Computation of pi(x) : improvements to the Meissel, Lehmer,
Lagarias, Miller, Odlyzko, Deléglise and Rivat method

Xavier Gourdon

February 15, 2001

Abstract

In 1870, the German astronomer Meissel initiated a method to compute efficiently single
values of 7(z) (the number of primes < z). His method has been improved several times, first
by Lehmer in 1959, then by Lagarias, Miller and Odlyzko in 1985, and finally by Deléglise and
Rivat in 1994. We aim at presenting new improvements to this method. As a result, some
constant factors are saved in the algorithm, the method is more economical in space, and
we present a technique which permits to distribute the computation with minimal memory
exchange. Implementation of these improvements permits to reach larger values of and was
used to compute 7(10%') by the author. A distributed project on the web was started and
permitted to reach the value of 7(2 x 10%2).

1 Introduction

The Sieve of Eratosthenes was, until 1870, the only known method to compute efficiently w(x),
when Meissel proposed a method to compute efficiently n(z) without computing all the prime
numbers less than x. He computed by hand 7(10%) and 7(10°), reaching values which were
far beyond the prime tables at that time. Later in 1959, Lehmer improved the technique and
computed 7(10'Y). In 1985, a breakthrough was obtained when Lagarias, Miller and Odlyzko
proved, using refinement of the method, that 7(x) can be computed in time O(2?/?/log(z)) using
O(x/3 log® (x) loglog(z)) space. They computed several values of m(z) up to 4 x 10'%. Once
again, the method was refined in 1994 by Deléglise and Rivat who saved a factor of log(x) in the
time cost, but with a space O(log(x)) bigger. The refinements lead to practical improvement and
Deléglise implemented the method so that values up to & = 10%° were computed.
We improved again this method, with the following features :

e Constant factors have been saved in the time cost,
e the method is more economical in space,

e the computation can be distributed on several machines with a very small memory exchange,
provided a relative cheap precomputation is done on each machine.

As a result, an implementation permitted to reach the value of 7(10%!). A distributed version has
also been implemented, permitting to obtain from a distributed project on the web the values of
7(2 x 10%1), 7(4 x 1021), 7(10%2) and 7(2 x 10%2). (the distributed project is going on and higher
values will be obtained).

Note that in 1987, Lagarias and Odlyzko [3] described an analytic method to compute 7 (z),
based on numerical integration involving Riemann ¢-function, using O(x'/2%¢) time and O(z'/47¢)
space. Despites this asymptotic superiority, the corresponding method has never been implemented
and the implied constant are probably large, therefore the method does not seem of practical use
for reachable values of = today.

2 Recall of the method

The algorithm is well described in [2] and [1]. We just outline the method. In the following, p and
q always denote prime numbers.

Let p1, p2, p3, ... denote the consecutive primes 2, 3, 5, We denote by ¢(z,a) the partial
sieve function which counts numbers n < z with all prime factors > p, :

p(x,a) =#{n <z pln—=p>p.}

Let
Py(z,a) =#{n<z; n=qq- - -q and q,...,q > pa},

counting numbers < z with exactly k prime factors, all larger than p,. We have the identity
¢(z,a) = Py(x,a) + Pi(z,a) + -+ + Py(z,a) + -

where the sum has finitely non zero terms.
We now fix an integer y such that z'/% < y < #/2, and consider a = 7(y). We have P, (z,a) =
m(x) — a and Py(x,a) = 0 for k > 3, thus

m(z) = ¢(z,a) + a — 1 — Po(x,a).

Computation of P(z,a)

We easily find (see [1] or [2])

Py(z,a)= > (W(f—))—ﬁ(p)—l—l).

y<p<Vz

Computation of the partial sieve function ¢(z,a)

We have the recurrence
T
¢<x,b>:¢<w,b—1>—¢>(p—b,b—1). M

This relation is the basic formula which permits to decrease the complexity of the computation.
For example, applying the recurrence (1) at two levels from the value ¢(z,a) leads to

¢(w,a>:¢(:c,a—2>—¢(° ,a—2>—¢<3,a—2>+¢(- ,a—2>.
Pa-1 Da PaPa—-1

This process can be continued until we get terms of the form ¢(u,0), leading to the formula

o)=Y u) [T,

n
1<n<z,y(n)<y

since ¢(u,0) = [u], where p(n) denotes the Mobius function and v(n) denotes the greatest prime
factor of n.

Unfortunately, this sums contains too many terms and to make the method effective, the
truncation rule is replaced by the following (see [1]) :

Do not split a node p(n)¢(%,b) if either of the following holds :

1.b=kandn <z
2. n>z

where k is a small fized integer value (for example k = 1), and z is a fized value which
satisfy y < z < x'/2.

This rule gives the equality
p(z,a) = ¢o + h1
with

do = > ume (k) (2)

n
n<z,0(n)>pr,v(n)<ly

b= - Y 3 u(m)qﬁ(]%m(p)—l)- (3)

Pe<p<y mm<z<pm,5(m)>p,y(m)<ly
The value ¢y is easily computed thanks to the formula
¢(2, k) = [2/ Pel¢(Py) + ¢(z mod Py, k), Py =p1---pp-
As for ¢, we let 2* = max(z'/4, z/y?) and we have
¢1 = 51+ S2,
where

so= - Y > o () 1)

pr<p<z* m:m<z<pm,§(m)>p,y(m)<y

> Y o(Zaw-1).

z*<p<y q:p<q<y

Sz

This is true since the value of m in (3) for which p > z* satisfy p < m < z and 6(m) > p, thus
§(m)? > p* > x*/? > z, thus m < §(m)? thus m = ¢ is prime, and mp = pg > p* > z.
Computation of S,

We rewrite Sy in the form
Sy =T + 15 + 15,

where

n- Y Y e(Eew-1),

e*<p<(z/y)t/2 p<q<y

T, = > 3 ¢(£’W(p)_1>’
(z/y)/2<p<al/3 p<q<y g
B = Z Z ¢<p£q’ﬂ'(p)—1) ,

zt/3<p<y P<q<y

In T3, we always have ©/(pq) < p so ¢(x/(pq),7(p) — 1) =1 and finally

= 0 =) = r) -1

As for Ty, we distinguish its contribution Ty where z/p? < q < y, for which z/(pq) < p thus
¢(z/(pg), w(p) — 1) = 1. The corresponding value is

Ty = Y Ay - (1%) .

(z/y)!/2<p<al/s

The complementary value Ty = T — T is

R)

(z/y)1/2<p<al/3 p<g<lz/p?

We now concentrate on the terms Ty and T3. For both, we always have p < z/(pq) < p? thus

As a consequence, we have
T+ Ty =U+V; + Vs,

v= 3 > 2—m(p),

z*<p<zl/3 p<g<min(y,z/p?)

where

and

S Do) v T s

z*<p<(z/y)1/2 p<q<y (z/y)/2<p<al/s p<q<w/p?

Decreasing the number of terms

The Vi and V> terms contain a number of terms (p,q) which is asymptotically proportional to
(:L'y)l/ 2/ logz x, which is too much. To decrease this number of terms, we split the summations
again using the following result. (Note : this results also leads to a simplification of the method

presented in [1] to compute Ws3.)
Lemma 1

a<g<p 2/B<q<z/a
Proof : Remember that p; is the j-th prime number. We have

z .. z z
w (—) =j iff <qg< —.
q Pj+1 pj

Now we define a and b such that
z

z z
<a< — <K < <K < <p < —.
Pa+1 Pa Pa—-1 Po+2 Po+1 Do

() ()

S = br(B) — ar(a) + Z 7 <i> .

j=or1 \Pi

Denoting by S the left side of (4) we have
a—1

Szb[ﬂ(ﬂ)—w(z >]+ i

Po+1 j=b+1

thus

The inversion equality (4) follows since a = 7(z/a) and b = w(z/5). o

£ ()o@ T o)

o)

We now use this equality to rewrite Vs by splitting it for (z/p)'/? < ¢. The equality (4), used

with z = 2/p, a = (z/p)'/? and § = x/p? writes as

x)= (3)

(x/p)1/2<q<a/p? p<g<(z/p)

2

21/2
(Gm) =l
1/2

This implies

I NI e o B

(x/y)1/2<p<al/3 p<qg<(z/p) (z/y)t/2<p<al/s

In the same vein, the use of (4) with z = ©/p, @ = (x/p)'/? and § = y leads to
z d r 2ifz/(pg) <y
LD VI S YA AR F R B
1if x >
z*<p<(z/y)/2 p<q<(z/p)l/2 bq pq bq /(pq))
with
T 2172
Wl = Z e (-) 71'(2./) — T (1—/2)
z*<p<(ax/y)t/? Py p

Finally, this simplifies to

Vi+Vo=X-Y+W +W,

where)

1/2
X = Z Z X<£>ﬂ-<£>v Y = Z W(—wl/z) 5
a*<p<Lal/3 p<g<(ax/p)t/? pa pa o <p<zl/3 p

and

W= Y w(D)sw. wi= Y e (5)

z*<p<(z/y)t/? (z/y)t/2<p<Lat/?
Now we go back to U. We distinguish its contribution U; for which z* < p < (z/y)"/? and its
complementary U,. We have
U=U,+ Uy, U= Y, (w(y) - 70)2 - (D)
z*<p<(z/y)t/?
T
= Y (v(5)-w)e-mw.
(z/y)1/2<p<al/? P
The prime p in WJ runs on the same range than U, and T, and we have
U+ Wy + Ty = Z [w (%) —27(p) + n(p)® + w(y)} .
(m/y)t/2<p<at/s P
Summing this with U; + W] gives
Ui+ Wi+ U+ We+ Ty = 7(y) {2—77(]3)4—77(1)]
v <p<(a/y)1/? b
T
+ Z 7(p)?* — 27m(p) + Z |:7T (—2> + ﬂ(y)])
o <p<al/? (z/y)t/2<p<at/? p

This is also equal to

o = W@)%@u%_w«wwu%_w«ww”%wgwwﬂﬁ—3y+w@w@gw_g
+ ”($1/3>(”(°””1/3>;”(2”(5””3)—1)_W(xl/g)_m*)(w(:c> “DEe) D)
" W(y)wmp;(;/y)lﬂﬂ(p%)

i (z/y)l/;pqwﬁ(z%)'

Theorem 1 Let y such that /% < y < xY2, 2 such that y < z < /2 and k a fived small
constant. Then we have
m(@) =A-B+w+go+ 3,

where, using the notation x* = max(z'/*, z/y?),

>))

z* <p<a'/3 p<g<(z/p)'/?

s- 2.0

A

y<p<al/2
T
DY > e () - 1)
pr<p<z* m:m<z<pm,(m)>p,y(m)<y

w o= Y ume(Sk)

n<y,8(n)>pr
and ¥ = Z?:o 3, is the auzilliary term, defined with the notations

a=nly), b=n@/?), c=nla/y)"?), d=n(")

by
5, = a_1+7T($‘1/2)(7Té;U1/2>—1)_a(aQ—l)
Y, = (Cl—b)(c;—b—l)
clc—3) d(d-3)
Yoy = a{b—c— 5 + 5]
Y, = b(b—l)(2b—1) _d(d-)(2d—1)+d
S o= wly) W<_y>

z <p<(w/y)l/z

“ -2

(Jv/y)1/2<p<%1/3

-3 ()

T* <p<z1/3

Algorithm

To accelerate the computation of w, we use the relation

<< = o(Za)-1) = () —atm) +2

pm pm

More precisely, we write w = C' + D where C contains the terms of omega for which z/(pm) < p.
Finally, the algorithm computes the value

7(@)=A—B+C+D+g¢o+5, (5)

(o) =4 et sy

where

cx G

z* <p<z'/3 p<g<(z/p)'/?

- 2.0

y<p<wzl/2
T
C = -) =
> >) (7 () =70+ 2)
pr<p<z* m:m<z<pm,§(m)>p,y(m)<y,m>z/p3
T
D = - Z Z H(m)¢<—maﬂ(17)_1>
pr<p<z* m:m<z<pm,d(m)>p,y(m)<y,m<z/p3 p

o

> nme (5 k)

n<y,6(n)>pk

The way these formulaes are used to get the algorithm is not easy and is widely presented in [2]
and [1].

As shown in [1], the global resulting cost is optimal when y ~ cz'/? log® z loglog z, with ¢ a
positive constant, leading to a global cost of O(:L’Q/ 3/ log2 z). The parameter z is an optimization
parameter which is choosen to be equal to dy in the practice, with d > 1. Only A, B, C and D
are non negligeable parts of the computation.

3 Improvements to the method

In this form, the formula is a little different from the one resulting from [1] and a little easier to
implement (essentially due to the introduction of the function x which avoids the computation of
W3 in [1]).

Now, two improvements were made in the implementation :

Decreasing the memory cost

One of the practical problem arising while implementing the method to reach large values of 7(x)
is the memory cost. In [1] and [2], the amount of memory needed is proportional to y, which is a
little too big in the practice, especially for distributed computations where the contributors have
machine with a small amount of memory. Our approach consisted in using the same technique
as presented in [2], first by sieving by blocks of size O((x/y)'/?) (instead of blocks of size O(y)).
The key problem was the ability to access to the values of u(m), 6(m) and ~(m) for m < z.
In [2] and [1], these values are stored, leading to a memory storage of O(y). To decrease the
memory cost, we just stored those values until a value M = O((x/y)'/?), and we used different
fast processes to compute the other values of p(m), 6(m) and y(m) when needed. A study can be
made which shows that these values for m > M are not needed so often, so that the global cost is
asymptotically identical.

Distributing the computation

In [2], a method is presented which permits to distribute the computation of the algorithm.
Nevertheless, an exchange of memory of size O(:L’l/ 3) is needed between the machines, making
the corresponding implementation nearly impossible for a web distributed project. Following
the approach of [2], we found a solution to this problem, provided a precomputation of cost
O(xz%/° /1og” z) is made on each machine. In the case of the computation of the terms A, B and
C of (5), the only needed value for a contribution is a starting value w(w) for w = z/n < x/y.
The corresponding precomputation cost is O(w?/?) = O(x%/?). The distributed computation of
D is a little more difficult. The sum D is divided in contributions corresponding to values (p, m)
for which T' < z/(pm) < U, where (T, U] is the contribution range (' < U < z/z). The key is to
be able to compute the values ¢(7T',) for i < b= w(z*) in a cheap precomputation. Applying the
recurrence formula (1), we have

oI k+1) = o(T,k) = o(T/px, k)

ST k+2) = O(Tk+1) - (T pyir,k +1)
HTb—1) = GIT,b—2)— @I ppsb—2)
¢(T7 b) = ¢(Ta b - 1) - ¢(T/pb—1a b - 1)

Thus we only need to compute the values ¢(T'/pi, k), $(T/pr+1,k+1), ..., &(T/pp—1,b—1). Using
the Meissel, Lehmer, Lagarias, Miller, Odlyzko, Deléglise and Rivat method again (one recursive
level), the cost to compute these values is proportional to

973 b—1
2 ((T/Pk)2/3 + (T/pk+1>2/3 4ot (T/pb71)2/3) _ T22/3 Z ‘1 _0 (25/9) .
log™(T) log? T & p*/3 log x
i=k i
References

[1] M. Deléglise and J. Rivat, Computing w(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko
method, Math. Comp., 65 (1996) 235-245

[2] J. C. Lagarias, V. S. Miller and A. M. Odlyzko, Computing w(x): the Meissel-Lehmer method,
Math. Comp., 44 (1985) 537-560.

[3] J. C. Lagarias and A. M. Odlyzko, Computing w(z): An Analytic Method, Journal of Algo-
rithms, 8:173-191, 1987.

