and Rivat [10]
1019 1996 Deléglise [22]
1020 1996 Deléglise [23]
1021 2000 Gourdon [24]
1022 2000 Gourdon, Sebah, et al. Part of “The π(x) Project” [25]
1023 2001 Gourdon, Sebah, et al. Failed double-check [25]
1023 2007 Oliveira e Silva [26]
1024 2010 Buethe, Franke, Jost, Kleinjung Assumed the Riemann hypothesis [16, 27]
1024 2012 Platt [17]
1025 2013 Buethe, Franke, Jost, Kleinjung [28]
1026 2014 Staple This work [29]

Table 1.1: Historical timeline for calculations of π(x) with x = 10n.
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1.2 Model of computation

When discussing space complexity, one must distinguish between bits of storage and

storage locations, each of which grows as the problem size increases. It is common-

place to state that an algorithm has complexity O(M) in space if it requires γM

storage locations for some constant γ, each capable of storing a number with log2M

bits [3, 10–12]. We use this convention here for consistency with other authors.

Similarly, in a model of time complexity, one must specify which operations are con-

sidered to be performed in constant time. In this thesis, we count bitwise operations,

addition, subtraction, multiplication, division, modulus, decisions (branches), and

memory read and write operations of a single machine word.

1.3 Analytic methods

There are significant differences between the analytic methods due to different au-

thors [13–17]. Here we provide a simple example to give the reader the flavour of

such computations. The example presented here closely follows the one presented by

Crandall and Pomerance [30].

We start with the Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns
(1.3.1)

=
∏
p∈P

∞∑
k=1

1

(ps)k
(1.3.2)

=
∏
p∈P

1

1− 1
ps

, (1.3.3)

where Re(s) > 1, and where p ∈ P indicates that p ranges over the set of primes P.
This gives:

log ζ(s) = −
∑
p∈P

log
(
1− p−s

)
(1.3.4)

=
∑
p∈P

∞∑
m=1

1

mpsm
. (1.3.5)
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We next define

π⋆(x) =
∑
p∈P
m>0

θ(x− pm)

m
(1.3.6)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
pm<x

1

m
if x is not a prime power(∑

pm<x

1

m

)
+

1

2k
if x = pk is a prime power.

(1.3.7)

Supposing x not to be a prime power, (1.3.7) implies:

π⋆(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . . (1.3.8)

Making use of the Perron forumla [30], we have:

θ(x− n) =
1

2πi

∫
C

(x
n

)s ds
s
, (1.3.9)

where C = {s : s = σ + it} is a contour with fixed real part σ > 0 and imaginary part

t ranging over [0,∞). Together, (1.3.6) and (1.3.9) give:

π⋆(x) =
∑
p∈P
m>0

1

m

(
1

2πi

)∫
C

(
x

pm

)s
ds

s
(1.3.10)

=
1

2πi

∫
C
xs

⎛⎜⎝∑
p∈P
m>0

1

mpsm

⎞⎟⎠ ds

s
(1.3.11)

=
1

2πi

∫
C
xs log ζ(s)

ds

s
, (1.3.12)

where we take σ > 1 to avoid the singularity in log ζ(s) at σ = 1.

It follows from (1.3.12) and (1.3.8) that π(x) can be computed from a contour

integral to obtain π⋆(x). The conversion from π⋆(x) to π(x) can be accomplished

several different ways, for example by explicitly computing and subtracting the error

terms from (1.3.8), or via an inversion formula [30]:

π(x) =
∞∑
n=1

µ(n)

n
π⋆
(
x1/n

)
, (1.3.13)

where µ(n) is the Möbius function.
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Difficulties in the application of (1.3.12) for explicit calculations of π(x) are man-

ifold. Firstly, in the contour integral (1.3.12), t ranges over [0,∞). In an explicit

calculation, the integral must be approximated using a finite interval [0, T ). How-

ever, this approximation tends to converge slowly with respect to T , with the error

terms varying erratically as they decay to zero [30]. As part of this, placing rig-

orous bounds on the error terms is nontrivial. Such bounds are necessary because

exactly computing π(x) requires proving that the computed approximate (real) value

is within 0.5 of the true (integer) value for π(x). Thirdly, fast, precise calculations of

ζ(s) are themselves nontrivial. These issues are addressed differently by the different

authors applying analytic methods to π(x) calculations [13–17]. Typically, improve-

ments focus on alternative integral representations that show superior convergence

properties.

1.4 Structure of this thesis

In this thesis, we describe recent advances to the combinatorial algorithm for com-

puting π(x). First, in Chapter 2 we re-derive the combinatorial algorithm, including

the advances presented by Olivera e Silva in [12]. We furthermore derive explicit

formulae including the effects of blocks Bk; to our knowledge these formulae have not

appeared elsewhere.

In Chapter 3, we show how the memory usage of the algorithm can be reduced by a

factor of log x: this memory reduction is one of the main results of this thesis. We note

that this is not only a reduction in the memory complexity, but a substantial reduction

in the actual memory usage for relevant values of x. Indeed, before the final step

in the memory-complexity reduction was achieved, the author had already reduced

the memory usage sufficiently to compute π(1026), so the original announcement of

π(1026) claimed only a constant-factor reduction in the memory usage. As part of the

memory reduction, we present an algorithm by which one can retrieve π(y) for any

y < ymax in (heuristically) O(1) time, using only O(π(y)) storage locations, each of

width log2 π(y) bits. This algorithm was implemented, and found to be faster than

a lookup table of all π(y) values, due to cache effects associated with the increased

memory usage of the larger lookup table.

In Chapter 4, we describe mechanisms by which the algorithm can be parallelized.
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Multiple methods due to the author and others are presented for shared-memory

parallelism. We also describe a previously unpublished algorithm for distributed-

memory parallelism, loosely based on the idea presented by Gourdon in [11]. Next,

in Chapter 5, we describe the numerical calculations undertaken as part of this work:

the algorithms described here were implemented and used to compute π(10n) for

1 ≤ n ≤ 26 and π(2m) for 1 ≤ m ≤ 86. Finally, in Chapter 6, we summarize our

results and suggest directions for future research.



Chapter 2

The combinatorial algorithm

In this chapter we present a simplified version of the combinatorial algorithm, based

on the exposition by Tomás Oliveira e Silva [12]. First, in Sect. 2.1, we derive the

central equation in the algorithm, (2.1.11), which separates the computation of π(x)

into computations of partial sieve functions ϕ(x, a) and ϕ2(x, a). In Sections 2.2 and

2.3, we derive equations for ϕ2(x, a) and ϕ(x, a) in terms of sums over other partial

sieve values, ϕ(y, b), where y ∈ [0, z), c ≤ b ≤ a, z = x2/3/α, a = π(α 3
√
x) and α ∈ R,

1 ≤ α < π( 6
√
x).

Notation in this chapter is consistent with that used in [12], and some important

equations are written identically in this work as in [12]. This is done intentionally,

to permit close comparisons between this work and [12]. However, the derivations

and exposition presented here are consistent with, but not identical to, those given in

[12]. In particular, in this work we give explicit formulae whenever possible, including

formulae accounting for the division of the sieving interval [0, z) into blocks Bk. As a

result, the formulae presented here are very similar to the computer implementation

written by the author. This close connection between derivation and implementation

is intended to be a strength of the current work.

2.1 The central equation

Let ϕ(x, a) be the number of integers n ≤ x that are not divisible by the first a primes.

Similarly, let ϕj(x, a) be the number of integers n ≤ x that are not divisible by the

first a primes, and have exactly j prime factors, which are not necessarily distinct.

8
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Then:

ϕ(x, a) =
∞∑
j=0

ϕj(x, a), (2.1.1)

ϕ0(x, a) = 1 ∀ x ≥ 1, (2.1.2)

ϕ1(x, a) = π(x)− a ∀ 0 ≤ a ≤ π(x). (2.1.3)

Together, (2.1.1)–(2.1.3) give:

π(x) = ϕ(x, a) + a− 1−
∞∑
j=2

ϕj(x, a) ∀ x ≥ 1, 0 ≤ a ≤ π(x). (2.1.4)

Suppose ϕj(x, a) ̸= 0. Then there exists an n ≤ x that has j prime factors, each

larger than pa. Then n ≥ pja+1, but x ≥ n, so

x ≥ pja+1, (2.1.5)

ln(x) ≥ j ln(pa+1), (2.1.6)

ln(x)

ln(pa+1)
≥ j, (2.1.7)

j ≤
⌊

ln(x)

ln(pa+1)

⌋
, (2.1.8)

where we have used the fact that j ∈ N. This result permits us to refine (2.1.4):

π(x) = ϕ(x, a) + a− 1−

⌊
ln(x)

ln(pa+1)

⌋∑
j=2

ϕj(x, a) ∀ x ≥ 1, 0 ≤ a ≤ π(x). (2.1.9)

(2.1.9) highlights the finite number of terms in the sum over ϕj(x, a), but is not

convenient for direct computation. For explicit calculations, it’s most useful to note

x < pja+1 if and only if π(x
1
j ) ≤ a. Thus, π(x

1
j ) ≤ a implies ϕj′(x, a) = 0 for all j′ ≥ j.

In particular, we have:

π(x) = ϕ(x, a) + a− 1 ∀ π(
√
x) ≤ a ≤ π(x), x ≥ 1, (2.1.10)

π(x) = ϕ(x, a) + a− 1− ϕ2(x, a) ∀ π( 3
√
x) ≤ a ≤ π(x), x ≥ 1. (2.1.11)

In this thesis we call (2.1.10) “Legendre’s formula”, because it is closely related to

an inclusion-exclusion formula due to Legendre [12, 13]. (2.1.11) is central to the

combinatorial algorithm.
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2.2 Equation for ϕ2(x, a) in terms of ϕ(y, b)

From the definition of ϕj(x, a), we have:

ϕ2(x, a) =

π(x)∑
b=a+1

π(x)∑
d=b

[pbpd ≤ x] , (2.2.1)

where [pbpd ≤ x] indicates that the summand is 1 when the condition is met, and 0

otherwise, and where 0 ≤ x and 0 ≤ a.

Note that pbpd ≤ x and pd ≥ pb implies b ≤ π(
√
x). Meanwhile, pbpd ≤ x if and

only if d ≤ π(x/pb). Together with (2.2.1), these give:

ϕ2(x, a) =

π(
√
x)∑

b=a+1

π( x
pb

)∑
d=b

1. (2.2.2)

Note as well that b ≤ π(
√
x) implies b ≤ π( x

pb
), so

π
(

x
pb

)∑
d=b

1 = π

(
x

pb

)
− b+ 1. (2.2.3)

Together, (2.2.2) and (2.2.3) give:

ϕ2(x, a) =

π(
√
x)∑

b=a+1

(
π

(
x

pb

)
− b+ 1

)
(2.2.4)

=

π(
√
x)∑

b=a+1

π

(
x

pb

)
−

π(
√
x)∑

b=a+1

(b− 1) (2.2.5)

=

π(
√
x)∑

b=a+1

π

(
x

pb

)
−

π(
√
x)−1∑

b=a

b (2.2.6)

=

π(
√
x)∑

b=a+1

π

(
x

pb

)
−

⎛⎝π(
√
x)−1∑

b=0

b−
a−1∑
b=0

b

⎞⎠ (2.2.7)

=

(
a

2

)
−
(
π(
√
x)

2

)
+

π(
√
x)∑

b=a+1

π

(
x

pb

)
∀ 0 ≤ x, 0 ≤ a ≤ π(

√
x). (2.2.8)

At this point we would like to apply Legendre’s formula, (2.1.10), to eliminate the

reference to π(y) with y = x/pb and a + 1 ≤ b ≤ π(
√
x). To do this, we must first
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establish the validity of Legendre’s formula by proving π(
√
y) ≤ a ≤ π(y) and y ≥ 1,

under the assumtion that π( 3
√
x) ≤ a ≤ π( 2

√
x). We start with:

b ≤ π(
√
x), (2.2.9)

pb ≤
√
x, (2.2.10)

x

y
≤

√
x, (2.2.11)

y ≥
√
x, (2.2.12)

π(y) ≥ π(
√
x). (2.2.13)

Since π(
√
x) ≥ a+ 1 in the sum limits, we have:

π(
√
x) ≥ a+ 1, (2.2.14)

π(
√
x) > a, (2.2.15)

which, when combined with (2.2.13), gives:

π(y) > a. (2.2.16)

Thus we clearly have the condition π(y) ≥ a demanded by Legendre’s formula. The

upper limit on π(y) is established similarly:

b ≥ a+ 1, (2.2.17)

pb ≥ pa+1, (2.2.18)

y ≤ x

pa+1

. (2.2.19)

Suppose now that a ≥ π( 3
√
x). This implies:

pa+1 > x1/3, (2.2.20)

y < x2/3, (2.2.21)
√
y < x1/3, (2.2.22)

π(
√
y) ≤ π( 3

√
x), (2.2.23)

π(
√
y) ≤ a. (2.2.24)

Finally, before applying Legendre’s forumla on π(y), we need to establish y ≥ 1,
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which is given if x ≥ 1, since:

b ≤ π(
√
x), (2.2.25)

pb ≤
√
x, (2.2.26)

x

pb
≥

√
x, (2.2.27)

x

pb
≥ 1. (2.2.28)

Together (2.2.16), (2.2.24), and (2.2.28) establish the validity of Legendre’s for-

mula, so:

π(
√
x)∑

b=a+1

π

(
x

pb

)
=

π(
√
x)∑

b=a+1

[
ϕ

(
x

pb
, a

)
+ a− 1

]
∀ a ≥ π( 3

√
x), x ≥ 1, (2.2.29)

ϕ2(x, a) =

(
a

2

)
−
(
π(
√
x)

2

)
+

π(
√
x)∑

b=a+1

[
ϕ

(
x

pb
, a

)
+ a− 1

]
(2.2.30)

=

(
a

2

)
−
(
π(
√
x)

2

)
+
[
π(
√
x)− a

]
(a− 1) +

π(
√
x)∑

b=a+1

ϕ

(
x

pb
, a

)
(2.2.31)

= −
(
π(
√
x)− a+ 1

2

)
+

π(
√
x)∑

b=a+1

ϕ

(
x

pb
, a

)
, (2.2.32)

where π( 3
√
x) ≤ a ≤ π(x1/2) and x ≥ 1.

2.3 Equation for ϕ(x, a) in terms of ϕ(y, b)

2.3.1 Recurrence relation for ϕ(x, a)

The calculation of ϕ(x, a) is based on repeated application of the recurrence relation

ϕ(y, b) = ϕ(y, b− 1)− ϕ

(
y

pb
, b− 1

)
, (2.3.1)

starting with y = x and b = a, and terminating when b = c and y ≥ z, or when y < z

for some fixed c and z = x2/3/α. In the first case, when b = c, ϕ(y, b) can be rapidly

computed using a lookup table of ϕ(y′, c) for all y′ < pc#, where

pc# =
c∏

b=1

pb, (2.3.2)
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denotes the primorial of pc. Values of ϕ(y, c) for y ≥ pc# can be computed using the

periodicity of ϕ(y, c):

ϕ(y, c) = ϕ(y′, c) ∀ y ≡ y′ (mod pc#), (2.3.3)

ϕ(y, c) = ϕ

(
y − pc#

⌊
y

pc#

⌋
, c

)
. (2.3.4)

Leaves falling into the second case, y < z, can be computed by sieving the interval

[0, z).

The proof of (2.3.1) is definitional. Consider the natural numbers n ≤ y coprime

to the first b − 1 primes. There are ϕ(y, b − 1) such n. These numbers n can be

separated into two categories: (i) those also coprime to pb, (ii) those divisible by pb.

Given that these n are assumed to be coprime to the first b−1 primes, the numbers in

category (i) are in fact coprime to the first b primes. Thus, there are ϕ(y, b) numbers

in category (i). The numbers in category (ii) can be written in the form n = pbm,

where m ≤ y/pb and m is coprime to the first b− 1 primes. There are ϕ(y/pb, b− 1)

such choices for m, so there are ϕ(y/pb, b − 1) numbers in category (ii). Given that

there are ϕ(y, b− 1) numbers separated in these two categories, we have:

ϕ(y, b− 1) = ϕ(y, b) + ϕ

(
y

pb
, b− 1

)
, (2.3.5)

which is rearranged to give (2.3.1).

2.3.2 Ordinary and special leaves (S0 and S)

Repeated application of (2.3.1) generates terms of the form µ(n)ϕ(y, b) for various n

and b, where y = x/z and µ(n) is the Möbius function. These can be separated into

two categories, corresponding to the two truncation rules. We call terms generated

by the truncation rule b = c and y ≥ z “ordinary leaves”, and those generated by

y < z “special leaves”. We denote the sum over the ordinary leaves by S0, and the

sum over the special leaves as S, such that

ϕ(x, a) = S0 + S. (2.3.6)

Terms contributing to S0 all have b = c by definition. The requirement that y ≥ z

limits the possible denominators n to those with n ≤ α 3
√
x. Together, these give:

S0 =
∑

1≤n≤α 3√x
pmin(n)>pc

µ(n)ϕ
(x
n
, c
)
, (2.3.7)
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where pmin(n) denotes the smallest prime factor of n. Given that all the terms in S0

have b = c, they can be rapidly computed using (2.3.4). The computationally difficult

part of ϕ(x, a) is the contribution of the special leaves:

S = −
∑

c<b+1<a

∑
m≤α 3√x<mpb+1

pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
. (2.3.8)

2.3.3 Special leaves (S1 and S2)

For efficient application of the combinatorial algorithm, it is critical to reduce the

number of terms in the sum S. Indeed, the truncation rules in Sect. 2.3 were chosen

with this in mind [12]. Further reducing the number of leaves involves subdividing

the types of leaves considered. We first subdivide S depending on whether b+1 ≤ a⋆

or b+ 1 > a⋆, where a⋆ = π(
√
α 6
√
x):

S = S1 + S2, (2.3.9)

S1 = −
∑

c<b+1≤a⋆

∑
m≤α 3√x<mpb+1

pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
, (2.3.10)

S2 = −
∑

a⋆<b+1<a

∑
m≤α 3√x<mpb+1

pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
. (2.3.11)

We wish to rewrite the limits on S1 and S2 in order to make them more amenable

to computation. For S1, we simply note

α 3
√
x < mpb+1 ⇔ α 3

√
x

pb+1

< m, (2.3.12)

such that

m ≤ α 3
√
x < mpb+1 ⇔ α 3

√
x

pb+1

< m ≤ α 3
√
x, (2.3.13)

which gives:

S1 = −
∑

c<b+1≤a⋆

∑
α 3√x
pb+1

<m≤α 3√x

pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
. (2.3.14)

Rewriting the limits on S2 is more complicated, but comes with a larger payoff.
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Firstly, suppose p2b+1 ≤ α 3
√
x. This would imply:

pb+1 ≤
√
α 6
√
x, (2.3.15)

pb+1 ≤ pa⋆ , (2.3.16)

b+ 1 ≤ a⋆, (2.3.17)

which is never the case in the summand of S2. Thus, we can assume α 3
√
x < p2b+1.

Clearly pb+1 < m, since pmin(m) > pb+1. Together, these give α 3
√
x < mpb+1. Thus,

α 3
√
x < mpb+1 is implied by the other conditions in S2, and can be eliminated:

S2 = −
∑

a⋆<b+1<a

∑
m≤α 3√x

pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
. (2.3.18)

Now, given that α 3
√
x < p2b+1, and given m ≤ α 3

√
x, we have:

m < p2b+1, (2.3.19)

pb+1 >
√
m, (2.3.20)

pmin(m) >
√
m, (2.3.21)

where we have used the fact that pmin(m) > pb+1. (2.3.21) implies that m is prime,

so we can rewrite the limits on S2 to consider only prime values of m, and take

pmin(m) = m:

S2 = −
∑

a⋆<b+1<a

∑
m prime

pb+1<m≤α 3√x

µ(m)ϕ

(
x

mpb+1

, b

)
. (2.3.22)

Letting m = pd and noting µ(m) = −1, we have:

S2 =
∑

a⋆<b+1<a

∑
b+1<d≤a

ϕ

(
x

pb+1pd
, b

)
. (2.3.23)

2.3.4 Trivial special leaves (S2t)

The process of subdividing and refining the calculation of ϕ continues by separating

S2 into three categories, the so-called ‘trivial’, ‘easy’, and ‘hard’ leaves, represented

by S2t, S2e, and S2h. We first define the trivial leaves. Suppose

x

pb+1pd
< pb+1. (2.3.24)
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This would imply

ϕ

(
x

pb+1pd
, b

)
= 1. (2.3.25)

(2.3.24) is equivalent to:

x

p2b+1

< pd, (2.3.26)

pd >
x

p2b+1

, (2.3.27)

d > π

(
x

p2b+1

)
. (2.3.28)

This motivates the definition of the trivial leaves:

S2t =
∑

a⋆<b+1<a

∑
b+1<d≤a

π

(
x

p2
b+1

)
<d

ϕ

(
x

pb+1pd
, b

)
(2.3.29)

=
∑

a⋆<b+1<a

∑
b+1<d≤a

π

(
x

p2
b+1

)
<d

1 (2.3.30)

=
∑

a⋆<b+1<a

S2tb (2.3.31)

=
∑

a⋆≤b<a−1

S2tb, (2.3.32)

where

S2tb =

⎧⎪⎨⎪⎩
a−max

{
b+ 1, π

(
x

p2b+1

)}
when a > max

{
b+ 1, π

(
x

p2b+1

)}
,

0 otherwise,

(2.3.33)

and where we have used the fact that pb+1pd ≤ x, i.e., pa−1pa ≤ x, which is ensured

by pa ≤
√
x.

We wish to rewrite the somewhat cumbersome condition from (2.3.33). Suppose

that
x

p2b+1

≥ pa. (2.3.34)

This would imply

π

(
x

p2b+1

)
≥ a, (2.3.35)
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and subsequently

S2tb = 0. (2.3.36)

Consider next the possibility

x

p2b+1

< pa. (2.3.37)

In this situation we have:

π

(
x

p2b+1

)
< a, (2.3.38)

which implies

a > max

{
b+ 1, π

(
x

p2b+1

)}
. (2.3.39)

Thus, we can rewrite (2.3.33) as

S2tb =

⎧⎪⎨⎪⎩
a−max

{
b+ 1, π

(
x

p2b+1

)}
when

x

p2b+1

< pa,

0 otherwise.

(2.3.40)

Note that the condition in (2.3.40) means that π(x/p2b+1) only needs to be evaluated

in cases where x/p2b+1 < α 3
√
x, which can be rapidly performed using a lookup table

or the methods to be developed in Sect. 3.1. Thus, the total work involved in the

computation of S2t is of order a operations, which is a negligible contribution to the

overall computation of π(x).

2.3.5 Easy and hard special leaves (S2e and S2h)

We have

S2 = S2t +
∑

a⋆<b+1<a

∑
b+1<d≤a

d≤π

(
x

p2
b+1

)
ϕ

(
x

pb+1pd
, b

)
. (2.3.41)

= S2t +
∑

a⋆≤b<a−1

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

ϕ

(
x

pb+1pd
, b

)
. (2.3.42)
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The limits in (2.3.41) give:

b+ 1 < π

(
x

p2b+1

)
, (2.3.43)

pb+1 <
x

p2b+1

, (2.3.44)

pb+1 <
3
√
x, (2.3.45)

b+ 1 ≤ π( 3
√
x), (2.3.46)

b < π( 3
√
x), (2.3.47)

so we can write:

S2 = S2t +
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

ϕ

(
x

pb+1pd
, b

)
. (2.3.48)

Suppose now that x/p3b+1 < pd. Then:

x

pb+1pd
=

(
x

p3b+1

)(
p2b+1

pd

)
(2.3.49)

< pd

(
p2b+1

pd

)
(2.3.50)

< p2b+1, (2.3.51)

such that √
x

pb+1pd
< pb+1, (2.3.52)

π

(√
x

pb+1pd

)
< b+ 1, (2.3.53)

π

(√
x

pb+1pd

)
≤ b, (2.3.54)

which establishes the validity of Legendre’s formula, such that:

ϕ

(
x

pb+1pd
, b

)
= π

(
x

pb+1pd

)
− b+ 1

(
x

p3b+1

< pd

)
. (2.3.55)

In order to use (2.3.55) in explicit calculations of the summand in S2, Olivera e

Sliva made use of a precomputed table of values of π(y) for y ≤ α 3
√
x [12]. Later,

in Sect. 3.1, we will see that it is possible to make do with a smaller table, storing
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only the primes pb for b ≤ a, rather than the values π(y) themselves. In either case,

we restrict the direct application of (2.3.55) to situations where x/pb+1pd ≤ α 3
√
x. In

order to convert this condition to an explicit bound on d, we note that a⋆ ≤ b implies:

π(
√
α 6
√
x) ≤ b, (2.3.56)

√
α 6
√
x ≤ pb, (2.3.57)

α 3
√
x ≤ p2b , (2.3.58)

α 3
√
x < p2b+1, (2.3.59)

x

pb+1α 3
√
x
>

x

p3b+1

. (2.3.60)

Suppose now that

x

pb+1pd
≤ α 3

√
x (2.3.61)

pd ≥
x

pb+1α 3
√
x
. (2.3.62)

Combined with (2.3.60), this gives

pd >
x

p3b+1

, (2.3.63)

satisfying the condition on (2.3.55). (2.3.61) is itself implied by the condition

π

(
x

pb+1α 3
√
x

)
≤ d (2.3.64)

allowing us to rewrite (2.3.55) as:

ϕ

(
x

pb+1pd
, b

)
= π

(
x

pb+1pd

)
− b+ 1

(
π

(
x

pb+1α 3
√
x

)
≤ d

)
. (2.3.65)

Finally, we write:

S2 = S2t + S2e + S2h, (2.3.66)
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where

S2h =
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

d<π

(
x

pb+1α
3√x

)
+1

ϕ

(
x

pb+1pd
, b

)
, (2.3.67)

S2e =
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

π

(
x

pb+1α
3√x

)
+1≤d

ϕ

(
x

pb+1pd
, b

)
, (2.3.68)

=
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

π

(
x

pb+1α
3√x

)
+1≤d

[
π

(
x

pb+1pd

)
− b+ 1

]
. (2.3.69)

2.3.6 Clustered and sparse easy leaves (S2ec and S2es)

The contribution of the easy special leaves, S2e, can be further subdivided, according

to whether or not consecutive values of d tend to yield the same value for the summand

in (2.3.55): the transition for this tendency occurs at pd =
√
x/pb+1. We define

clustered and sparse easy leaves as contributing S2ec and S2es, respectively, with

S2ec =
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

π

(
x

pb+1α
3√x

)
+1≤d

π

(√
x

pb+1

)
+1≤d

[
π

(
x

pb+1pd

)
− b+ 1

]
(2.3.70)

S2es =
∑

a⋆≤b<π( 3√x)

∑
b+2≤d<a+1

d<π

(
x

p2
b+1

)
+1

π

(
x

pb+1α
3√x

)
+1≤d

d<π

(√
x

pb+1

)
+1

[
π

(
x

pb+1pd

)
− b+ 1

]
(2.3.71)

Rather than applying (2.3.70) directly, we can compute the number of consecutive

d-values for which the summand holds a given value, calculate the summand once,

and multiply by the number of repetitions.
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For a given value of b, the summand in (2.3.70) changes values whenever x/(pb+1pd)

is prime. Let

l = π

(
x

pb+1pd

)
− b+ 1. (2.3.72)

Then

l + b− 1 = π

(
x

pb+1pd

)
, (2.3.73)

such that

pl+b−1 ≤
x

pb+1pd
< pl+b. (2.3.74)

Clearly
x

pb+1pd
< pl+b ⇔

x

pb+1pl+b

< pd, (2.3.75)

and

pl+b−1 ≤
x

pb+1pd
⇔ pd ≤

x

pb+1pl+b−1

, (2.3.76)

so we have

x

pb+1pb+1

< pd ≤
x

pb+1pb+l−1

, (2.3.77)

π

(
x

pb+1pb+l

)
< d ≤ π

(
x

pb+1pb+l−1

)
, (2.3.78)

π

(
x

pb+1pb+l

)
+ 1 ≤ d < π

(
x

pb+1pb+l−1

)
+ 1. (2.3.79)

It is relatively straightforward to implement an iteration scheme that uses the

above formulae to compute S2ec more rapidly than a direct application of (2.3.70).

Unfortunately, such an iteration scheme is not easy to represent as an equation with an

explicit sum. The procedure is represented as pseudocode in Fig. 2.1, and described

here in text. We start by writing explicit limits for d in S2ec from (2.3.70):

dmin,S2ec = max

{
b+ 2, π

(
x

pb+1α 3
√
x

)
+ 1, π

(√
x

pb+1

)
+ 1

}
, (2.3.80)

dmax,S2ec = min

{
a+ 1, π

(
x

p2b+1

)
+ 1

}
. (2.3.81)

The sum is then rewritten as follows:

S2ec =
∑

a⋆≤b<π( 3√x)

∑
d∈D

(d′ − d)l, (2.3.82)
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where l is computed using (2.3.72), and

d′ = min

{
π

(
x

pb+1pb+l−1

)
+ 1, dmax,S2ec

}
. (2.3.83)

The set D of d-values is defined recursively via dmin,S2ec ∈ D and for all d ∈ D, d′ ∈ D.

This recursive sequence terminates when d = d′, which occurs when d = dmax,S2ec .

From a practical point of view, the iteration procedure involves initializing d using

dmin,S2ec , and iterating through subsequent d-values using (2.3.83).

2.4 Introducing blocks Bk

There is a one-to-one correspondence between the terms in (2.2.32) and (2.3.67),

and terms ultimately summed in a machine implementation of the Meissel-Lehmer

method. The individual terms, ϕ(y, b) for each y and b, are calculated by sieving the

interval [0, z), where z = x2/3/α is an upper bound for the possible y-values. This

procedure will be briefly described in Sect. 2.5. However, in order to make use of

the sieve, the interval [0, z) must first be subdivided into blocks Bk of width ∆. A

typical choice for ∆ is ∆ = ⌊α 3
√
x⌋. We will see in Sect. 3.3 that it is possible to use

smaller values of ∆, resulting in a lower memory requirement for the algorithm. In

this section we rewrite (2.2.32) and (2.3.67) in terms of these blocks.

2.4.1 Defining Bk and computing kmax

Let Bk = [(k − 1)∆, k∆), with k ∈ [1, kmax], where ∆, k, kmax ∈ N, and where kmax is

defined by:

⌊z⌋ ∈ Bkmax = [(kmax − 1)∆, kmax∆) . (2.4.1)

Then

⌊z⌋ ≥ (kmax − 1)∆ (2.4.2)

⌊z⌋
∆

≥ kmax − 1 (2.4.3)⌊
⌊z⌋
∆

⌋
≥ kmax − 1 (2.4.4)⌊ z

∆

⌋
≥ kmax − 1 (2.4.5)⌊ z

∆

⌋
+ 1 ≥ kmax (2.4.6)
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where (2.4.4) follows because kmax ∈ N. Similarly, we have:

⌊z⌋ < kmax∆, (2.4.7)⌊ z
∆

⌋
< kmax, (2.4.8)⌊ z

∆

⌋
+ 1 ≤ kmax. (2.4.9)

Together, (2.4.6) and (2.4.9) give:

kmax =
⌊ z
∆

⌋
+ 1. (2.4.10)

2.4.2 Subdividing ϕ2(x, a)

Suppose now that

π(
√
x)∑

b=a+1

ϕ

(
x

pb
, a

)
=

kmax∑
k=1

bmax∑
b=bmin

ϕ

(
x

pb
, a

)
, (2.4.11)

where x/pb ∈ Bk and bmin, bmax ∈ N. We wish to compute bmin and bmax as a function

of k. Consider first the case k = 1. Then:

(k − 1)∆ ≤ x

pb
(2.4.12)

is equivalent to

0 ≤ x

pb
, (2.4.13)

which is satisfied for all x ∈ N. Suppose next that k > 1. This gives:

(k − 1)∆ ≤ x

pb
, (2.4.14)

pb ≤
x

(k − 1)∆
, (2.4.15)

b ≤ π

(
x

(k − 1)∆

)
. (2.4.16)

On the lower-limit, irrespective of the value of k, we have:

x

pb
< k∆, (2.4.17)

x

k∆
< pb, (2.4.18)⌊ x

k∆

⌋
< pb, (2.4.19)⌊ x

k∆

⌋
+ 1 ≤ pb, (2.4.20)
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and

π
( x

k∆

)
< b, (2.4.21)

π
( x

k∆

)
+ 1 ≤ b. (2.4.22)

b is furthermore bounded by the limits in the original sum, (2.2.32), so we have:

bmin ≤ b ≤ bmax, (2.4.23)

bmin = max
{
a+ 1, π

( x

k∆

)
+ 1
}

(2.4.24)

bmax =

⎧⎪⎨⎪⎩
π(
√
x) (k = 1)

min

{
π(
√
x), π

(
x

(k − 1)∆

)}
(k > 1)

(2.4.25)

In practice, it is more computationally convenient to represent the limits in terms of

pb:

pbmin
≤ pb ≤ pbmax , (2.4.26)

pbmin
= max

{
pa+1,

⌊ x

k∆

⌋
+ 1
}
, (2.4.27)

pbmax =

⎧⎪⎨⎪⎩
⌊√

x
⌋

(k = 1)

min

{⌊√
x
⌋
,

⌊
x

(k − 1)∆

⌋}
(k > 1)

(2.4.28)

Finally, combining (2.2.32) and (2.4.11), we have:

ϕ2(x, a) = −
(
π(
√
x)− a+ 1

2

)
+

kmax∑
k=1

bmax∑
b=bmin

ϕ

(
x

pb
, a

)
, (2.4.29)

where kmax, bmin, and bmax are defined by (2.4.10), (2.4.24), and (2.4.25), respectively,

and where y = x/pb is guaranteed to fall within Bk = [(k − 1)∆, k∆).

The summand ϕ (x/pb, a) in (2.4.29) is evaluated by sieving the interval [0, z), see

Sect. 2.5. The primes pb appearing in (2.4.29) range up to ⌊
√
x⌋. These primes

are identified using a secondary sieve, namely an ordinary sieve of Eratosthenes to

identify the primes pb in the interval [pbmax , pbmin
]. To see that this is reasonable, it is

helpful to prove that pbmax − pbmin
< ∆, which ensures that this secondary sieve has

a smaller memory requirement than the main sieve in the combinatorial algorithm.

This proof is straightforward but somewhat cumbersome; we therefore delegate the

proof to Appendix A.
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2.4.3 Subdividing S1 and S2h

As shown in Sections 2.3.2, 2.3.4, and 2.3.5, S0, S2t, and S2e can be computed with-

out directly computing ϕ(y, b) by sieving. Therefore, only S1 and S2h need to be

considered when distributing the calculation of ϕ(x, a) across blocks Bk. These can

be distributed in a similar fashion as ϕ2(y, b). In particular, we find:

S1 = −
kmax∑
k=1

∑
c≤b<a⋆

∑
mmin≤m<mmax
pmin(m)>pb+1

µ(m)ϕ

(
x

mpb+1

, b

)
, (2.4.30)

S2h =
kmax∑
k=1

∑
a⋆≤b<π( 3√x)

∑
dmin≤d<dmax

ϕ

(
x

pb+1pd
, b

)
, (2.4.31)

where

mmin = max

{⌊
x

k∆pb+1

⌋
+ 1,

⌊
α 3
√
x

pb+1

⌋
+ 1

}
, (2.4.32)

mmax =
⌊
α 3
√
x
⌋
+ 1 (k = 1), (2.4.33)

= min

(⌊
α 3
√
x
⌋
+ 1,

⌊
x

(k − 1)∆pb+1

⌋
+ 1

)
(k ̸= 1), (2.4.34)

dmin = max

{
π

(
x

k∆pb+1

)
+ 1, b+ 2

}
(2.4.35)

dmax = min

[
a+ 1, π

(
x

p2b+1

)
+ 1, π

(
x

pb+1α 3
√
x

)
+ 1

]
(k = 1), (2.4.36)

= min

[
a+ 1, π

(
x

p2b+1

)
+ 1, π

(
x

pb+1α 3
√
x

)
+ 1,

π

(
x

(k − 1)∆pb+1

)
+ 1

]
(k ̸= 1). (2.4.37)

2.5 Sieve machinery

The “main sieve” in the combinatorial algorithm provides a mechanism by which

ϕ(y, b) can be rapidly computed for any y < z and b ≤ a. This is performed block-

by-block and prime-by-prime: at any given time, one has fast access to ϕ(y, b) for

a single value of b, for any y ∈ Bk. Starting with k = 1 and b = c, one adds the

contributions to the sums S1 and S2h that make use of the current value of b and lay

in the given block Bk. One then moves to the next value of b, and sieves the interval

Bk with pb. Once b = a is reached, the contribution to ϕ2 for the given k is added.
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Finally, the sieve is re-initialized with b = c and k → k + 1, until the entire interval

[0, z) has been sieved, and all contributions added to S1, S2h, and ϕ2.

Unlike the explicit formulae for ϕ2 and ϕ given in this chapter, and the algorithmic

improvements to follow in Chapters 3 and 4, we made use of the sieve methods as

described in [12] with relatively little modification. Thus, for brevity, we refer the

interested reader to [12] for additional details.
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S2ec = 0;

d = d_min_S2ec;

while (d < d_max_S2ec) {

l = pi[x / (p[b+1] * p[d])] - b + 1;

dPrime = min(pi[x / (p[b+1] * p[b+l-1])] + 1, d_max_S2ec);

S2ec += l * (dPrime - d);

d = dPrime;

}

Figure 2.1: Pseudocode for the computation of S2ec. The pseudocode style used in
this thesis is valid C-code, with variable and function definitions omitted. Here p[b]
represents pb, and pi[y] represents π(y). In an actual implementation, there are
more cost-effective ways to store π(y) than a simple array, see Sect. 3.1.



Chapter 3

Reducing space complexity

Three data structures dominate the memory usage in the combinatorial algorithm

[3, 7, 10–12]: a table of π(y) for y ≤ ymax, a table of the smallest prime factor pmin(y),

also for y ≤ ymax, and a set of ∆ = 2L sieve counters, where a typical choice for

L ∈ N is L = ⌊log2 ymax⌋ [10]. Each of these three data structures limits the space

complexity of the algorithm to O(ymax). The choice ymax = αx1/3 with α = βlog3x

for some β ∈ R is used in the most recent versions of the algorithm [10, 12] to achieve

the time complexity O(x2/3log−2x), simultaneously setting the space complexity at

O(x1/3log3x). The next largest data structure is a table of primes pb for b ≤ π(ymax),

which has size O(ymax/ log ymax) = O(x1/3log2x). Thus, to decrease the memory usage

of the algorithm by a factor of log x, we must either reduce each of the limiting data

structures by a factor of log ymax or more, or else eliminate them entirely.

We note that not all expositions of the algorithm are limited by all three of the

above data structures. For example, Oliveira e Silva was aware that significantly

smaller sieve counters can be used than implied by L = ⌊log2 ymax⌋, although he does

advocate storing π(y) and pmin(y) for y ≤ ymax [12]. This is to be contrasted with

Deléglise and Rivat, who use ymax sieve counters, and store π(y) for y ≤ ymax, but

manage to eliminate pmin(y) from their final formulae [10].

3.1 Retrieving π(y) for y ≤ ymax in O(1) time using O(ymax/ log ymax) space

The values π(y) are used in many places in the algorithm [10, 12]. The authors of past

studies advocate the use of a table of values for this purpose, which requires O(ymax)

storage locations. The implied constant is 1 in the simplest implementation, where

a single storage location is used to store a single value of π(y). This constant can be

reduced somewhat by only storing π(y) for those y coprime to the first c primes, for

some c ∈ N. Such a mechanism is commonly referred to as a “wheel” [30]. However,

a wheel cannot be used to reduce the space complexity of the algorithm, as the table
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used to store the wheel itself grows rapidly, namely with the primorial of c. From a

practical point of view, even with a wheel the table π(y) becomes prohibitively large,

and had to be eliminated to permit the computation of π(1026).

Given the prime number theorem, it turns out that it is possible to retrieve π(y)

for any y ≤ ymax in constant expected time, using only O(π(ymax)) = O(x1/3log2x)

precomputed values. The method is represented using pseudocode in Figures 3.1 and

3.2, and described here. The trick is to only store π(ỹ) for values ỹ that are multiples

of ⌊log2 ymax⌋. We also make use of a table of all the primes pb for b ≤ π(ymax): such a

table also requires π(ymax) storage locations, and is anyway required elsewhere in the

combinatorial method [10, 12]. The method for determining π(y) for a specific value

of y is then as follows: firstly, we look up the value π(ỹ) at the closest value ỹ ≤ y.

We then iterate through the array of primes pb, starting at b = π(ỹ) + 1, checking

whether pb > y at each value of b. If pb > y, we return π(y) = b − 1; if pb ≤ y, then

we move on to b+ 1, repeating the process.

The surprising thing is the rapid speed with which this algorithm converges: from

the prime number theorem, we expect on average one prime in the range (ỹ, y], because

y − ỹ < ⌊log2 ymax⌋. Thus, the most likely situation is that π(ỹ) = π(y), i.e., the

initial guess for π(y) is in fact the correct value, and the algorithm terminates after a

single iteration. In practice, in the combinatorial algorithm we retrieve π(y) for many

values of y, such that the average performance is indeed the relevant quantity. Even

in the worst case, it is impossible for this algorithm to require more than ⌊log2 ymax⌋
iterations, which is O(log x), because this would contradict the assumption that ỹ

was the closest value ỹ ≤ y in the table π(ỹ).

3.2 Iterating over the squarefree m coprime to the first m primes

Determining pmin(y) for any y ≤ ymax means finding the smallest prime factor of any

such value of y on demand. pmin(y) is accessed sufficiently often that trivial algorithms

such as trial factoring are too slow for this purpose.

The author of [12] actually advocated storing the values pmin(y)µ(y) for y ≤ ymax,

where µ(y) is the Möbius function, rather than storing pmin(y) in isolation. However,

whether pmin(y) and µ(y) are stored separately or as a product is immaterial for the

current analysis. The values pmin(y) require an array of ymax storage locations, each
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// We map 2^compressionFactor y-values to the same piTilde value.

// piTilde[y>>compressionFactor] then gives a lower bound for pi(y).

compressionFactor = log2log2yMax;

piTilde[yMax >> compressionFactor] = a + 1;

for (b = a; b >= 1; b--) {

for (y = p[b]; y < p[b + 1]; y++) {

piTilde[y >> compressionFactor] = b;

}

}

Figure 3.1: Pseudocode describing the initialization of an array storing π(ỹ) for val-
ues ỹ that are multiples of ⌊log2 ymax⌋. This initialization is to be performed only
once, after which the procedure described in Fig. 3.2 can be repeatedly applied to
retrieve π(y) for various y ≤ ymax. For the purposes of this pseudocode, we assume
π(ymax) = a + 1. We also assume the variable log2log2yMax to be initialized with
⌊log2 log2 ymax⌋.

// This empty loop finds the greatest piY for which p[piY] <= y.

for (piY = piTilde[y >> compressionFactor]; p[piY + 1] <= y; piY++) {

}

Figure 3.2: Pseudocode describing how an array storing π(ỹ) for values ỹ that are
multiples of ⌊log2 ymax⌋ can be used to quickly retrieve π(y) for y ≤ ymax.
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of width at least log2 ymax: 2-bits per y-entry are sufficient to store µ(y), which is

negligible in comparison.

As was the case with the array π(y), a wheel can be used to compress the array

pmin(y). Indeed, the calculation for π(1026) was performed using a wheel to com-

press pmin(y) and µ(y), see Sect. 5.1. However, even with a wheel the array pmin(y)

eventually becomes prohibitively large, and would have precluded a possible future

computation of π(1027). Luckily, it turns out that the data structure pmin(y) can be

completely eliminated, and µ(y) along with it. In order to do this, we investigate the

purpose of storing pmin(y) [12].

The only situation where the array pmin(y) is used is in the computation of S1,

see (2.3.10). In order to compute S1, one must iterate over all squarefree values of

m ∈ N with mmin ≤ m < mmax having pmin(m) > pb+1 for varying values of b, mmin,

and mmax. The author of [12] does this by iterating over all mmin ≤ m < mmax, and

explicitly checking the condition pmin(m) > pb+1 using an array lookup for pmin(m).

µ(m) is used for exactly the same values of m. Note that we use different indices y

and m to refer to the indices in the array pmin(y) as compared to the particular values

pmin(m) occurring in (2.3.10). The array pmin(y) may be used to look up the values

pmin(m), because m < mmax with mmax ≤ ymax + 1, so m ≤ ymax.

In order to eliminate the array pmin(y), we require an iteration scheme over the

squarefree numbers m ∈ [mmin,mmax) coprime to the first b + 1 primes. Although

somewhat cumbersome, it is straightforward to construct such an iteration scheme

using a variable number of nested loops. Firstly, we loop over the primes

m = pb1 , (3.2.1)

where b1 assumes the values:

max {b+ 2, π(mmin − 1) + 1} ≤ b1 < π(mmax − 1) + 1. (3.2.2)

Here, (3.2.2) ensures both pmin(m) > pb+1 and m ∈ [mmin,mmax). Next, we loop over

the biprime numbers

m = pb1pb2 , (3.2.3)

where b1 ranges from b + 2 until the product pb1pb1+1 exceeds mmax, and b2 ranges

from b1 + 1 until the product pb1pb2 exceeds mmax. For each such biprime value
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of m, we explicitly check the condition mmin ≤ m. We subsequently loop over all

numbers m that are the product of three distinct primes pb1 , pb2 , and pb3 , each having

b + 1 < b1 < b2 < b3 and pb1pb2pb3 < mmax, using similar break conditions as with

biprime numbers above. This process is repeated until the largest possible number

of factors for m has been exceeded, which occurs when pb+1pb+2pb+3 . . . pb+n ≥ mmax,

where n is the number of prime factors. For example, p1p2 . . . p16 = 2·3 . . . 53 > 264, so

ifmmax is 64 bits or smaller, then n < 16. Furthermore, each value ofm = pb1pb2 . . . pbn

is squarefree by construction, so µ(m) = (−1)n for each m.

3.3 Reducing the size of the sieve counters

Reducing the size of the sieve counters is easy in comparison to π(y) and pmin(y).

Firstly, we note that one can simply reduce the number of counters, without negative

effects on the runtime [12]. By definition, the width of the sieving intervals in the

combinatorial algorithm for computing π(x) is equal to the number of sieve counters,

which we have denoted ∆ = 2L. Given that the upper limit of the sieve is x/ymax, there

are a total of x/(2Lymax) intervals. Supposing that the overhead per sieving interval is

proportional to the number of sieving primes, π(ymax), the total overhead associated

with subdividing the sieving intervals is proportional to x/(2L log x) by the prime

number theorem. If the overall time complexity is to be kept at O(x2/3log−2x), then

this implies 2L > γx1/3 log x, for some constant γ ∈ R. Choosing this minimal value of

L results in sieve counters a factor of log x smaller than needed to achieve our target

space complexity of O(x1/3log2x). This is consistent with numerical experiments,

where we find that the optimal value of 2L to minimize the runtime is substantially

smaller than ymax.



Chapter 4

Parallelizing the combinatorial algorithm

4.1 Shared-memory architectures

There are several practical approaches for parallelizing the algorithm on a shared-

memory architecture. Firstly, there is one important part of the algorithm, namely

the computation of S2e from Sect. 2.3.5, which is “embarrassingly parallel”. Note

that “embarrassingly parallel” indicates an algorithm where iterations are completely

independent from one another, and can be performed in isolation. Such algorithms

are typically easy to implement and scale well on parallel architectures. The so-called

easy leaves follow this pattern as they do not depend on the main sieve, do not need

to be interleaved with other parts of the algorithm, and can be computed completely

in isolation of one another.

The difficult part of the parallelism is the main sieve, where the partial sieve

function ϕ(m, b) is made available for each m ≤ x/ymax and each prime b ≤ π(ymax).

The values of ϕ(m, b) for smaller values of m and b are needed in order to compute

ϕ(m, b) for larger m and b, which precludes the embarrassingly parallel computation

of ϕ(m, b). The approach taken by the current author is to exploit the fact that the

sieving is already broken into blocks of length 2L. Specifically, one sieves each of N

subsequent blocks in parallel, working not with ϕ(m, b), but with ϕ(m, b)−ϕ(mmin, b),

where mmin is the beginning of the sieving interval under consideration. Each time a

value ϕ(m, b) needs to be added to a running sum without knowledge of ϕ(mmin, b),

this discrepancy is recorded in a tally. Once each thread is done sieving the interval

[mmin,mmin+2L), the values ϕ(mmin+2L, b)−ϕ(mmin, b) can be used to compute each

ϕ(mmin, b), starting at the smallest value of mmin, and the discrepancies represented

by the tallies can be resolved.

An algorithm that relies on the above idea has several drawbacks. Firstly, separate

sieve counters are needed for each thread, which multiplies the memory usage of the

sieve counters by a factor of N . Secondly, the tallies needed to keep track of the
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discrepancies between ϕ(m, b) and ϕ(m, b) − ϕ(mmin, b) require a similar amount of

memory as the sieve counters. Finally, synchronization is required after each thread

sieves a single block, which carries unnecessary overhead. Nonetheless, this approach

was found to be efficient enough for the purposes of the author.

After completing the bulk of the current project, the author was made aware of the

work of Kim Walisch [31]. Walisch employs an adaptive algorithm for shared-memory

parallelism, where blocks are scheduled dynamically depending on the runtime of

previous blocks. Such an approach is certainly more efficient than synchronizing each

iteration, which is important if a large shared-memory machine is to be used.

Another potentially attractive approach for shared-memory parallelism, in terms

of both time and space, would be to combine adaptive scheduling with the distributed-

memory parallelism algorithm that will be explained in the next section. By lever-

aging a distributed-memory algorithm even on a shared-memory architecture, the

dependence between subsequent iterations would be broken, completely eliminating

the need for communication between threads. Any constant arrays, such as the table

of primes pb for b ≤ π(ymax), could still be shared between the threads to save space

on a single shared-memory node.

4.2 Distributed-memory architectures

Distributing the computation of π(x) between multiple compute nodes was necessary

for the author to compute π(1026). The principal issue with distributing the compu-

tation is that the simplest algorithms described in Sect. 4.1 rely on rapid exchange of

information between compute nodes. Although it is in principle possible to efficiently

distribute such a calculation, the greatest degree of parallelism can only be achieved

if internode communication can be minimized or eliminated.

Fortunately, it is possible to parallelize the combinatorial algorithm for computing

π(x) in a way that requires no interprocess communication whatsoever, with the

exception of summing the contribution to π(x) for each job after the fact. This is

highly efficient for the machine, but requires use of a supporting algorithm to break

the interdependence of the jobs.

The following algorithm for distributed-memory parallelism is loosely based on an

unpublished idea of X. Gourdon [11]. Specifically, the issue is that the sums in the
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main part of the combinatorial algorithm depend on the partial sieve function ϕ(m, b),

which represents the count of numbers up to m that are coprime to the first b primes.

Sieving an interval [mmin,mmin+2L) only reveals the values ϕ(m, b)−ϕ(mmin, b). Thus,

determining ϕ(m, b) requires storing ϕ(mmin, b), updating it after sieving each block,

and using the updated value while sieving the next block to obtain any values ϕ(m, b)

of interest. This approach works fine if the sieve is started at mmin = 0, because

the recursive dependence terminates with ϕ(0, b) = 0. If the sieve is to be started

somewhere in the middle because, for example, earlier blocks are being simultaneously

sieved on some other computer, then we need a method to independently compute

ϕ(mmin, b).

What is needed is an algorithm that can compute ϕ(m, b) for a given value of

m = mmin and every c ≤ b ≤ π(ymax). An idea for how to do this was given in [11],

namely to repeatedly apply the recurrence

ϕ(m, b) = ϕ(m, b− 1)− ϕ(m/pb, b− 1). (4.2.1)

Here c is the size of the wheel being used in the sieve, so ϕ(m, c) is accessible for any

m ∈ N in O(1) time [12]. Given ϕ(m, c), the idea is to compute ϕ(m/pc, c) to obtain

ϕ(m, c+1). This can be done using the same implementation intended for the overall

computation of π(x), which is able to compute ϕ(x, a) for varying values of x and a.

The process is then repeated, to obtain ϕ(m, c + 2), ϕ(m, c + 3) and onwards up to

ϕ(m,π(ymax)).

The difficulty with the above idea is the amount of time needed to perform this

process; it would not affect the overall computational complexity of computing π(x),

but a simple interpretation of this idea was too slow to be used for the computation

of π(1026). The general idea, however, is sound, and modifications can be made to

substantially decrease the cost.

The approach taken here is a multifaceted one, where varying methods are used

to compute ϕ(m/pb, b) depending on the values of b. Again, ϕ(m, c) is available in

O(1) time for any m ∈ N using the sieving wheel. The wheel can also be used to

compute ϕ(m, c + 1) in O(1) time via ϕ(m, c) and ϕ(m/pc, c). The difficult cases

occur for c + 2 ≤ b ≤ π(
√
m). We first check whether p2b−1 ≤ m/pb. If this is the

case, then we directly apply (4.2.1), using the combinatorial algorithm to compute

ϕ(m/pb, b− 1). If, on the other hand, p2b−1 > m/pb, then Legendre’s formula applies,
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such that ϕ(m/pb, b−1) = π(m/pb)−b+2. We next check whetherm/pb < ymax. If this

is the case, then we can use the method described in Sect. 3.1 to retrieve π(m/pb)

in O(1) time. If m/pb ≥ ymax then Legendre’s formula still applies, but we must

compute π(m/pb) by some other method, e.g., using a second application of Legendre’s

formula or the combinatorial algorithm. For the remaining values π(
√
m) < b ≤

π(ymax), determining ϕ(m, b) is trivial given ϕ(m, b − 1). Specifically, if m < ymax

then ϕ(m, b) = ϕ(m, b − 1) − 1 for π(
√
m) + 1 ≤ b ≤ π(m) and ϕ(m, b) = 1 for

π(m) + 1 ≤ b ≤ π(ymax). If m ≥ ymax, then ϕ(m, b) = ϕ(m, b − 1) − 1 for all

π(
√
m) + 1 ≤ b ≤ π(ymax).



Chapter 5

Numerical calculations

5.1 Implementation details

The description in [12] was used as a starting point for the implementation, with

the enhancements of Chapters 3–4 gradually incorporated. The implementation was

written in the C99 programming language, with significant effort devoted to ensuring

the correctness of the program. Fast unit tests were run on a development machine

for every committed version of the code, with more extensive unit tests frequently

run on the target cluster. All code was demanded to compile without warning using

the GCC 4.9.1 compiler with the default warning level, and to pass static analysis

with the Clang Static Analyzer. Precisions of finite-width data types were artificially

reduced to intentionally break the program and identify failure modes. Unit tests

were written covering wide ranges of parameter values, including edge-cases chosen

specifically with the intention of breaking the program. In general, all code was

written and checked as strictly as the author was capable at the time of writing.

In Table 5.1 we show resources usage for computing π(10n) using two different

versions of the author’s implementation of the combinatorial algorithm. In this table,

time is measured in “node seconds”, i.e., it is the sum of the actual time spent on all

compute nodes for that calculation. Similarly, memory usage is memory per node.

Here a “compute node” was an IBM iDataplex dx360 M4, having a total of 16 CPU

cores (2 × Intel Xeon E5-2670 eight-core 2.60 GHz CPUs) with either 64 or 128 GB

RAM (8 GB PC3-12800 ECC RDIMM modules) depending on the requirements of

the calculation. Thus, 2.98×107 node s for computing π(1026) corresponds to roughly

15.1 CPU core-years.

Both versions of the software in Table 5.1 implemented the algorithm as described

in Chapters 2–4, with the exception that the first version of the software, 2014.10.19,

was missing the advancement presented in Sect. 3.2. Version 2014.10.19 was used in

the record computations of π(1026) and π(2m) for 81 ≤ m ≤ 86. Note that π(1024),
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Time Memory Time Memory
[node s] [bytes] [node s] [bytes]

x Version 2014.10.19 Version 2015.01.30

1015 1.48× 100 3.81× 107 1.18× 100 1.95× 107

1016 6.07× 100 4.31× 107 5.27× 100 2.16× 107

1017 2.68× 101 5.78× 107 2.59× 101 2.71× 107

1018 1.31× 102 1.69× 108 1.08× 102 1.01× 108

1019 5.83× 102 3.44× 108 6.07× 102 1.74× 108

1020 2.89× 103 1.73× 109 2.56× 103 1.27× 109

1021 1.20× 104 3.22× 109 1.04× 104 1.92× 109

1022 5.06× 104 5.81× 109 4.68× 104 2.98× 109

1023 2.27× 105 1.16× 1010 2.17× 105 5.23× 109

1024 1.07× 106 2.41× 1010 – 1.00× 1010

1025 5.25× 106 5.16× 1010 – 2.01× 1010

1026 2.98× 107 1.12× 1011 – 4.16× 1010

Table 5.1: Resource usage for computing π(x) with x = 10n.

π(1025), and π(1026) were not recalculated using version 2015.01.30, because these

calculations are computationally expensive. Thus, the runtimes for these values are

absent in Table 5.1. The values for the memory usage can be accurately determined

without actually performing the calculations, and are thus present in the table.

As can be seen from Table 5.1, eliminating the table of values of pmin(y) sub-

stantially reduced the memory usage of the software. The implementation was also

slightly faster. This slight improvement in speed was due to the fact that, with the im-

provement of Sect. 3.2, only the values mmin ≤ m < mmax satisfying pmin(m) > pb+1

are iterated over in the calculation of S1 using version 2015.01.30. This is to be com-

pared with version 2014.10.19, where all values mmin ≤ m < mmax are iterated over,

and the condition pmin(m) > pb+1 checked for each m.

5.2 Values of π(x) for x = 10n with 1 ≤ n ≤ 26 and x = 2m with 1 ≤ m ≤ 86

The combinatorial algorithm was implemented and used to compute π(10n) for 1 ≤
n ≤ 26 and π(2m) for 1 ≤ m ≤ 86, see Tables 5.2 and 5.3. The values π(10n) for 1 ≤
n ≤ 25 and π(2m) for 1 ≤ m ≤ 80 were checked and found to be consistent with the

work of previous authors [12, 16]. We note that the values π(2m) form = 77, 78, 79, 80

were previously computed under the assumption of the Riemann hypothesis [16], and
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were apparently never verified unconditionally until this study. The values π(1026)

and π(2m) for 81 ≤ m ≤ 86 were first reported in this study. These new values were

checked in three ways. First, each new value was computed twice, using separate

clusters and differing numerical parameters (α, c, and L). Second, the values were

checked against the logarithmic integral to ensure the results were reasonable. Third,

at the suggestion of Robert Gerbicz [32], the parities of the new values of π(x) were

checked and found to be consistent with those computed by Lifchitz using a yet-

unpublished algorithm [33].
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x π(x) li(x)− π(x)

101 4 2.166
102 25 5.126
103 168 9.610
104 1229 17.137
105 9592 37.809
106 78498 129.549
107 664579 339.405
108 5761455 754.375
109 50847534 1700.957
1010 455052511 3103.587
1011 4118054813 11587.622
1012 37607912018 38262.805
1013 346065536839 108971.050
1014 3204941750802 314889.954
1015 29844570422669 1052618.581
1016 279238341033925 3214631.793
1017 2623557157654233 7956588.778
1018 24739954287740860 21949555.022
1019 234057667276344607 99877775.223
1020 2220819602560918840 222744643.548
1021 21127269486018731928 597394254.333
1022 201467286689315906290 1932355208.151
1023 1925320391606803968923 7250186215.780
1024 18435599767349200867866 17146907278.151
1025 176846309399143769411680 55160980939.379
1026 1699246750872437141327603 155891678120.791

Table 5.2: Values of π(x) for x = 10n.
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x π(x) x π(x) x π(x)

21 1 230 54400028 259 14458792895301660
22 2 231 105097565 260 28423094496953330
23 4 232 203280221 261 55890484045084135
24 6 233 393615806 262 109932807585469973
25 11 234 762939111 263 216289611853439384
26 18 235 1480206279 264 425656284035217743
27 31 236 2874398515 265 837903145466607212
28 54 237 5586502348 266 1649819700464785589
29 97 238 10866266172 267 3249254387052557215
210 172 239 21151907950 268 6400771597544937806
211 309 240 41203088796 269 12611864618760352880
212 564 241 80316571436 270 24855455363362685793
213 1028 242 156661034233 271 48995571600129458363
214 1900 243 305761713237 272 96601075195075186855
215 3512 244 597116381732 273 190499823401327905601
216 6542 245 1166746786182 274 375744164937699609596
217 12251 246 2280998753949 275 741263521140740113483
218 23000 247 4461632979717 276 1462626667154509638735
219 43390 248 8731188863470 277 2886507381056867953916
220 82025 249 17094432576778 278 5697549648954257752872
221 155611 250 33483379603407 279 11248065615133675809379
222 295947 251 65612899915304 280 22209558889635384205844
223 564163 252 128625503610475 281 43860397052947409356492
224 1077871 253 252252704148404 282 86631124695994360074872
225 2063689 254 494890204904784 283 171136408646923240987028
226 3957809 255 971269945245201 284 338124238545210097236684
227 7603553 256 1906879381028850 285 668150111666935905701562
228 14630843 257 3745011184713964 286 1320486952377516565496055
229 28192750 258 7357400267843990

Table 5.3: Values of π(x) for x = 2m.
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Conclusions

6.1 Future work

Two additional approaches for further reducing the size of the sieve counters are ap-

parent to the author. Firstly, it should be possible to substantially reduce the amount

of overhead per interval using a variant of the bucket sieve algorithm developed by

Oliveira e Silva [1]. The basic idea of bucket sieving is to not sieve every interval

by every sieving prime, but rather to allocate each sieving prime to a “bucket” that

indicates the next interval in which a multiple of the prime appears. Buckets are then

sequentially processed, one bucket per interval, with each sieving prime encountered

being moved to a later bucket. In this fashion, the only primes that are encountered in

each sieving interval are the ones for which multiples actually appear in that interval.

This permits significantly smaller sieving intervals to be used, effectively eliminating

the width of the sieving interval as a contributor to memory usage. Such an approach

may even permit the entire sieve table to be stored in the processor’s data cache,

providing greatly enhanced performance as compared to main memory [1].

The other potential approach for further reducing the memory usage of the sieve

counters involves more efficiently packing the values. The sieve counters suggested

by Oliveira e Silva, and used by the present author, have a fractal-like structure [12].

For a complete description of the workings and necessity of the sieve counters, we

direct the reader to [12]. What matters for us is that the counters are each initialized

with a number 2ℓ, for some 0 ≤ ℓ ≤ L, and then decremented from that initial value.

This implies that the largest counters need to be stored using integer data types

with at least L bits. Thus, if a common binary representation is used for each of

the 2L sieve counters, then the total storage requirement is L2L bits. With the sieve

counters indexed using a single variable as in [12], one can probably not avoid using a

common binary representation for each of the 2L counters. We note, however, that it

is possible to pack the values much more efficiently, resulting in an average of 2 bits
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per counter, such that the total requirement is only 2L+1 bits.

6.2 Summary

Recent advances in the combinatorial algorithm for computing π(x) were presented

together with numerical results. Specifically, memory usage has been reduced by a

factor of log x, and algorithms for shared- and distributed-memory parallelism have

been developed. The resulting algorithm computes π(x) using O(x2/3log−2x) arith-

metic operations and O(x1/3log2x) memory locations, each of width proportional to

log x. An algorithm for shared memory parallelism appeared previously in the litera-

ture [3], but not for the most recent versions of the algorithm [10, 12]; the basic idea

necessary for distributed memory parallelism appeared in an unpublished manuscript

[11]. The memory reduction presented here appears to be new. Previously reported

values [12, 16] of π(10n) for 1 ≤ n ≤ 25 and π(2m) for 1 ≤ m ≤ 80 were verified;

the values π(1026) and π(2m) for 81 ≤ m ≤ 86 were computed and checked in several

ways.

We are now in the interesting situation where two different types of algorithms,

combinatorial and analytic, are closely matched for practical calculations of π(x). If

nothing else, this situation gives unprecedented confidence in any numerical results

computed consistently using both types of methods, which is currently the case with

π(10n) for 1 ≤ n ≤ 25 and π(2m) for 1 ≤ m ≤ 80.



Appendix A

Proof that pbmax
− pbmin

< ∆ in (2.4.29)

Let ∆̃ = pbmax − pbmin
. We aim to prove ∆̃ < ∆. Suppose first that k = 1. Then:

pbmax =
⌊√

x
⌋
, (A.0.1)

pbmin
= max

{
pa+1,

⌊ x
∆

⌋
+ 1
}
, (A.0.2)

pbmin
≥
⌊ x
∆

⌋
+ 1, (A.0.3)

∆̃ ≤
⌊√

x
⌋
−
⌊ x
∆

⌋
− 1. (A.0.4)

Recall:

⌊m⌋ − ⌊n⌋ − 1 < m− n ∀ m,n ∈ R. (A.0.5)

Combined with (A.0.4), this gives:

∆̃ <
√
x− x

∆
, (A.0.6)

∆− ∆̃ > ∆−
√
x+

x

∆
. (A.0.7)

Note that (
∆−

√
x
)2

+∆
√
x > 0 ∀ ∆, x > 0, (A.0.8)

so

∆2 −∆
√
x+ x > 0, (A.0.9)

∆−
√
x+

x

∆
> 0, (A.0.10)

∆− ∆̃ > 0, (A.0.11)

∆ > ∆̃ (k = 1). (A.0.12)

Suppose now that k ̸= 1. Then:

∆̃ = pbmax − pbmin
(A.0.13)

≤
⌊

x

(k − 1)∆

⌋
−
⌊ x

k∆

⌋
− 1. (A.0.14)
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Note that for all m,n ∈ R:

⌊m⌋ ≤ m, (A.0.15)

n− 1 < ⌊n⌋, (A.0.16)

−⌊n⌋ < −n+ 1, (A.0.17)

⌊m⌋ − ⌊n⌋ < m− n+ 1, (A.0.18)

⌊m⌋ − ⌊n⌋ − 1 < m− n. (A.0.19)

This gives:

∆̃ <
x

(k − 1)∆
− x

k∆
(A.0.20)

<
x

∆

(
1

1− k
− 1

k

)
(A.0.21)

<
x

∆k(k − 1)
. (A.0.22)

We claim:
x

∆k(k − 1)
≤ ∆. (A.0.23)

We will prove this claim by contradiction. First, note that if pbmax < pbmin
, then

∆̃ < 0 < ∆, which would prove the entire claim of this appendix, so we are free to

take pbmax ≥ pbmin
. This gives: ⌊√

x
⌋
≥
⌊ x

k∆

⌋
+ 1, (A.0.24)

√
x ≥

⌊ x

k∆

⌋
+ 1, (A.0.25)

but ⌊ x

k∆

⌋
>

x

k∆
− 1, (A.0.26)

so we have:

√
x >

x

k∆
, (A.0.27)

k∆ >
√
x. (A.0.28)

We now proceed with the proof of (A.0.23). Suppose

x

∆k(k − 1)
> ∆. (A.0.29)
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Then

x

∆(k − 1)
> k∆, (A.0.30)

x

∆(k − 1)
>

√
x, (A.0.31)

√
x

∆
> k − 1, (A.0.32)

k <

√
x

∆
+ 1. (A.0.33)

Meanwhile

∆̃ ≤
⌊√

x
⌋
−
⌊ x

∆k

⌋
− 1, (A.0.34)

∆̃ <
√
x− x

∆k
, (A.0.35)

but

k <

√
x

∆
+ 1, (A.0.36)

so

∆̃ <
√
x− x

∆
(√

x
∆

+ 1
) , (A.0.37)

∆̃ <
√
x− x√

x+∆
, (A.0.38)

∆̃ <

√
x(
√
x−∆)− x√
x+∆

, (A.0.39)

∆̃ <

√
x∆√

x+∆
, (A.0.40)

∆̃ <
∆

1 + ∆√
x

, (A.0.41)

∆̃ < ∆, (A.0.42)

which proves the claim for k ̸= 1. Combined with (A.0.12), we have ∆̃ < ∆ for all k.
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