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We are as dwarves sitting on the shoulders of giants. We see things that 
are deeper or further, not by the penetration of our own vision or by 
our own height, but because they support us and lend us their height. 

Bernard de Chartres (Xl/1h century) 

I became interested in computer science in the 1 980's after twenty years of 
practicing mathematics when the first microcomputers appeared. At this time, 
there was much hype about how easy programming was . Supposedly, one 
could learn it in eight days ! 

I examined the avai lable l i terature and became quite disi l lusioned. The books 
through which I leafed were nothing but dismal treatments of syntax and those 
containing programs did not explain how these programs were created. There 
were several more ambitious books, very formal , which showed how one could 
deduce an algori thm beginning with an invariant of some loop. I did not find 
these books very convincing:  their  approach seemed too formal , too heavy, 
and too cut off from real i ty. But perhaps I was too old? However, discussions 
with my col leagues convinced me that professional programmers do not work 
in this way. 

There was a rift :  I would have to leave a world which I knew well to find 
my way, most of the t ime without a guide, in a universe with laws and values 
that were foreign to me and that I needed to understand. 1 

After an apprenticeship of several years, I began to teach programming to 
students in their third year of mathematics (which we call the Licence) .  I was 
very surprised to find that many were frankly hostile to computer sc ience. 
After talking to them, I real ized that their hosti l i ty was a reaction to the way 
that they had been taught: how can one learn the subtleties of a language 
or conduct a refined analysis of the performance of an algorithm when one 
cannot even write a program2 several l ines in length? My goal became to entice 
the students by showing them that they could very quickly write interesting 
programs knowing only very few techniques from computer science. 

1 Any individual who has been exi led or who has radical ly changed profession wi l l  
know what I am talking about. 

2 They reminded me of some of the unhappy practices of the "new mathematics" 
which pretended to teach ring structures to students who had not yet mastered their 
multipl ication tables. 
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The modem mathematician is condemned to program. But how does one 
learn to program? This is  as difficult as learning how to do proofs ! And, in 
both cases, there is no method. 

Little by l i tt le, my ideas became clearer and my background as a mathe­
matician began to help. This book is the frui t  of that apprenticeship and that 
synthesis .  It is the book that I would have l iked to have had when I began . It is 
meant for those who want an introduction to programming without renouncing 
their  mathematical background and who want to harmoniously integrate this 
new discipline into their way of thought. 

However, a mathematician can rapidly convert the abi l ity to create proofs 
to the art of programming if the fol lowing two conditions are ful lfi l led: 

• he or she has a clear idea of what a computer is ,  what it can do, and what 
it cannot do. 

• he or she learns to think dynamically. 
Mathematical results can be roughly divided into two classes: 

• static results: Cramer's formula, "there exist x such that P (x )", the defin­
ition of the greatest common divisor and the Bezout theorem I = au + bv, etc. 

• dynamic results: Gaussian pivoting, an expl icit construction of an ele­
ment x in a set E satisfying property P, Eucl id 's  and Blankinship's algorithms 
that compute the GCD and the numbers u ,  v in Bezout's theorem, etc . 

A traditional mathematician thinks statical ly ;  systematic dynamical thinking 
is  a new discipl ine whose development has coincided with that of computer 
science. Converting from static to dynamical thinking is not easy (and some 
wi l l  never make the transition) .  

Experience shows that writ ing a good program is  even more difficult than 
writing a proof because the objects that one considers are l ike tiny bars of 
wet soap: they sl ide between one 's  fingers . Programming is often synonymous 
with "fooling around" which makes i t  distasteful and often paralyzing for 
mathematicians acustomed to other standards. 

We use a very stripped down programming language (assignments, tests and 
loops) and three standard programming techniques: 

• recycl ing and rewriting code 

• descending analysis and successive refinement 

• the use of sequences to allow one to transform a dynamical problem into 
a static problem more familiar to mathematicians .  

I place equal emphasis on the aesthetic s ide .  A mathematician always ex­
periences profound satisfaction on studying a beautiful theory or proof. This  
is  why he or  she practices mathematics. I want to  convince mathematicians 
that they will experience the same feel ings upon analyzing and setting up an 
algorithm, even a very simple one. 



The use of computers creates new or, in  some instances, resusci tates o ld  
problems in  mathematics (how much space should one reserve in memory 
for the divisors of a given integer n?)  and computer science ( investigating 
algorithms, proving programs) .  This book bears witness to this interaction : 
to the pleasure there is in programming mathematics and to the pleasure of 
reasoning when one programs. 

S ince for me programming does not mean denying my first love, the rigorous 
side takes priority over a more detailed study of a programming language. 
Whenever possible, I take the opportuni ty to present mathematics that my 
students do not know. For this reason , one finds many mathematical results 
and proofs in this book. 

Most of al l ,  this book is aimed at undergraduates with some mathematical 
background. It wi l l  also be of interest to those with some mathematical train ing 
who wish (or need) to begin programming. 

For historical reasons, Pascal i s  the language used. But this book is absolutely 
not a treatise on the Pascal language. Conversion to a more modem language 
is instantaneous :  one need only have assignments, tests and loops. 
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Programmers enjoy creating proverbs which reflect their professional experi­
ence. 

1 .1 .  Above all, no tricks! 

This proverb, perhaps the most important of al l ,  always shocks mathemati­
cians who have never programmed. It also shocks beginning programmers 
who always have a tendency to be too clever by half. 

You should not conclude from this that computer scientists are imbeciles .  
You wi l l  understand the wisdom of this advice when you begin to write com­
plicated programs. What counts most is  that a program be clear, that it function 
immediately (or almost immediately) and be easy to maintain .  

A computer scientist spends much time maintaining programs. This means 
modifying programs which were written , in general ,  by another person who is 
no longer around. Professional programs are very long: often several hundred 
pages. Reading a program is very difficult (as is reading a proof reduced to 
simple calculations with all explanations suppressed). Moreover, time counts: 
a programmer who modifies a program simply cannot afford to spend hours 
asking what the code under his or her eyes means .  

The more brutish ( that is ,  the more l impid and straightforward) the code, 
the more certain i t  is, and the simpler it is  to modify. 

Another big objection to tricks is that most of the time they are useless. In 
general , a program spends 80 % of the t ime in less than 20 % of the code . 
Consequently, a trick has a very strong chance of appearing in a part of the 
code where the machine is only waiting (as, for example, when one is entering 
data via the keyboard) .  It i s  stupid and suicidal to jeopardize a program by 
using a trick to gain a few mi l l i seconds in a program which runs a thousand 
or hundred thousand times slower because i t  is  waiting for you . 

Be brutal: always choose the most straightforward code, even if it requires 
several supplementary l ines. Modesty always pays in  the long run .  

This said, recourse to  a trick is  sometimes indispensible, for example in a 
loop sol icited at all hours in a program that is too slow. If this is the case, 
document it ! Cal l i t  to your reader's  attention, explain in detail  what you did 
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2 I .  Programming Proverbs 

and why (the machine is too slow, there is not enough memory, etc . ) .  Do not 
forget that this reader could be you in a couple of months with a different 
machine and a different point of view. 

Which would you prefer: a program easy to adjust and that you wil l  have 
the pleasure of optimizing, or an unreadable program, ful l  of faults, which wil l  
not work without hours and hours of debugging? 

1 .2. Do not chewing gum while climbing stairs 

This proverb, inspired by an American presidential campaign, expresses an 
idea ful l  of good sense: it is better to do only one thing at a time. This is why 
one breaks a program into procedures and independent modules. 

1 .3. Name that which you still don't know 

This proverb appl ies each time that you encounter a subproblem in the interior 
of a problem. Refuse to solve the subproblem (the preceding proverb), leave 
it to one side and advance. How? By giving a name to what you do not yet 
know (a piece of code, a function) .  This allows you to end the work (i. e . the 
problem). For the subproblem, see the following proverb.  

1 .4. Tomorrow, things will be better; the day after, better still 

No, this is not a call to indolence ! On the contrary, it is an extraordinari ly ef­
fective technique. Apply this proverb each time that you encounter a blockage 
caused by the appearance of a new problem inside the problem that you are 
trying to solve:  apply the preceding proverb, putting off the solution of the 
new problem unti l  tomorrow by giving it a name as a procedure or function, 
the code for which you will write later. 

Always separate what is urgent from what is not; learn to distinguish be­
tween essentials and accessories;  do not drown prematurely in detai l s .  The 
detai l s  you can handle tomorrow, which general ly means several minutes or 
hours ; i t  is  not a question of postponing al l the work twenty-four hours , as the 
truly lazy would l ike to believe ! 

This technique allows you to advance a l i ttle at a time. You certainly have 
practiced this in mathematics:  "I wi l l  first prove my theorem by provisional ly 
al lowing lemmas 1 ,  2 and 3 . "  

This proverb also guards against a common beginner's fault :  the desire to 
act immediately by prematurely writing very technical code. The right atti tude 
is to resist th i s :  i t  is necessary to cultivate a certain nonchalance by giv ing 
some orders today ; the rest wi l l  keep unti l  tomorrow. "Make haste slowly" 
says another proverb. 



I .  Programming Proverbs 3 

1 .5. Never execute an order before it is given 

Beginners are always in a hurry : they write and they write. The result is  
code that is  too rich, too technical , and perforce incomprehensible. There wi l l  
always be errors in  such a jumble ! 

This fault  is easy to diagnose. If understanding the code requires you to 
highlight and explain a piece of the code, you can be certain that you are 
lacking a procedure ( the order, if you wi l l )  at this point .  

Replace this part of the code by a procedure cal l .  You wi l l  "execute" this 
order later, when you write the code for the procedure .  You need to pace 
yourself . . .  

1 .6. Document today to avoid tears tomorrow 

Imagine a proof reduced to calculations and some logical symbols :  it is unread­
able, hence useless. When you program, take time to explain very precisely 
what you are doing. 

• First of al l ,  you must understand what i t  is  you want to do: what is well­
conceived can be clearly stated. If you cannot explain your code to a friend, 
you can be certain that your ideas need sharpening and that your program 
is probably incorrect .  To be conscientious, to clarify your ideas, engage in a 
dialogue with yourself Discipline yourself to write comments as you go along ; 
do not wait unti l your program is finished. This  wi l l  be too late. Mathematicians 
have long understood thi s :  they careful ly write up up proofs before bel ieving 
them to be true. 

• If your program is false, or if you must return to it after s ix months,  
you wi l l  be happy to find explanations which indicate how the program was 
conceived. 

It is  annoying that technology which would faci l i tate good documentation 
has not appeared. The text editor that comes with a compiler fal l s  far short of 
a ful l  featured word processor; i t  i s  so primitive and rustic that one could cry. 
To be real ly lucid, one often needs to write formulae or include a sketch.  When 
will we have access to an editor in  a compiler that is  worthy of the name? I 
dream of a compi ler where one can make comments appear or disappear with 
a simple cl ick, as in hypertext .  

1 .  7. Descartes' Discourse on the Method 

Descartes'  Discours de la methode was publ ished in 1 637 .  This fascinati ng 
text anticipates modern programming methods ! 
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As the multiplicity of laws often furnishes excuses for vices, so that a state 
is much better ruled when, not having but very few laws, these are very strictly 
observed; so, in place of the large number of precepts of which logic is com­
posed, I believed that I would have enough with the following four, provided 
that I were to make a firm and constant resolution not to fail, even a single 
time, to observe them. 

The first was never to accept anything as true that I did not evidently know 
to be such: that is to say, carefully to avoid precipitation and prejudice; and 
to include in my judgements nothing more than that which would present itself 
to my mind so clearly and so distinctly that I were to have no occasion to put 
it in doubt. 

The second to divide each of the difficulties I would examine into as many 
parts as would be possible and as would be required in order to better resolve 
them. 

The third, to conduct my thoughts in an orderly manner, by beginning with 
those objects the most simple and the most easy to know, in order to ascend 
little by little, as by degrees, to the knowledge of the most composite ones; 
and by supposing an order even among those which do not naturally precede 
one another. 

And the last, everywhere to make enumerations so complete and reviews so 
general that I were assured of omitting nothing. 1 

1 Translation by George Hefferman, Discourse on the Method, Univ. of Notre Dame 
Press, Notre Dame, 1 994. 



2.1 .  Euclidean Division 

Let a , b E Z be two integers with b > 1 .  Using the order relation, one can 
show that there exists a unique pair (q , r) E Z x N such that 

a = bq + r and 0 ::: r < b .  

The integer q i s  called the quotient and r the remainder upon eucl idean divis ion 
of a by b. Let [x 1 denote the integer part of the real number x (this means 
that [x 1 i s  the integer defined by the conditions [x 1 ::: x < [x 1 + 1 ) . Then 
we have q = [a /b1. One often wants smal l remainders to make an algorithm 
"converge." In this case, we use a variant of eucl idean divi sion with centered 
remainder: 

a = bq + r, -4b < r ::: 4b .  

Here, again ,  the pair (q , r )  i s  unique. I f  q and rare the quotient and remainder 
upon ordinary eucl idean divis ion, then it i s  clear that {r if 2r::: b ,  

r = 
r - b if 2r > b ; 

q = 
{Zf if 2r::: b ,  

q - 1 if 2r > b . 
(2 . 1 ) 

We say that d divides n ,  written d I n , if n 
particular, any number divides 0 !  

dq  for some q E Z. In 

Exercise 1 (Solution at the end of the chapter) 

Removing all  multiples of 2 and 3 from N gives the sequence: 

u 1 = 5 , u 2 = 7 , u3 = 1 1 ,  u4 = 1 3 , u5 = 1 7 , u6 = 1 9 ,  u7 = 23 ,  

Show that this sequence satisfies a first order recurrence relation. General ize 
to the sequence of integers not divisible by 2,  3 ,  or 5. Occasional ly we can 
use this sequence to speed up an algorithm (for example, the algorithm that 
finds the smal lest divisor of a given number) . 

2. Review of Arithmetic
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2.2. Numeration Systems 

No mathematician has ever seen an integer! When we read " 1 994", we read 
a word whose letters are called numerals. A very simple theorem asserts that 
there is a bijection between these words and N. 
Theorem 2.2.1 (Base b numeration). Let b > I be a fixed integer. To every 
integer x > 0 , one can associate a unique decomposition of the form 

(2.2) 

where each X; satisfies the condition 0 :::; X; < b and where Xn > 0. 
Proof Suppose that the decomposition exists . Upon putting, q0 = Xnbn- l + 
Xn- l bn -2 + · · · + x 1 , we immediately obtain 

x = qob + xo , 0 :S xo < b .  

In  other words, q0 and x0 are the quotient and remainder upon eucl idean 
divi sion of x by b, and are, therefore, uniquely determined. Reason ing by 
induction, we see that x 1 i s  the remainder upon division of q0 by b, and so on. 

On the other hand, we can exhibit such a decomposition by dividing x and 
its successive quotients by b. The algorithm terminates because the quotients 
are a strictly decreasing sequence of integers bounded below by zero. D 

The integer b is called the base of the numeration system. If b is not too 
big, we can associate to each integer in the interval [0, b - I ]  a typographical 
symbol : 

• When b is the number "ten", the symbols are the arabic numerals 0, I ,  2, 
3 ,  4, 5 ,  6, 7 ,  8 ,  9. 

• When b i s  smal ler than "ten", one chooses the corresponding subset of 
the arabic numerals .  

• When b i s  the number "sixteen", it  is  traditional to use the arabic numerals 
and the first letters of the alphabet: 0, I ,  2, . . .  , 9, A, B,  C, D, E, F. 

Theorem 2 .2 . 1 al lows us to associate to each integer x the word x-=-,-, -. . -.-::x� 0 
comprised of the numerals corresponding to the x; ( the overl ine indicates that 
numerals are juxtaposed, not multiplied) . 

This way of representing numbers is  not the only one. We sti l l  use traces 
of numeration systems that have been used since antiqui ty (for example, to 
describe subdivi sions of angles and time). 

Theorem 2.2.2 (Numeration with multiple bases). Let (b; ) ;:o:_ 1 be an infinite 
sequence of integers greater than I .  Then every integer x > 0 can be written 
uniquely in the form 

(2 .3)  

where each X; satisfies the condition 0 :::; X; < b; + 1 • 
The proof is an immediate general ization of the preceding. 



2 .3 .  Prime Numbers 

Exercise 2 (Solution at the end of the chapter) 

Let P and Q be two polynomials with integral coefficients. Show that if b > 
is sufficiently large, then P (b) = Q (b) implies that P = Q .  

2.3. Prime Numbers 

The definition is often misstated or misunderstood. 

7 

Definition 2.3.1. An integer p E Z is called a prime number if it satisfies the 
following two properties: 

• it is different from ± I ;  
• its only divisors are -p ,  - I , I ,  p. 

Contrary to widespread opinion, the numbers - 1  and + 1 are not prime 
numbers . 1 (Algebraists call them units . )  

We have known since antiqui ty how to prove (using the sequence n !  + I ) that 
the set of prime numbers is infinite. We shal l often use the ordered sequence 
(Pi ) i:o:_ 1 of prime numbers: 

P 1 = 2, P2 = 3 , P3 = 5 , P4 = 7 , Ps = 1 1 ,  etc . 

Theorem 2.3.1 (The least divisor function). Let n > I be any integer and let 
LD(n) be the least integer greater than 1 which divides n .  Then 

(a) LD(n) is a prime number; 
(b) if n is not a prime number, then (LD(n ) ) 2 :=:: n. 

Proof We first note that LD(n ) always exists :  the integer d = n i s  greater 
than I and divides n, so that the set of divi sors of n which are greater than 1 
is not empty and, thus, possesses a smallest element. 

(a) If p = LD(n) i s  not prime, then we can write p = p' p" with I < p' < p. 
Since p' divides n ,  we obtain a contradiction. 

(b) If n i s  not prime and p = LD(n ) ,  then n = pn' with n' > I .  By definition 
of LD(n ) ,  we have p :=:: n' which implies that p2 :=:: pn' :=:: n .  o 

We now recall Bertrand 's postulate . This is an arithmetic result which we 
shal l sometimes need and whose proof is somewhat technical 2 without be­
ing very difficult . This was conjectured by Bertrand in 1 845 and proved by 
Tchebycheff in 1 850. 

1 If I were considered to be a prime number, we would lose the un iqueness of the 
decomposition into primes. 

2 An elementary proof i s  gi ven in  An Introduction to the Theory of Numbers, by 
G.H.  Hardy and E .M.  Wright, Oxford Science Publ ications, 5th edition ( 1 979) ,  
pp .  343-344 
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Theorem 2.3.2 (Bertrand's postulate). Let n :::: 1 be an integer. There always 
exists a prime number p satisfying n < p ::::: 2n . 

Corollary 2.3. 1. 
• Let (p; ) ;?: 1 be the increasing sequence of prime numbers. For every i ,  

one has Pi+ ! < 2p; . 
• Let p be any prime number. There always exists a prime number q satis­

fying p < q < p2 . 

Proof The first assertion fol lows from Bertrand 's  postulate upon putting n = 
p; ; the second follows upon remarking that 2n ::::: n2 when n :::: 2. o 

Exercise 3 

(Solution at the end of the chapter. ) Consider the doubly infinite table, cal led 
the Sundaram sieve ( 1 934 ), whose rows and columns are the fol lowing infinite 
progressions: 

4 7 1 0  1 3  1 6  +- difference 3 
7 1 2  1 7  22 27 +- difference 5 

1 0  1 7  24 3 1  38 +- difference 7 
1 3  22 3 1  40 49 +- difference 9 

1 6  27 38 49 60 +- difference I I  

Show that 2n + 1 i s  prime if and only if n does not appear in the table above. 

2.3.1. The number of primes smaller than a given real number 

Let x be a posit ive real number. A celebrated arithmetic function i s  

n (x )  = number of primes :=:: x 
= largest index i such that p; ::::: n .  

The table below displays some of its values: 

X 1 0  20 30 40 50 60 70 80 90 

n (x )  4 8 1 0  1 2  1 5  1 7  1 9  22 24 

X 1 00 200 300 400 500 600 700 800 900 
n (x )  25 46 62 78 95 1 09 1 25 1 39 1 54 

X 1 000 2000 3000 4000 5000 6000 7000 8000 9000 

n (x )  1 68 303 430 550 669 783 900 1 007 1 1 1 7 
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This  function has fascinated mathematicians for centuries. Here are some 
fundamental results concern ing i t  which are difficult to prove [Hardy and 
Wright, op. cit. ] .  

Theorem 2.3.3. 
n 

• n (n)  < 2 Iog 2 · -- for every integer n 2: 2. 
log n 

X 
• As x tends to infinity, n (x )  � --· 

log x 

• There exist constants A ,  B > 0 such that for every integer n 2: 2, 

A n log n < Pn < B n log n . 

2.4. The Greatest Common Divisor 

It is easy to show using eucl idean div ision that every additive subgroup of Z 
has the form dZ. Moreover, if we require that d 2: 0, then the subgroup 
uniquely determines d.  

Let a,  b E Z be two integers and le t  aZ+bZ be the set of  l inear combinations 
of a and b with integral coefficients. These combinations form an additive 
subgroup of Z. We define the greatest common divisor (GCD) of a and b to 
be the unique integer d 2: 0 satisfying:  

dZ = aZ + bZ.  

Here are several immediate consequences of the definition : 

GCD(a , b) = GCD(±a , ±b) 

GCD(a , b) = GCD(b, a )  

GCD(a , 0 )  = I a  I 

GCD(a + A.b , b) = GCD(a , b) 

GCD(A.a , A.b) = IA. I  GCD(a , b) 

(2.4) 

(2 .5 )  

(2 .6) 

(2 .7)  

(2 .8)  

Since a and b and d = GCD(a , b) are elements of aZ + bZ, both a and b 
are multiples of d. That is ,  the GCD divides both a and b :  

a =  da ' , h = db' , if d = GCD(a , h). (2 .9) 

When a i s  not zero, the equal i ty a = da ' shows that the GCD i s  greater 
than 0, and s imi larly if b =f. 0. On the other hand, the GCD is zero when 
a =  h = 0: 

GCD(a , b) = 0 <====:} a = h = 0. 
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2.4. 1. The Bezout Theorem 

Another consequence of the fact that a ,  b and GCD(a , b) belong to the sub­
group a'Z'.. + b'Z'.. i s  the fol lowing. 

Theorem 2.4. 1 (Bezout theorem- first version). Let a, b E  Z be any two in­
tegers. There exist u ,  v E Z such that 

au + bv  = GCD(a , b) (2. 1 0) 

Corollary 2.4. 1. If a =I- 0 or b =I- 0, then d = GCD(a , b) is the greatest integer 
greater than or equal to 1 which simultaneously divides a and b. 

Proof If 8 is  an integer which div ides a and b, then 8 divides au + bv = d . 
Since d is not zero, it follows that 181 .::: d .  o 

Thus, the GCD merits its name when a =I- 0 or b =I- 0; but doesn ' t  when 
a = b = 0, since any integer div ides a and b .  

Definition 2.4. 1. Two numbers a and b are called relatively prime (or coprime 
or strangers) when their GCD is 1 .  

• The classical terminology "relatively prime" i s  unfortunate because be­
ginners often confound the assertions "p i s  prime" and "p and q are relatively 
prime" . 

• Observe that 0 is not relatively prime to 0 because GCD(O, 0) = 0. So, if  
a and b are relatively prime, at  least one of them is  nonzero. 

When a =I- 0 or b =I- 0, we can div ide (2 . 1 0) by d = GCD(a , b) > 0 and use 
formula (2 .8) .  This gives us 

a =  da ' , b = db' , GCD(a ' , b' ) = I if d = GCD(a , b) > 0.  (2 . 1 1 )  

Theorem 2.4.2 (Bezout theorem- second version). Two integers a and b are 
relatively prime if there exist u ,  v E Z such that 

au + bv  = 1 .  (2 . 1 2) 

Proof The first version of Bezout's theorem shows that u and v exist when 
a and b are relatively prime. Conversely, if au + bv = I then the number 1 
belongs to the subgroup a'Z'.. + b'Z'... This shows that a'Z'.. + b'Z'.. = Z; that is ,  
d = l . 0 
Remark 2.4. 1. We shal l see in Chapter 8 (Blankinship's algori thm) how to 
effectively calculate u and v .  

2.4.2. Gauss 's Lemma 

Theorem 2.4.3 (Gauss 's lemma). Let a ,  b be any two integers and suppose 
that d divides their product ab. If d is relatively prime to a ,  then d divides b. 
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Proof Applying Bezout ' s  theorem to the pair (a , b) shows that au + dv  = l . 

Multiplying both sides by b gives abu + bdv = b. But then d divides abu 
because i t  div ides ab,  and it c learly divides bdv .  Thus, i t  must divide their 
�m b. o 

Application :  Bezout 's equation 

Suppose that we want to solve for all integers x and y satisfying the equation :  

ax + by = I ,  (a , b ::::_ 1 relatively prime) 

Bezout 's theorem guarantees that u, v E Z exist such that 

au + bv = l. 

(2 . 1 3 ) 

(2 . 1 4) 

In other words, (u , v) is a particular solution of the equation. Suppose that 
(x , y) i s  another solution . Subtracting equation (2 . 1 4) from (2. 1 3 ) gives 

a (x - u) = b (v - y ) ,  

which shows, in  particular, that a div ides b (v - y ) .  Applying Gauss's lemma 
shows that v - y = ak for an appropriate k. One shows that b divides (x - u ) 
and obtains final ly that 

X =  U + bk , y = V- ak ,  k E Z.  

The converse is  immediate. 

2.5. Congruences 

Let n > I be any integer. We say that a and b are congruent modulo n ,  and 
write a = b (mod n) if a - b is  div isible by n ; that is, if there exists an 
integer k E Z such that a - b = kn .  

Congruence is  an  equivalence relation on  Z. We le t  Zn denote the quotient 
set. It contains n elements which we identify with the integers in  the interval 
[0, n - I ]  when working with classical eucl idean division and with the integers 
between - �n and �n when working with centered remainders . 

We denote the class of x by .X. However, when the notation becomes too 
cumbersome, we systematical ly omit the l ine over x .  In thi s  case, the context 
will make clear what i s  meant. 

Congruence mod n i s  compatible with addition and multipl ication : 

b d , b' 
{ a +  a ' = b + b' , 

a =  an a = ==} 
aa ' = bb' . 

As a result, addition and multipl ication on Z carry over to the quotient set Zn 
which is then natural ly endowed with the structure of a commutative ring.  
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For beginners 

We often use the locution "to l ift an equal i ty from Zn to Z". This means that 
if we are given an equation a = f3 between two classes in Z11 , we choose 
representatives of these classes, that is, integers a and b with a = a and 
b = {3, and obtain an equal i ty a = b + kn in  Z. Since we systematical ly omit 
the congruence symbol and the overbars above representatives, the sentence 

"the congruence a = b (mod n) l ifts to the equal ity a = b + kn" 
translates into the lapidary (and, to a beginner, somewhat puzzl ing) expression 

"l ifting a = b, we obtain a = b + kn ." 
One becomes rapidly accustomed to  th i s  sort of  intel lectual yoga which de­
pends very strongly on the context. 

Proposition 2.5. 1. The units of Zn are the classes of integers relatively prime 
to n .  
Proof Let c E Zn be such that there exists c1 E z/1 with cc1 = I (notice the 
absence of overbars, despite the fact that we are in Zn ). Lifting this equal i ty 
to Z gives cc' + kn = I which means that c and n are relatively prime. The 
converse is immediate. o 

Corollary 2.5. 1. The ring Zp is a field if and only if p is a prime number. 
Proof If Zp is a field, all elements which are not equal to zero are invertible. 
Lifting to Z, we see that all integers between I and p - I are relatively prime 
to p. Thus, p s prime. The converse is immediate. o 

2.6. The Chinese Remainder Theorem 

This theorem was known to Chinese mathematicians in the first century our 
era - it allowed them to solve certain problems involving conjunctions of stars . 

Theorem 2.6. 1  (Chinese remainder theorem- weak version). If n > I and 
m > I are relatively prime integers, the system of congruences 

x =a (mod n ) ,  x = f3 (mod m) , 

possesses a unique solution x E [0, nm - 1 ]. 
Proof It is clear that the map 

defined by x (mod nm ) r-+ (x (mod n), x (mod m) )  i s  a ring homomorphism 
(that is ,  i t  i s  compatible with addition and multipl ication) .  Let x be an element 
in  the kernel of <1>. If we l ift to Z, the conditions x = 0 (mod n) and x = 0 
mod m) show that x is simultaneously divisible by n and m.  Since n and m 
are relatively prime, x must be div isible by nm . Descending to Znm• we obtain 
that x = 0, which means that <I> is injective. 
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The sets Znm and Zn x Zm both have nm elements. Thus, ¢ is surjecive and 
the given system has a un ique solution in Znm• which lifts to infinitely many 
solutions in Z. o 

We actual ly learn a l i ttle more from the proof: if x0 is a particular solution, 
the other solutions are of the form x = x0 + knm with k E Z. 

Exercise 4 

Let u ,  v E Z be such that au + bv  = I .  Show that the map Zn x Zm ---+ Znm 
defined by (r, s )  r-+ m vr + n vs is the isomorphism <1> - 1 • Check directly that 
<1>- 1 i s  compatible with multipl ication, a fact that is  not at all evident at first 
glance. 

Theorem 2.6.2 (Chinese remainder theorem- strong version). 
If n 1 , • • •  , n e > I are pairwise relatively prime integers, the system of congru­
ences 

x = a 1 (mod n 1 ) ,  • • • , x  = ae (mod ne ) ,  (2 . 1 5 )  

possesses an infinite number of solutions. If x0 is a particular solution, the 
other solutions are the numbers x = x0 + kn 1 · · · n e with k E Z. 
Proof We do not present the usual proof found in algebra books. Instead, we 
give a more natural proof3 which leads to a program which is very easy to 
write. We expand x in a base of truncated multiples of the numbers n 1 , • • •  , n e 
(see 2.2 .2) :  {x = Xo + x 1 n 1 + x2n 1 n2 + · · · + Xen 1 n2 · · · ne , 

0 .::: xo < n 1 ,  . .  . , 0 .::: Xe- 1 < ne and Xe E Z. 
(2 . 1 6) 

In order not to obscure the proof, let us suppose henceforth that £ = 3 ,  in  
which case we write 

x = Xo + x 1 n 1 + x2n 1 n 2 + x3n 1 n2nJ. 
• By combining (2 . 1 6) with the first congruence (2 . 1 5 ) , we already get: 

This shows that x0 exists and is  unique. If we identify Zn with [0, n 1 - I D 
and if a 1 belongs to this interval , then x0 = a 1 . Otherwise, x0 = a 1 mod n 1 . 

• Knowing the value of x0 , we can then determine that of x 1 from the second 
congruence in  (2 . 1 5 ) : 

3 H. Garner, The Residue Number System, IRE Trans, EC8 ( 1 959), pp. 1 40- 1 4  7 .  
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We know that n 1 is invertible in Zn, because n 1 and n2 are relatively prime. As 
a result the first degree equation has a s ingle unique solution x 1 E [0, n2 - 1 ] .  

• Knowing now the values of x0 and x 1 , w e  use the third congruence in 
(2 . 1 5 )  to obtain 

xo + x 1 n 1 + xzn 1 nz = a  (modn3 ) . 

The integers n 1 and n2 define two elements of z;, since both are coprime to 
to n3 ; their  product is therefore invertible in z:,. As a result, the first degree 
equation in x2 defines a unique integer x2 E [0, n3 - I ] . 

Conversely, if x0 , x 1 ,  x2 are defined by the preceding equations, all integers 
of the form 

with x3 E Z arbitrary are solutions of the system (2 . 1 5 ) .  

Example 2.6.1. Suppose that we  want to  solve the system 

x = 2 (mod 5 ) ,  x = 4 ( mod 6) , x = - I (mod 49) . 

We seek an x of the form 

x = x0 + 5x 1 + 30xz + 1 470x, . 

We solve the congruences one after another: 

• The first congruence immediately gives x0 = 2. 
• The equation 2 + 5x 1 = 4 in 2:6 has x 1 = 4 as its si ngle solution. 

• Final ly, the equation 22 + 30x2 = - I  has the solution x2 = 27 i n  2:49 . 

Thus, the solutions of the system are the numbers 

x = 832 + 1470x3 for all x3 E Z. 

2. 7. The Euler phi Function 

The Euler phi function rp : N* ---+ N* is defined by the formula: 

rp(n)  = Card z: 
= number of integers I S k S n such that GCD(k , n) = I 

The first few values of rp(n) are : 

n I 2 3 4 5 6 7 8 9 1 0  I I  1 2  1 3  1 4  

rp (n) I I 2 2 4 2 6 4 6 4 1 0  4 1 2  6 

0 



2 .8 .  The Theorems of Fermat and Euler 15 

If a and b are two relatively prime integers , the ring isomorphism ?lab ::::::: 
'llu X 7lh induces a isomorphism of multipl icative groups z:h ::::::: z; X 7l�. 
Consequently, the Euler phi function is multiplicative which means that: 

Va E 7l, Vb E 7l, GCD(a ,  b) = 1 =} rp(ab) = tp(a )rp(b} . 

This property reduces the calculation of rp(n ) to that of rp(pa ) for p prime 
and a :=:: I .  To evaluate rp(pa ) we first seek integers h E [ 1 , pa ] which are not 
relatively prime to p. Since any such integer i s  necessari ly divisible by p, i t  
i s  of the form 

h = pq' I :::=: q :::=: pa- l . 
Thus, there are pa - l integers h which are relatively prime to p .  This gives 

tp(pa } = pa _pa- l = pa ( 1 _ � )
· 

If n = p�' · · · p�' is the decomposition of n i nto distinct prime factors, we 
obtain the formula: 

tp(n) = (pa ' _ pa 1 -1 ) . . .  (pa, _ pa,-r ) = n ( 1 _ �
I
) . . .  ( 1 _ �)· 

2.8. The Theorems of Fermat and Euler 

Theorem 2.8.1  (The little Fermat theorem). If a is any integer and p any 
prime number, then a P = a modulo p. If, moreover, a is not divisible by p, 
then ap- l = I (mod p) .  
Proof Transported to  'llp , th i s  assertion becomes :  "For al l  a E 'llp , one has 
aP = a  and if a =I- 0, then a"- 1 = 1 . " 

• This  is evident if a = 0. 

• If a =I- 0, consider the map x r-+ ax of 'llp to i tself. S ince 7lP i s  a field, this 
map i s  a bijection. That is ,  we have ax =I- 0 if x =I- 0. If we let x 1 ,  • • .  , X p-i 
denote the elements of z;. we have 

z;, = {X J , . . .  , Xp- 1 } = {aX J , . . .  , aX p-I } . 

Multiplying all elements of z; together, we obtain 

p- 1 
X 1  · · ·Xp- 1 = a  X 1  · · ·Xp- 1 · 

The result now fol lows upon dividing both sides by x 1 • • ·Xp- l =I- 0. D 

This result general ises immediately using the Euler phi function ( i t  suffices 
to copy the proof above). 

Theorem 2.8.2 (Euler). If a is any integer relatively prime to n, then 

a"'<n l = I (mod n ) .  
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2.9. Wilson's Theorem 

In the proof of Fermat 's  theorem, the product P = (p  - I ) !  of all elements 
of z; plays a role .  Let us specify its value. 

Theorem 2.9. 1  (Wilson). An integer p > 1 is prime if and only if 

(p - 1 ) ! = - 1  (mod p ) .  

Proof First suppose that p i s  a prime: w e  must show that the product P = 
x 1 • • • x ,_ 1 of all elements of z; is equal to - I .  Since z, is a field, we know 

that each element X; E z; possesses an inverse X;- I E z; SUCh that X; X;- I = l .  

By associating to each x; its inverse, we obtain 1 in  the product P as many 
times as there are pairs (x; , X;- 1 ) such that x; =I= X;- 1 . Regrouping, we see that 
p is equal to the product of "orphans" in z;; that is, p equals the product 

of x E z; such that x = x - 1 • But then x2 = l . That is, (x - I ) (x + I )  = 0. 
Thus the orphans are precisely the elements 1 and - I ,  which shows that 
P = 1 x - 1 = - 1 .  

To show the converse, suppose that p i s  not prime. The p possesses a divisor 
d such that I < d < p. If (p - 1 ) !  were congruent to - I  modulo p, since d 
appears in the factorial ,  we would have 0 = - I (mod d) which is absurd . D 

Corollary 2.9. 1. Let p be an odd prime. The equation 

x2 + 1 = 0 

possess roots in z, if and only if p = 1 (mod 4). In this case, the roots are 
x' = e !  and x" = -e !  where e = � (p - 1 ) . 

Proof An odd number is of the form 4n + I or 4n + 3 .  
• We first consider the case p = 2e + I with e = 2n . Identify z; with the 

set { -e , . . .  , - I ,  I ,  . . .  , € }  using centered remainders . Then, Wilson 's theorem 
can be written :  

-e x · . .  x - 1  x 1 ·  . .  x e = ( - l ) e (e ! ) 2 = - 1 .  

Since e = 2n i s  an even number, we see that x = € !  i s  a root of the equation 
x2 + I  = 0 in  z,. The other root i s  clearly -€ !  since x2 + I = (x + f ! ) (x - € ! ) .  

• Now consider the case p = 4n + 3 .  Suppose that there exists x E z, such 
that x2 + I = 0. That is, x2 = - 1 .  This allows us to write: 

On the other hand, by Fermat 's  theorem we have xr- l 
in z, which is absurd .  

I .  Thus, - 1 = I 
D 



2. 1 0. Quadratic Residues 1 7  

Remark 

Calculating a factorial is not an efficient way of finding the roots of the equation 
x2 + 1 = 0 in  ZP . We shal l return to this subject later (Chapter 8) .  

Exercise 5 (Solution at the end of the chapter) 

An old mathematical fantasy is that of finding a "simple formula" ( in  a sense 
to be made precise) or a "function" whose values are only prime numbers. 

• Prove (using Taylor 's  formula) that a polynomial with integer coefficients 
cannot take only prime values. 

• Here is another try which seems promising a priori . Let x, y E N* . Put 
T (x ,  y) = x (y + I ) - (y ! + 1 )  and 

f (x , Y) = { � + 1 
if I T I :::: 1 ,  
if not. 

Show that the function f : N* x N* --+ N takes its values in  the set of prime 
numbers and that each odd prime number is  obtained exactly once. Write a 
Pascal program which di splays the values f (x , y) for 1 .::: x ,  y .::: 1 00. What 
conclusion do you draw from this experience? 

2.10. Quadratic Residues 

An element a E Z11 is said to be a quadratic residue modulo n if it is a square 
in Zn ; that is ,  if there exists an element x E Z11 such that a = x2 • 

Being a square depends on the ring in which one works:  a complex number 
is  always a square; a real number is a square if and only if i t  is  posit ive or 
zero . The fol lowing result sharpens Fermat 's  theorem and gives a very s imple 
criterion for an element of Zp to be a square when p i s  a prime number. 

Theorem 2.10.1  (Euler). Let p = 2£ + I  be an odd prime. For every element 
X =f. 0 in z;, one has: 

xe = 
{ + I  

- I  
if  x i s  a quadratic residue, 

if  x i s  not a quadratic residue. 

Proof Fermat 's  theorem shows that (x e ) 2 = xP- 1 = 1 .  Since we are in a field, 
i t  fol lows that x e = ± 1 . 

Consider the map K : x r+ x2 of z; to itself. We have x2 = y2 if and only 
if  (x + y ) (x - y) = 0;  that is ,  if and only if y = ±x since we are working in 
a field .  This  reasoning shows that every nonzero quadratic residue has exactly 
two preimages under K .  The number of quadratic residues =f. 0 must therefore 
equal � (p - I ) and the number of nonresidues is also equal to � (p - 1 ) .  
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Let x = a 2 be a quadratic residue. Fermat's theorem shows that xf = 
a2f = 1 ,  thereby showing that the roots of the polynomial X f - 1 are nonzero 
quadratic residues (and that these are the only ones) .  If x is not a quadratic 
residue, we therefore have xe =I- I ,  which implies that x f = - I .  o 

2. 11 .  Prime Number and Sum of Two Squares 

Let a be an integer of the form 4n + 3 .  Since x2 + y2 = 0, I ,  2 (mod 4) , one 
sees that immediately that a cannot be a sum of two squares. 

Theorem 2. 11. 1 (Fermat). Every prime number of the form 4n + I is a sum 
of two squares. 
Proof Consider the set of triples4 

S = { (x , y ,  z ) E N3 : x2 + 4yz = p } . 

This  set is nonempty because it contains the triple ( I ,  n ,  I ) . 
Consider now the map 1{r : N3 ---+ N3 defined by : 

I (x + 2z , z , y - x - z ) 
l{r (x , y , z ) =  (2y - x , y , x - y + z ) 

(X - 2y, X - y + Z , y )  

if X <  y - Z , 
if y - Z < X < 2y, 
if X >  2y .  

A simple verification shows that 1}1 (S)  C S and that the restriction of  1}1 to  S 
is an involution that possess a fixed point that is unique. It fol lows first that 
the cardinality of S is odd, and thus that every involution possesses at least 
one fixed point .  Considering now the involution (x , y , z ) r-+ (x , z , y ) ,  we see 
that i t  possesses a fixed point (a ,  b , b) which gives a2 + 4b2 = p. o 

Remarks 

• This  theorem, which is a l i ttle jewel of static mathematics, gives absolutely 
no indication of how we might explicitly find a and b. We will see thi s  in 
Chapter 8 when studying Euler 's  proof. 

• We wi l l  prove in Chapter 9 that if (a , b) is a particular solution of the 
equation p = x2 + l ,  then all the other solutions are (±a , ±b) and (±b, ±a ) .  
Thus, the pair (a , b) i s  unique in a sense that one can easi ly make precise. 

• One should not imagine that the condition n = I (mod 4) guarantees that n 
is a sum of two squares. A counterexample is 2 1 .  More general ly, one has the 
following result .  

4 Fol lowing D. Zagier, A one-sentence proof that every prime p = I mod 4 is  a sum 
of two squares American Mathematical Monthly, 97 ( 1 990), p. 1 44.  
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Theorem 2.11.2 (Jacobi, 1829). Let n :::: 1 be an integer and � (n )  the num­
ber of pairs (x , y) E 'J'} which are solutions of the equation x2 + y2 = n. 
If d1 (n) is the number of divisors of n which are congruent to 1 modulo 4 
and d3 (n) is the number of divisors of n which are congruent to 3 modulo 4, 
then 

� (n )  = 4 [dt (n ) - d3 (n ) ] . 

(The odd divisors are the only ones which occur in this decomposition. ) 

For enterpris ing readers, the proof is carried out in two steps: one begins by 
checking that the formula holds when n is a power of a prime number. Then 
one proves that the functions � and d1 - d3 are multipl icative. 

2.12. The Moebius Function 

Let f : N* � M be any function with values in an abel ian group M. We 
write M additively. To f we can assoc iate a function rp : N* � M defined by 

rp (n ) = L f (d ) .  
d i n  

For the first few values of n we have 

rp ( l )  = f( l ) ,  

rp (2) = f( I )  + f(2) , 

rp (3)  = f( l )  + f(3) , 

rp (4) = f( l )  + f(2) + f(4) , 

rp (5 ) = f( l )  + f(5 ) ,  

rp (6) = f( l )  + f(2) + f(3 )  + f(6) , etc . 

(2 . 1 7 ) 

Conversely, we might ask whether it is possible to reconstruct f if we 
know rp . If we view the f(k)  as unknowns, the equations above make up 
a system of l inear equations with integral coefficients whose matrix i s  trian­
gular with coefficients on the diagonal equal to 1 .  This i s  a Cramer system 
which means that there i s  a unique function f. The inverse matrix T - 1 has 
integral coefficients because det T = I .  The explicit solution of this system is 
remarkable. 

Theorem 2. 12. 1  (The Moebius inversion formula). For every integer n :::: 1 ,  
one has 

(2 . 1 8 ) 
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where 11 : N* --+ { - 1 ,  0,  1 }  is the Moebius function 

fl (n ) = l � 
( - 1  )k 

if n = 1 ,  
if n is divisible by the square of a prime number, 
if n is the product of k distinct prime numbers. 

The first few values of the Moebius function are : 

n I 2 3 4 5 6 7 8 9 1 0  I I  1 2  1 3  1 4  

fl (n ) 1 - 1  - 1  0 - 1  1 - 1  0 0 1 - 1  0 - 1  1 

Before proving the inversion formula (2 . 1 8) ,  we give some immediate prop­
erties of the Moebius function that we wi l l  need in what fol lows. 

Lemma 2.12. 1. If a and b are relatively prime, then fl (ab) = fl(a )fl (b) .  For 
all n > 1 ,  one has L fl (d) = 0. 

d i n  
Proof The first assertion i s  an immediate consequence of the definition. To 
establ ish the second, consider a prime div isor p of n .  We can wri te n = pam 
with a 2: I and m not div isible by p. 

• If m = 1 ,  we have I: 11 (d) = 11o ) + fl (p )  + fl (p2 ) + . . .  = 11o ) + fl (p) = o. 
d i n  

• If m > 1 ,  the divi sors 8 of n are of the form d ,  pd, p2d , . . .  , pad where 
d is a divisor of m .  Thus, we can write 

Lo i n  /1 (8 } = Ld l m fl (d) + Ld l m fl (pd} + Ld l m fl (P2d ) + · · · = Ld l m fl (d} + Ld l m fl (pd} = Ld l m fl (d} + fl (p } Ld l m fl (d} = 0. 

Proof of formula (2.18). We begin with the sum 

s = I:  fl (n/d}cp (d) = I: fl (n/d) I: f(8 ) .  
d i n  d i n  o l d  

D 

If d divides n and if 8 divides d, we have n = d8m . Therefore, we can 
rearrange the sum: 

s = I: f(8 }f1 (m )  = I:  f(8) I: fl (m) .  
om l n  S i n  m l nS - 1  

By the lemma, the sum of  the /l (m)  i s  zero if n8- 1 > I and i s  equal to  I i f  
n8 - 1 = I ,  that is ,  if 8 < n or 8 = n .  We are left with S = F(n ) .  
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Remarks 

• If we write the group M multipl icatively, formulas (2. 1 7 ) and (2 . 1 8 ) be-
come 

cp (n ) = n f(d) ==} f(n )  = n cp (d}J1 (njd ) . (2 . 1 9) 
d i n  d i n  

This version wi l l  be very useful when we deal with cyclotomic polynomial s 
in Chapter I 0. 

• The Moebius function appears in many fascinating formulas. For example, 
if s > I ,  one has 

00 1 1 00 tJ (n )  
S" (s )  = " - ==} - = " - ·  7 n '  S" (s )  7 n '  

The proof of this formula is  easy. Because both series are absolutely convergent 
for s > I we have the right to rearrange their product in  the following way : 

(� __!_) (� f.l, (q ) )= " fl, (q ) = " _.!._(" f.l, (q ))= 1 7 P' 7 q" p�l (pq )' � n ' fT: · 

2.13. The Fibonacci Numbers 

Fibonacci (filius Bonacci, 1 1 80- 1 228) ,  also known under the name of Leonardo 
of Pisa, introduced the sequence which immortalized him while studying the 
growth of rabbits on a desert island. This  harmless sequence, of vital impor­
tance in computer science, is defined by the initial conditions 

F0 = 0, F1 = 1 

and the second order recurrence relation 

n :::0: 2. 

The first few Fibonacci numbers are therefore 

n 0 I 2 3 4 5 6 7 8 9 

Fn 0 I I 2 3 5 8 1 3  2 1  34 

1 0  1 1  1 2  

55 89 1 44 

The roots of the characteristic equation X2 = X + 1 are the golden numbers 
y = � ( I +  J5) and 8 = � ( I - J5). Because the sequence satisfies the same 
recurrence relation as the Fn ,  we obtain Binet 's formula (which is not of much 
interest when working over the integers) :  
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Exercise 6 

Show (by induction) that Fn > y n -l for n 2: 3 .  

2.14. Reasoning by Induction 

We are going to recal l and elaborate the basic principles of the technique of 
mathematical induction which we use frequently (especial ly when deal ing with 
questions involving recurrence) .  

Theorem 2. 14. 1  (Principle of weak induction). Suppose that ][]) is a subset 
of N with the following two properties 

(a) the integer 0 is in ][]); 
(b) anytime that n is in ][]), one can show that n + 1 is in ][]). 

Under these conditions, ][]) = N. 
Proof Suppose that ][]) =I- N. Then ][])' = N - ][]) i s  not empty and therefore has 
a least element JL Condition ( i )  implies that J-L > 0. So we can consider the 
integer J-L' = J-L - 1 2: 0. The definition of J-L shows that 1-L' belongs to llJl. From 
condition ( i i ) ,  it fol lows that J-L' + 1 = J-L belongs to ][]) which is a contradiction. 

D 

Theorem 2. 14.2 (Principle of strong induction). Let ][]) be a subset of N with 
the following two properties: 

(a) the integer 0 belongs to ][]); 
(b) any time that the interval [0, n] is contained in ][]), one can demonstrate 

that n + I belongs to ][]). 

Under these conditions, ][]) = N. 
Proof It suffices to copy the preceding proof replac ing the sentence "the 
defini tion of J-L shows that 1-L' belongs to ][])" by "the definition of J-L shows that 
the integers < n are in ][]), which gives the inclusion [0, J-L' ] c ][))" .  o 

Experience shows nevertheless that these two principles of proof do not 
suffice because one is  often obl iged to induct on N2 or on sets which are 
much more baroque. 

Definition 2.14. 1. One says that an ordered nonempty set E is well-ordered 
if every nonempty subset ][)) C E possesses a least element; that is, an element 
J-L E ][)) less than or equal to all other elements of ][]). 

Let us establ ish some immediate consequences of this definition. 

• A wel l -ordered set is  totally ordered. In fact, two elements x , y of E 
are always comparable because ][)) = {x , y }  possesses a least element which 
therefore must be comparable to the others . 



2. 1 4. Reasoning by Induction 23 

• A wel l -ordered set always possesses a least element since lDl = E is 
a nonempty subset of E. Unless explicitly stated otherwise, we will always 
denote the least element by 0. 

• The smal lest element 11 of a nonempty subset lDl i s  unique. In what fol lows 
we let f1 = min lDl denote the smal lest element of lDl. 

• In an wel l -ordered set  which is  not bounded above, every element pos­
sesses a successor x ' . This  is  defined as the unique element possessing the 
fol lowing properties: 

(a) x < x' ; 
(b) there is no element between x and x' ( in  other words, the inequalities 

x ::::: y ::::: x' imply that y = x or y = x' ) .  
Proof Since E i s  not  bounded above, the se t  lDl - [0, x ]  i s  not  empty. The 
successor of x i s  then x ' = min lDl (this is immediate) .  D 

Examples 

• The set N i s  wel l -ordered. 

• A nonempty interval of N i s  wel l -ordered - this shows that there exist 
wel l -ordered finite sets. 

• There are many other s imple sets which are well -ordered as the fol lowing 
result shows. 

Theorem 2.14.3. For every integer k 2: 2, the lexicographic order on Nk is a 
well-ordering. 

Proof To simplify, we are going to prove the theorem in the case when k = 3 .  
Let ][)l b e  a nonempty set o f  triples (x , y ,  z )  E N3 . Consider the set o f  first 
coordinates of elements of lDl. Since this  is  a subset of N, we know that i t  has 
a least element: 

� = min {x E N : (x , y, z ) E lDl} . 

Consider in turn the elements 

1J = min { y E N; (� .  y, z) E lDl} l; = min {z E N; (� , IJ, z) E lDl} 

(note the presence of  � in the definition of  IJ and of  � , IJ in  the definition 
of l;). It is  clear that (� . IJ, l;) belongs to lDl. To show that it is  the smallest 
element, suppose that there exists (x, y, z )  E lDl and that (x , y, z )  ::::: (� , IJ, l; )  
(the ordering being lexicographic) .  Then we have x ::::: � , which implies that 
x = � in  view of the definition of � . This implies that y ::::: IJ and, thus, 
that y = IJ i n  view of the definition of IJ .  Similarly, one shows that z = l; .  D 

This result is very interesting. First of al l ,  it allows us to reason by induction 
on N2 or N3 • But i t  also shows that we should be wary of extrapolating from 
the set of integers : in a well-ordered set, some elements may fail to have a 
predecessor! 
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.. 

Fig. 2.1. 

In N2 for example, the couple ( l  ,0) has no predecessor (see Fig. 2. 1 ). 
The smallest element of the set ]])) of points in the grey region is the white 
point  ( 1 ,  2) Each element of N2 possesses a successor, but the points on the 
horizontal axis do not have a predecessor. 

Exercise 7 

Show that in N2 with the lexicographic ordering, the points with no predecessor 
are the points on the horizontal axis .  To understand the structure of the order 
on N2 a little better, consider the map 1fJ : N2 --+ ffi. defined by 

I 
I{J(X , y)  = X +  1 - -- ·  

y + l  

What does I{J (N) look like? Show that this is  a strictly increasing bijection 
between N2 and its image. 

Theorem 2. 14.4 (Principle of transfinite induction). Let E be a well-ordered 
set and ]])) a subset with the following two properties: 

(a) the set ]])) contains the least element 0 of E;  
(b) each time that one has [0 ,  x) C ]])), one can show that x belongs to ]])). 

Under these conditions, one has ]])) = E. 

Proof We adapt the preceding proofs, sorting them out so as to make no 
reference to predecessors. Suppose for a moment that ]])) is not the set E. Then 
]]))< = E - ]])) is not empty and has a least element JL > 0 after (i). From 
the definition of J.L and (ii) , one sees that the elements of E which satisfy 
the inequality x < J.L are in ]])) (this is the way we eliminate recourse to the 
predecessor of J,L). From the induction hypothesis, one concludes that J.1. is an 
element of ]])), which is a contradiction. o 
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Example 

Here i s  a typical example of transfini te induction. Let u ,  v :  N --* N  and 
w : N2 ---* N be any three functions. Consider the function f : N2 ---* N 
defined by 

I u (x ) if y = 0, 
j(x ,  y) = v (y) if x = 0,  

f (x - l , w (x , y) ) + f (x , y - 1 ) if x , y > O. 

(We suppose that u (0) = v (0) for this definition to be coherent . )  

We cal l ][]) the domain of definition of this function . We are going to  demon­
strate that i t  i s  equal to N2 with the aid of transfinite induction . 

• First of al l ,  f (0, 0) exists. 

• Now let (x , y) be an element of N2 and suppose that f (u ,  v) exists for 
al l pairs (u ,  v )  sat isfying the condition (u ,  v )  < (x , y) with respect to the 
lexicographic order. We must prove that f (x , y) exists . 

1> This is evident if x or y is zero.  

1> If x and y are not zero, since we have 

(x - 1 , u (x ,  y))  < (x , y) and (x , y - I ) < (x , y )  

for the lexicographic order, the induction hypotheses guarantees the 
existence of the numbers f (x - 1 , u (x , y ) )  and f (x , y - I ) .  Therefore, 

f(x ,  y) = f (x - 1 , u (x , y) )  + f (x , y - 1 ) 

is wel l -defined. 

We will see another appl ication of this principle in Chapter 1 2 . 

2.15. Solutions of the Exercises 

Exercise 1 

If we calculate the differences u;+ 1 - u; ,  we see that we get a periodic sequence: 

+ 2  + 2  + 2  + 2  + 2  + 2  + 2  + 2  + 2  
---.. � � � ------ � ---.. ---.. � 

5 7 9 1 1  1 3  1 5  1 7  1 9  2 1  23 
..___.. ------- ..___.. ------- ..___.. -------

+ 2  +4 +2 +4 +2 + 4  

More formally, every integer is  of the form 6q + r with r = 0,  . . .  , 5 .  If we 
el iminate the multiples of 2 and 3 ,  the only possible values of r are r = 1 or 
r = 5 .  The terms of the sequence (un ) are thus 

. . . , 6q + I ,  6q + 5, 6(q + 1 ) + 1 , 6(q + 1 )  + 5, 6 (q + 2) + 1 ,  . . .  
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As a result ,  we go from u; to u ;+ 1  by al ternately adding 2 or 4, which gives: 

Exercise 2 

u ;+ t = { u; + 2 �f � = I (mod 2) ,  
u; + 4 tf 1 = 0 (mod 2) . 

(2 .20) 

Suppose first of al l that the coefficients of P and Q are in  N and strictly less 
than b. Then P (b)  = Q (b) expresses the fact that the numbers P (b) and Q (b) 
have the same expression in terms of the base b .  Therefore the coefficients are 
equal . If the coefficients of P and Q have arbitrary sign, one can reduce to 
the preceding case by adding a suitable multiple of xn + xn - t + . . .  + X +  1 
to both polynomials .  

Exercise 3 

The element in the x -th row and y-th column is :  

N = 3x + 1 + (y - 1 ) (2x + I ) = 2x y + x + y.  

• Let 2n + 1 = pq be a composite number. Since 2n + 1 i s  odd, we can put 
p = 2x + 1 and q = 2y + 1 with x ,  y :::: 1 .  Then n = 2x y + x + y figures in 
the table .  

• Conversely, if n = 2xy + x + y figures in the table, one has 2n + 1 = 
(2x + 1 ) (2y + I ) which shows that 2n + 1 i s  composite. 

Write a Pascal program which calculates and displays the Sundaram sieve 
up to n rows and n columns, and which uses it to obtain the corresponding 
prime numbers. 

Exercise 5 

Suppose that there exists a polynomial F E Q[X]  such that F(x) is a prime 
number for all x E N greater than or equal to x0 . Put F = G I d with G E Z[x ]  
and d E N* and let p = F (x0 ) .  Applying the Taylor formula gives: ( 1 ) 2 ( (hd)2 11 ) F(xo + phd) = F (x0) + p hd F (0) + p � F (xo) 

n ( (hdt (n ) ) + · · · + p � F (xo) . 

Since G(k ) (x0 ) I k !  is an integer for k :::: 1 ,  so is (hd)k F(k ) (x0 ) I k ! .  Hence 
F(x0 + hp) is  an integer multiple of p strictly greater than p if one chooses h 
sufficiently large. This is a contradiction. 

Now let us see what happens with the second attempt. 

• If I T I  > 1 ,  we have f (x ,  y) = 2 which i s  a prime number. 
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• If T = 0, we have x (y + 1 )  = (y ! + 1 )  which implies that y !  + I = 0 
modulo (y + 1 ) . Wil son 's  theorem then assures us that f(x ,  y) = y + I  i s  
indeed a prime number. 

Now, suppose that we want to solve the equation f (x , y )  = p when p i s  
an  odd prime. We have 

T = O ==} y + l = p ==} x = ((p - I ) ! + I ] jp ,  

and Wilson 's  theorem guarantees that x i s  a n  integer. There i s  a unique such 
pair. Conversely, computing f(x ,  y) gives again the prime p .  

We have a magnificent reformulation o f  Wilson 's  theorem and a "simple" 
function which only takes prime values. It i s  annoying that this function almost 
always takes the value 2 since T i s  almost never 0: for example, one has 
T (x ,  1 0) = 0 iff x = x0 = 329 , 89 1  which means that f(x ,  1 0) = 2 for 
x =f. x0 and f (x0 , I 0) = 1 1 .  This is not an efficient way to generate prime 
numbers . . .  



An algorithm is a "recipe", a minute description of the operations that one 
must perform to obtain a desired result .  In order to avoid any ambiguity, this 
description necessari ly  uses a very restricted language : two persons separated 
by thousands of ki lometers must perform exactly the same sequence of oper­
ations. 

The language that we are going to present to describe algorithms wi l l  be 
based on the computer language Pascal . However, we wi l l  stray from this  
language without apology when necessary, because an algorithm must be un­
derstood by a person,  and human beings absolutely do not function l ike com­
pilers ! 

The distinction between an algorithm and a program is important :  

• An algorithm is  a description, as clear and as vivid as possible, of a set  of 
actions which do not depend on a g iven machine; it is intended for our brain .  

• A program is a painstakingly precise, puncti l ious text intended for a com­
piler. It is  written in a specific language. A program written in Lisp cannot be 
understood by a Pascal , or a C, or an Ada compiler. 

An algorithm general ly suppresses many detai l s  that one cannot ignore 
when deal ing with a compiler. In a manner of speaking, an algorithm is the 
quintessence of a program. In contrast, a program is an implementation of one 
or more algorithms. 

Like any l iv ing language, a computer language consists of words that are 
organised into sentences. The set of precise rules which govern how correct 
words and sentences can be formed is  called the syntax of the language. Syntax 
is  mechanical : i t  allows us to give orders to the compiler. 

The word semantics refers to the meaning of the text that one writes. The 
meaning exists only for (and in)  our brain .  By its very defini tion, i t  is  inac­
cessible to a machine which is just a set of switches and a clock. 

If you are a mathematician, you wil l  easi ly grasp the distinction : haven ' t  
you ever been able to  repeat a proof, without understanding it? 

3. An Algorithmic
Description Language
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3.1 .  Identifiers 

Calculating involves manipulating variables, each of which must be given a 
name called an identifier. For ease of reading, mathematicians prefer to use 
identifiers consisting of a single letter: the abc issa x, t ime t, etc, even to the 
point of borrowing from several alphabets (roman, greek, hebrew, etc . ) .  

As the complexity of the objects increases, however, they use more and 
more identifiers consisting of several letters (SO, PSL, Hom, End, etc . ) .  

A mathematical proof uses relatively few identifiers. By contrast, a program 
can contain hundreds, or even thousands, of variables and uses words of ar­
bi trary length as identifiers. The convention used is very natural : an identifier 
always begins with a letter (which can be upper or lower case) ;  and is  fol lowed 
by (unaccented) letters or numerals .  

For example, "x",  "x 1 " , "x 1 2", "x 1 y2z3" and "toto" are identifiers . In 
contrast, "1 x"  and "deja" are not. 

Suppose that we wish to call an identifier initial velocity. We cannot leave the 
space between the two words, because a space is neither a letter nor a numeral . 
We could avoid the difficulty by writ ing initialvelocity or InitialVelocity. 

In order to improve the readabi l i ty of programs, Pascal , and many other 
computer languages, treat the symbol " _ "  (called the underscore or underline 
or break symbol ,  and obtained by pressing the key combination SHIFT - on 
a keyboard) as a letter. Consequently, "initiaL velocity", "_ 1 " , "_x" and "x_" 
are identifiers . 

For beginners 

Choosing good identifiers is crucial : they should inform the reader of their 
meaning and are an important form of self-documentation of the program. 
It is  very easy to render an algori thm or program i l legible by an awkward, 
unitel l igible, or bizarre choice of identifiers. 

Consider, for instance, the statement: 

distance := initiaLdistance + speed * time. 

You have, of course, the right to rebaptize these identifiers and replace distance 
everywhere in the program by acceleration, initiaLdistance by speed and 
speed by initiaLdistance to obtain the bizarre statement :  

acceleration := speed + initiaLdistance * time . 

For a compi ler, identifiers mean nothing: they are anonymous addresses and 
cannot mislead. But i t  should not surprise you if your brain is  led astray in a 
sufficiently hostile context . . .  
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3.2. Arithmetic Expressions 

An arithmetic expression is a collection of identifiers, numbers , and symbols 
such as "a - (b * (c + xjy) - cos(t + 1 ) )"  or "a * X [2 * i + i + 1 ]  + b". There 
is nothing special to say concerning their construction or syntax . 1 

3.2.1. Numbers 

An arithmetic expression can contain numbers : "2 * x + 3 . 1 4" .  Since one does 
not have access to the notation 1 0n on a keyboard, the numbers 3 . 56 x 1 0 1 2 

and 1 . 7 x w-4 are denoted in Pascal by "3 . 56£ 1 2" and " 1 . 7 £ - 4". 

3.2.2. Operations 

The operations "+, - , *· /" are left-associative, which means, for example, 
that a computer will evaluate "xjy/z/t" as if i t  were written " ( (xjy)/z )/ t" .  

Be careful ! The operation "/" manufactures real numbers . When you type 
"4/2", you obtain the real number 2 .000 . . .  in Pascal , not the integer 2 ( in  
other words, the computer does not  v iew Z as a subset of JR).  

Let a, b be integers with b > 0 and let  q ,  r be the quotient and remainder 
upon division of a by b: 

a = bq + r, 0 ::: r < b. 

The quotient q is  denoted "a div b" and the remainder r by "a mod b". We 
thus have two internal operations div , mod : Z x Z ----+ Z which have two 
peculiarities of which you should be aware : 

• The operations " div " and "mod " have priority over addition and mul­
tiplication. This  means that "a + bmod n" and "a mod p * p" are interpreted 
as if they were the expressions "a + (bmod n)"  and "(amod p) * p". Do not 
forget the parentheses if what you want is " (a + b) mod n" or "a mod (p * p)" !  

• B e  very careful : when b is  negat ive, "a  d i v  b "  and "amod b "  are not what 
a mathematician means by the quotient or remainder: there is often a shift .  
Experiment to find out what convention is  being used. 

For beginners 

In mathematics, the product of two variables is general ly denoted by con­
catenating the names of the variables: the product x x y i s  denoted by xy. 
In computer science, the use of the symbol "*" is  indispensable because a 
program may very well contain the identifiers x ,  y and x y .  

1 You already learned about these constructions empirical ly. B u t  what are the preci se 
rules? A beginning of a response wi l l  be given in Chapter 1 3 .  A rigorous description 
of these rules uses the abstract concept of a grammar which we cannot take up here. 
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3.2.3. Arrays 

In computer science, the indexed objects that mathematicians use (vectors, ma­
trices, etc . )  are cal led arrays. Because indexes are not avai lable on a keyboard, 
they are placed in square brackets : 

• instead of talking about a vector x = (x 1 , • • •  , xn ) ,  a computer scientist 
considers an array x [ l . .n ]  whose elements are x [ l ] , x [2] , . . .  , x [n ] ;  

• a matrix is  a n  array with two indexes o f  the form A [ l . .n , l . .m ] ;  the 
element A; , J  is written A [i ,  j ] .  

You can use arrays with three, four, etc . indexes. 

An arithmetic expression can contain references to an array : 

A [i , j ]  + x [i + I ] *  y [2  * j + 2 * t [ u ,  v + w ] - 4] . 

It is possible to replace an index by an ari thmetic expression if the value of 
the latter is a whole number. 

3.2.4. Function calls and parentheses 

An arithmetic expression can also contain function calls: 

2 * x + cos (3 * y * y + 0 .5 )/  log (A [ i ,  j + I ] - s in(t ) ) .  

I n  mathematics, one suppresses redundant parentheses whenever possible i n  
order to reduce clutter. One writes, for example, "cos x" instead of "cos (x )"  
and, hence, "y + cos x" rather than "cos x + y".  In contrast, one cannot forget 
the parentheses in a program: one systematical ly writes "cos (x )" .  

Square brackets and braces (curly brackets) are not allowed : "Iog[x + 
cos (y) ]"  is incorrect, it is necessary to write "Iog (x + cos (y) )" :  square brackets 
are reserved for arrays and curly brackets enclose comments. 

3.3. Boolean Expressions 

Boolean expressions are arithmetic expressions which take the values true or 
false . They are obtained as fol lows: 

• by using a boolean variable which takes the values true or false; 
• by comparing two arithmetic expressions: for example x + y =I= z - t + u 

or x + y * (z + x )  � 3 - cos (x + y ) ;  

• b y  combining boolean expressions using the logical operations "or", "and" 
and "not". For example, 

not (x = y + I )  or (a � b) and (c + d > z + I )  or not finish 
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In an arithmetic expression, multipl ication has  priority over addition and 
subtraction . In a simi lar manner, the operation "and" has priority over "or" as 
wel l as the operations "+ ,  - , *• /". As a result of this convention, " (a < b) 
or ( (x = y) and (u > v ) ) "  has the same meaning as " (a < b) or (x = y)  and 
(u > v )",  thereby allowing us to suppress some parentheses. 

For beginners 

• The logical operations "and" and "or" do not at al l corrrespond to the 
way we use them when we speak ! We have a tendency to give the operation 
"or" an exclusive value ( the computer scientist 's "xor") .  When we assert, for 
example: "This is butter or margarine ! "  we understand that it is either one or 
the other, but certainly not both . We also say "this property is  true for i < I 0 
and i > 20" although the boolean expression "(i < 1 0) and (i > 20)" is  
always false .  

• Since the symbols .::: , �.  and =f. are not avai lable on a keyboard,  they 
are replaced in Pascal by the compound symbol s < =, > =, and < >  (without 
a space between the characters) .  Having said this ,  we will continue to use 
without further comment the classical mathematical symbols in the programs 
and algorithms in this book. Reading and understanding a program is not the 
same as typing the program ! 

• Do not forget to use parentheses systematically whenever the logical op­
erations "not", "and", and "or" occur: parentheses are indispensable in Pascal . 
The operations "and" and "or" also have priority over ari thmetic operations :  
a Pascal compiler reads "a < b or x = y" as  "a < (b or x )  = y" which is  
devoid of sense. 

• The boolean expression "n mod 2 = 0" allows one to test the parity of n :  
i t  i s  true i f  and only i f  n i s  even . 

• Suppose that finish is a boolean variable ( that is ,  a boolean expression 
reduced to an identifier) . Do not write "finish = true" in your tests ; simply 
use the identifier ''finish". The effect wi l l  be the same since these two boolean 
expressions take the same values. 

• If a and b are two integers, the boolean expressions "a * b = 0" and 
" (a = 0) or (b = 0)" are mathematical ly equivalent. A programmer wi l l  
systematical ly use the latter because it is  stupid to use a multiplication which 
is  much slower than a test. 

3.4. Statements and their Syntax 

We communicate with the help of sentences. In computer science, a statement 
corresponds to a sentence; a program is a sequence of statements. Since our 
goal is to content ourselves with a minimum of Pascal , we shall only use three 
types of statements: assignments, conditionals, and loops. 



34 3. An Algorithmic Description Language 

• An assignment: 
t> ( identifier) := (arithmetic expression) 
t> (element of an array) := (arithmetic expression) 

• A conditional, with or without "el se" : 

t> if (boolean expression) then (statement) else (statement) 
t> if (boolean expression) then (statement) 

• A loop, of which there are three types: 

t> for (assignment) to (arithmetic expression) do (statement) 
t> for (assignment) downto ( arithmetic expression) do (statement) 
t> while (boolean expression) do (statement) 
t> repeat (sequence of statements) until (boolean expression) 

The angle brackets ( ) indicate, for example, that (identifier) is to be replaced 
by an identifier. Sometimes we wi l l  use a "case of' statement which general ises 
and simplifies certain constructions made from "if then else". Consult your 
Pascal manual for detai l s .  

3.4. 1. Assignments 

These are the s implest statements to write: 

x := a +  b * c, A [i ,  j + k ]  : =  log (x + yjx )  + x * x + x + I . 

The symbol " :" which precedes the symbol "=" cannot be omitted . There is no 
space between these two symbols :  in  other words, i t  is  necessary to consider 
" :=" as a new symbol ,  the assignment symbol. 

3.4.2. Conditionals 

Here are two s imple examples. 

if (x = l )  or (y > 0) then y := a +  cos (x) else y : = a - s in(x) 

if x > u + v then A [i , j] := x[i] + yU] 

For beginners 

It is necessary to distinguish careful ly between tests and assignments: 

if X : = I if X =  1 
then y = u + v then y : =  u + v 

The code on the left contains two syntax faults at the outset !  

• "x : =  1"  i s  a statement which is  forbidden after "if" (a statement does 
not have a value: what value can one give to an action?) ;  

• "y = u + v " i s  a boolean expression and is  forbidden after "then". 
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Computer scientists are more careful than mathematicians, for whom the 
meaning of the equals sign depends strongly on the context. (However, this  
situation i s  evolving:  one encounters the assignment symbol " : =" more and 
more frequently in recent books and papers on mathematics . )  

3.4.3. For loops 

Consider the "for" loop: 

for i : = 1 to n *  n + I do x[2 * i + 1 ]  := a *  i + b 
• The variable i on the left of the assignment symbol is called the control 

variable of the loop. This name is reserved because a compi ler uses it when 
it diagnoses an error. It is  necessari ly an variable of integer type ; it cannot be 
an element of an array. 

• The single statement that follows the "do" is called the body of the loop. 

For beginners 

From time to t ime, the fol lowing error 

for i : =  1 to 1 0  do xi : =  i * i 

is made when trying to effect the assignments x 1 : =  I * I ,  x 2  : =  2 * 2, 
x3 : =  3 * 3 ,  etc . The compiler wi l l  refuse because it does not recognize the 
variable "xi " . It is  necessary to define an array x [ l . . 1 0] and wri te x [i ]  := i * i . 

3.4.4. While loops 

Here are two very simple examples: 

while x > 0 do x := x + 3 

while (x > 0) and (x � 1 0) do x : =  x + 1 

• The boolean expression is cal led the exit test of the loop. 

• The single statement that fol lows the "do" i s  called the body of the loop. 

3.4.5. Repeat loops 

Here is  an example, al though we have not yet defined a sequence of statements: 

repeat x := x + i ;  i := i + 1 until x :::_ 1 00 

In a loop of this type, the body of the loop is formed by al l the statements 
between "repeat" and "unti l" .  
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For beginners 

• In a "while" loop, one first encounters the exit test, then the body of the 
loop. In contrast, in a "repeat" loop, one encounters the body before the exit 
test. 

• The body of a "while" loop contains only a s ingle statement while the 
body of a "repeat" loop can contain as many as one wants. We will see a l i ttle 
later how one can handle this apparent asymmetry using a block of statements. 

3.4.6. Sequences of statements 

In general ,  a novel is made up of many sentences, each ending in a period. 
S imi larly, an algorithm (or a program) contains many statements. A sequence 
of statements consists of a fini te (nonempty) set of statements. 

Unl ike sentences in  a novel which end in  a period, in  Pascal , statements 
in  a sequence of statements are separated by a semicolon : that is, there must 
be an statement on each side of the semicolon.  If the letter S designates a 
statement, a sequence of statements is as fol lows:  

� correct 

� the last semicolon is incorrect. 

For beginners 

Experience shows, alas, that adherence to this convention is not easy, because 
we spontaneously tend to fol low a statement by a semicolon, a reflex inspired, 
no doubt, by the period that ends our sentences. Pascal compilers are tolerant, 
and accept, whenever possible, redundant semicolons and the empty statements 
that they evoke. We ci te an instance a l i ttle later where this is  not possible. 

This said, there is  nothing to be gained in  maintaining that the syntax of 
Pascal is difficult ;  the placement of semicolons is very simple, contrary to 
what one sometimes reads .  Teaching programming shows that a student who 
has difficulty with semicolons is  one who does not know by heart the l i st of 
statements. 2 

3.4. 7. Blocks of statements 

It frequently happens that one must repeat several statements in a loop. For 
example, consider 

while x > 0 do 

I sum : = sum + 2 * x ;  
X := X - 1 

2 To know by heart is to be capable of responding in a tenth of a second, without 
reflection ; as a reflex.  Consequently, if  you hesitate, if  you have to mental ly review 
al l  possible statements, then you must learn and relearn the l ist of statements: several 
minutes each day for a week wi l l  suffice. 
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where the vertical l ine indicates that we want to execute the two statements as 
long as x is greater than 0. But a "whi le" loop accepts only a single statement 
after the "do" ; as a result, the Pascal compi ler "sees" the fol lowing:  

while x > 0 do sum := sum + 2 * x ;  
x := x - I 

Thus, we have created an infini te loop which repeatedly adds 2 * x to the 
variable sum; the statement x :=  x - 1 is therefore never executed. 

We need a mechanism for grouping statements, and making a sequence 
of statements into a single statement .  A block of statements, which is  then 
considered as a new statement, is a sequence of statements preceded by a 
"begin" and fol lowed by an "end" : 

begin (sequence of instructions) end 

a <.,ingle i no;;;truction 

Thus, the solution of our problem is as fol lows: 

while x > 0 do begin 

For beginners 

I sum :=  sum + 2 * x ;  
X :=  X - 1 

end 

• We now understand better why a statement which fol lows the "do" in a 
"for" loop or a "while" loop is called the body of the loop; most of the t ime 
the body of a loop is a block of statements. 

• If S i s  a statement, one can write "begin S end", but this does not accom­
plish any more than writing S alone. Thus, one uses a "begin end" starting 
with two or more statements. 

• A "repeat unti l" by itself forms a statement block. Thus, there is  no point 
in typing 

repeat begin S1 ; S2 ; . • .  ; Sn end until . . .  

3.4.8. Complex statements 

Now that we have learned how to write s imple statements, we can assemble 
and nest them to obtain more and more complex statements. Consider the 
fol lowing two texts. The text on the left is  a sequence of two statements; 
the one on the right contains a single statement. We note therefore that i t  is  
possible to write arbitrari ly long statements. 
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for x : = a + b to a * a + b + 1 do 
for y : = c to a * c + 1 do 

for z : = 1 to n * n + 1 do 
U[x, Z , z] : = X +  y ; 

3 .  An Algori thmic Description Language 

for x : = a + b to a * a + b + I do 
for z : = 1 to n * n + 1 do 

while z > 0 do begin 
Z : = X +  y ;  

repeat if z = 0 

x := x +  y +  z 
y : =  y * X - Z 

then u : =  u + v 
else u :=  u - v ; 

u : =  u + cos (u + v) 
until x > t 

z :=  x + y + z div 2 
end 

3.4.9. Layout on page and control of syntax 

The layout of a program on a page is very important. If you neglect it, mas­
tering the syntax and understanding the text becomes very difficult .  Which 
would you prefer? To read a ki lometer of text such as the fol lowing: 

for x := a +  b to a *  a +  b + 1 do while x > 0 do begin 
z := x + y ;  repeat if z = 0 then u := u + v else begin 
u := u - v ; v := v * v end until z < - I  ; y := y - 2 end 

or to read the more structured text below? 

for x : = a + b to a * a + b + 1 do 
while x > 0 do begin 

Z : = X +  y ;  
repeat 
if z = 0 
then u : =  u + v 
else begin u : =  u - v ;  v : =  v * v end 

until z < - 1  
y : =  y - 2 

end 

They produce, however, exactly the same effect. A compiler "sees" no differ­
ence between the two because, from its standpoint, passing from one line to 
another i s  nothing more than a single space; on the other hand, I chal lenge you 
to tel l  me rapidly whether the three l ines of the first text above are syntactical ly 
correct, without some sort of prel iminary layout. 

Let us return to our ki lometer of text and check its syntax . 

• The text begins with a "for" loop which is the start of the statement: 

for x : = a + b to a * a + b + 1 do . . .  

This loop i s  syntactical ly correct if its body is  a statement. 

• The text which follows the "do" begins with a new loop 

while x > 0 do begin . . . end 
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and we are led to checking whether the body of the "while" loop is a legal 
statement, i. e. whether the text between the "begin" and "end" is  a correctly 
written sequence of statements. 

• The body of the "while" loop contains three statements 

z := x + y ;  repeat . . . until z < - 1 ; y := y - 2 
• We are thus led to checking whether the body of the "repeat . . .  unti l" 

loop is  correct, which one verifies easi ly :  

if z = 0 then u :=  u + v else begin u := u - v;  v : =  v * v end . 

All that remains is to read a semicolon fol lowed by a conditional . The text we 
started with is therefore syntactical ly correct and consists of two statements. 

Syntactic analysis proceeds l ike peel ing an onion : one inspects the outside 
layer first, and begins again with the inside layers . If the program is intel l i ­
gently la id out, the analysis can be made at  a glance. Vertical bars , combined 
with indentation, allow you to instantly see the extent of the different blocks 
of statements; the "if then el se" conditions are laid out vertical ly whenever 
necessary. 

For beginners 

The ideal is to have one statement per l i ne ;  however, when a statement is too 
long, it must run over a l ine .  Don ' t  be too rigid in the way you lay things out. 
Use space harmoniously; you should be guided by aesthetic considerations, 
that is ,  the comfort of the reader. It is quite al l  right, for example, to stack the 
three pieces "if" ,  "then", "else" of a conditional vertical ly one on the other; 
however, when each is  very short, it  will be easier to read if i t  is  al l  on one 
l ine. 

Some individuals pass down to the l ine after each "begin", so that they can 
place the corresponding "end" vertical ly beneath; this is  inconvenient as i t  
wastes a l ine. Also the screen of a computer monitor i s  smal l ! You are looking 
at a landscape through a keyhole . . . .  

Here are two classic blunders that beginners make. 

• Typing the whole text (or the reserved words) in capital s .  This makes 
reading very painful . (Capital s were not designed for rapid reading, keep them 
for monuments . )  

• Indenting your text too much. Don ' t  - three spaces suffice on a screen .  
At the back of your eye, on the same axis  as  the lens, there is  a t iny yellow 
spot very rich in nerves called the fovea . This region is  responsible for the 
recognition of forms. Look directly in front of you : if someone approaches 
you from the side, you wi l l  real ize that a person is  approaching, but you wi l l  
not be able to identify him or her because you are not  facing the person and, 
consequently, his or her image will not fal l  on your fovea. 
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It is for this reason that the eye moves ceaselessly. At normal reading dis­
tance, our brain only recognizes the contents of a disk about ten centimeters 
in diameter. If the indentation is too large, it forces you to move your focus 
instead of being able to grasp everything at a single glance, and this makes 
syntactical analysis and comprehension much more difficult .  

An important programming tip 

First type "begin  end"; then return and i nsert between "begin" and "end" the 
sequence of statements that is to become a block. Do the same with "repeat 
unti l" and with "case of end". If you adhere to thi s  discipline, you wi l l  never 
have to worry about closing blocks; and you wi l l  not pass your time counting 
on your fingers how many "begin"s you sti l l  have to close. 

When you write out a program by hand, always follow a "begin" with a 
vertical l ine .  This faci l i tates syntactic analysis ;  if you change a page, you wil l  
know exactly how many "begin"s you have to close. 

3.4.10. To what does the else belong? 

When you nest "if then el se" statements, the "el se" always belongs to the 
closest "then". An intel l igent layout ( indentation and vertical l ines) is very 
useful in fac i l i tating comprehension and analysis .  Thus you wri te : 

if X > 0 
then y : =  y + 1 
else if x = 0 

then z : =  z - I 
else if x < - 1  

then u : =  u + 1 
else u : =  u - I 

It is sometimes necessary - but very, very rarely - to detach an "else" from 
the closest "then".  This is done with a block, l ike this: 

if x < a  
then begin 
\ if x mod 2 = 0 then y := x div 2 

end 
else y := x div 2 + 1 

3.4. 11. Semicolons: some classical errors 

if x :::: a 
then y : =  x div 2 + 1 
else if x mod 2 = 0 

then y :=  x div 2 

Let 's  put ourselves in the place of a beginner who decides to simpl ify life once 
and for al l by ending each statement wi th a semicolon . S ince an assignment 
is  a statement, he or she types 

if X > 0 
then x : = a ; +-- incorrect semicolon ! 
else x : =  b 
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The compiler analyes the correct statement "if x > 0 then x : =  a " . I t  then 
expects to find a statement after the first semicolon.  But since an "el se" can 
never begin a statement, i t  protests. 

Here is  another classic fault .  At the left is  a beginner ' s  program; at the right 
is what the compiler "understands" : 

if X >  0 
then x : =  u 
else if x = 0 
then X : =  V ; y : = X *  X 
else x : =  w 

if X >  0 
then x : =  u 
else if x = 0 
then x : =  v ;  

y : =  x * x else x : =  w 

The placement on the left suggests that it is necessary to simultaneously 
execute the two statements "x : =  v " and "y : =  x * x" when x i s  zero ; 
however, the block "begin end" which would make these two statements into 
one is missing. As a result, the "else" appears in the middle of a legal arithmetic 
expression . The compi ler has good reason to protest. 

For beginners 

We end with a problem that worries many novice programmers who have not 
learned (or understood) their definitions: when one nests blocks, is i t  necessary 
to put semicolons between the "end"s? 

Recal l that semicolons separate statements. S ince an statement never begins 
with an "end", we note that the two first semicolons are questionable. 

begin 

begin 

begin 
I · . .  
end ; +-- superfluous semicolon but accepted 

end ; +-- superfluous semicolon but accepted 
end ; +-- correct semicolon 

On the contrary, the last semicolon is indispensable when the last "end" is  
fol lowed by a statement. The reasoning becomes evident when the code is  
written on a s ingle l ine :  

begin . . . begin . . . begin . . . end ; end ; end ; 
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3.5. The Semantics of Statements 

Identifiers only exist for our intel lectual comfort; a computer only recognizes 
addresses, which are whole munbers , in its memory (we wi l l  return to this  
subject in Chapter 6 ) .  The contents of the memory at the address corresponding 
to the identifier is  the value of this  identifier. 

To better understand what this means, imagine a letter box : the name on i t  
corresponds to the identifier and the letter that one sl ides into it corresponds 
to its value. 

Each day, your letter box receives letters ; in an analogous manner, the pro­
gram (considered as a mai lman) can modify the value of an identifier. In 
mathematics, a variable does not change its value during a proof. In contrast, 
the contents of a variable in a program can change thousands, or hundreds of 
thousands, of times in a second ! 

The analogy with a letter box breaks down however. When a program needs 
to transfer the value of a variable into a microprocessor, i t  "photocopies" the 
letter, i t  does not withdraw i t !  In other words, reading is not destructive. 

3.5. 1. Assignments 

An assignment describes a process. In order to execute the statement 

X := b + a * X 

the computer first calculates the value of the arithmetic expression b + a * x 
by recopying in a sui table order (here, a ,  x ,  b) the contents of the variables 
as it does its calculations. This done, it overwrites the value in the address 
corresponding to the variable x ;  this has the effect of erasing the previous 
contents. (Certain languages use the notation x +-- b + a  * x to better indicate 
th i s . )  

One increments the variable x by writing "x : =  x + I "  and decrements i t  
by writing "x := x - 1 " . 

For beginners 

The type of a variable is very important :  the assignment "u :=  v " is only 
possible if u and v have the same type. In case of error, the compiler will 
announce that there i s  a type mismatch. However, there is  an exception : the 
assignments ( real ) : =  ( integer) are legal . 

3.5.2. Conditionals 

Consider the statement 

if x = 0 then y : = y + I 
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If the contents of the variable x is  0, y is  incremented; in the contrary case, 
that is ,  if x =f. 0, nothing happens and the computer executes the next statement 
( if there is  one). 

The conditional with an "el se" is  also easy to grasp: 

if x = 0 then y : = y + 1 else z : = z - 1 

If the contents of x is zero, y is incremented and the program skips the rest 
of the statement to execute the next statement in  the program : thus, the value 
of the variable z i s  not changed. On the contrary, if x i s  zero, the program 
skips the beginning of the conditional and decrements z :  thus, the variable y 
does not change its value. 

3.5.3. First translations 

Before examining the semantics of loops, we first famil iarize ourselves with 
our algorithmic description language by translating several common mathe­
matical constructions into it .  

I ) To express whether or not x belongs to an interval , the result returned 
being a boolean , we can write 

(a ::: x )  and (x ::: b) 

if we know that a ::: b .  But if we don ' t  know this ,  we should be prudent and 
write: 

(a ::: x) and (x ::: b) or (b ::: x) and (x ::: a )  

The priority of "and" over "or" ensures that the translation is  not ambiguous .  

Beginners should note that in order to rel iably translate x E [a , b]  U [c ,  d ]  i t  
i s  advisable to first write "(x E [a , b] )  or (x E [c ,  d ] )" ,  then replace x E [a , b] 
and x E [c, d ]  by the appropriate code. 

2) In mathematics, a comma frequently plays the role of "and". Thus, for 
example, one translates the condition i < x < j ,  x =f. k by: 

(i < x ) and (x < j) and (x =f. k) 

3 )  The classical notation 

is translated simply by 

if (condition} ,  
otherwise 

if (condition} then R : =  R 1 else R :=  R2 
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4) Mathematicians often write: 

3. An Algorithmic Description Language 

if (condition 1 ) ,  
i f  (condition2 ) .  

There are two legitimate translations :  one, o n  the left, using one statement, the 
other, on the right, using two. 

if (condition 1 ) 
then R :=  R 1 
else if (condition2 ) 

then R :=  R2 

if (condition 1 ) then R :=  R 1 ; 
if (condition2 ) then R :=  R2 

What happens if both conditions are true? The solution on the left gives R the 
value R 1 , while that on the right gives R the value R2 . This  is not too serious: 
if the original mathematical assignment was coherent, then one has R 1 = R2 
when both conditions hold. 

For beginners 

Nevertheless, you should systematical ly use the solution on the left: 

• it executes more rapidly (one test instead of two) ;  

• the translation on the right is  peri lous, as  we are going to see . 

5 )  We can compl icate the game (we suppose that i is an integer) : 

I a if i > 0 I b if i = 0 
X =  

c if i = - I ,  -2 

d if not 

There i s  only one statement ! 

For beginnners 

if i > 0 
then X : = a 
else if i = 0 
then X := b 
else if (i = - I ) or (i = -2) 
then X : = c 
else X := d 

Using the option "el se" is indispensable for automatical ly obtain ing rel iable 
code. If you don ' t  use it ,  you risk writ ing nonsense. 

Consider, for example, the fol lowing translation proposed by a beginner, 
who refuses to use "else" imagining that it wi l l  somehow simplify l ife :  

X := d ;  
if i > 0 then X : = a ; 
if i = 0 then X : = b ; 
if ( i  = - I )  or (i = -2) then X : = c 
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First of al l ,  th is  translation begins with the "trick" X := d, which is  not 
at all clear, especially for a beginner! Then, when i > 0, the algorithm sti l l  
executes the tests i = 0, i = - I ,  and i = -2,  which is  idiotic . 

To better see why this intellectual laziness is suicidal , consider the fol lowing 
example, patterned on the above: 

I a if X > 0, I I X : =  d ; 

X _  
b if X =  0, if X >  0 then X : = a ;  

-
c if X = - 1 , -2,  

==> 
if X = O then X : = b ;  

d otherwise. if (X = - I )  or (X = -2) then X : = c 

This translation is flagrantly false !  Because X is modified at the outset, the 
tests that follow have nothing to do with the in i tial value of the variable X , 
but pertain instead to the values of d ,  a ,  b and c. A good translation is very 
natural and executes more rapidly: 

if X > 0 then X := a 
else if X = 0 then X : = b 

else if (X = - I )  or (X = -2) then X : = c 
else X : = d 

3.5.4. The boustrophedon order 

In some ancient languages the direction in which one reads changes from l ine 
to l ine; there is no "carriage return". One reads,  for example, the first l ine 
from right to left, the second from left to right, the third from right to left, etc . 
This serpentine writing is called boustrophedon writing. 

Consider the rectangle :R of points with integer coordinates (Fig. 3 . 1 )  satis­
fying 0 .::: x .::: a, 0 .::: y .::: b with a :=:: 0 and b :=:: 0. Inspired by the serpentine 
pattern of boustrephedon wri ting, we can endow :R with a total order called 
the boustrophedon order. One traverses :R in the increasing direction by 

• leaving the origin (0,0) and moving along the l ine y = 0 towards the right 
until we get to (a ,  0) ; 

• then c l imbing to the l ine y = I and moving along it to the left starting 
at (a ,  I )  and continuing to the point (0, I ) , etc . 

Fig. 3. 1. Boustrophedon order 
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Thus, the smallest element of the rectangle :R is the point (0, 0) ; the largest 
is (a , b) if b is even and (0, b) otherwise. 

The resulting total order is  given by: 

I if x < x ' and y = y' = 0 (mod 2) ,  
(x , y )  < (x' , y' ) if x > x' and y = y' = 1 (mod 2) ,  

B 
if y < y' 

and the successor of an element (x , y ) ,  when it exists, i s :  

I (x + 1 ,  y)  
(a , y + 1 )  

succ(x , y )  = 
(x _ 1 ,  y )  
(0 , y + 1 )  

if x < a and y even, 
if x = a and y even, 
if x > 0 and y odd, 
if x = 0 and y odd.  

To translate the above into code, we argue according to the parity of y .  Since 
the largest element does not have a successor, we need a boolean variable 
which we call exist. 

exist :=  true ; 
if y mod 2 = 0 {y is even } 
then if x < a 

then x := x + 1 
else if y < b {and x = a }  

then y :=  y + I 
else exist : = false 

else {now y is odd} 
if X >  0 
then x :=  x - 1 
else if y < b {and x = 0 }  

then y :=  y + I  
else exist :=false 

• If exist is true, the new values of x and y are those of the successor of 
(x , y ) .  

• I f  exist i s  fal se, the new values o f  x and y mean nothing. 

Exercises 1 

• Close thi s  book and construct your own code to calculate the successor 
of (x , y ) .  

• Define a boustrephedon order o n  [0, a ]  x [0, b] x [0, c] a s  follows: to 
go in the increasing direction, augment x when y is even, and diminish it 
if y is odd ; similarly, augment y when z is even and diminish it otherwise. 
In thi s  way, the pari ty of y modifies the order relation for x and the parity 
of z modifies it for y .  

• General ize t o  a product o f  n intervals .  
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3.5.5. The for loop 

Let i ,  n ,  a be integer variables and consider the loop 

for i := n + a to n * n do x := x + i 

Here the body of the loop reduces to a single statement ;  or, to be more precise, 
we do not have a statement block. We call i the control variable. 

To execute this loop: 

• The progam evaluates for once and for all the bounds min = n + a and 
max = n * n .  

• I f  min .::: max, the variable i successi vely (and automatical ly) takes the 
values min, min+ I ,  . . . , max. Each t ime, the program executes the statement(s) 
in the body of the loop. What happens in our example is  as if the program 
executed the sequence of statements: 

x := x + a + I ;  x : =  x + a + 2 ;  . . .  ; x : =  x + a * a .  

(Exercise: how much is  the value of x augmented in total ?) 

• If min > max nothing happens: the program skips to the statement that 
fol lows ( if  it  exists) and x does not change its value. 

The downto variant 

The loop 

for i := n * n downto n - a do x := x + i 

functions in a simi lar manner. In executing this loop, 

• the program begins by evaluating once and for al l the bounds max = n * n 
and min = n - a  (note the inversion of the bounds) .  

• I f  max < min, the program does nothing and  skips to  the statement that 
fol lows the loop ( if  i t  exists ) .  

• If max :=:: min the program successively gives the control variable the 
values max, max - I , . . .  , min and executes each t ime the statement(s) in the 
body of the loop. 

For beginners 

The language Pascal was conceived to teach good programming.  Thus the 
"for" loop is  protected in  a manner so as to resist attempts to branch out of i t .  
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• There is no point typing 

for i :=  1 to n do begin 

I S := S + i ;  
if S :::: 0 then n :=  0 

end 

i n  the hopes of leaving the loop as soon as S :::: 0. Recall that the bounds 
min = I and max = n are evaluated once and for all before the body of the 
loop is  executed ; since the program compares the value of i to the number 
max, the program is not able to take account of the modified value of n .  

• There i s  n o  point trying to modify the value of the control variable i n  
order t o  leave the loop prematurely b y  typing, for example, 

for i := 1 to n do begin 

I s := s + i ;  
if S :::: 0 then i :=  n + i 

end 

We wi l l  see a l i ttle later (when we discuss the "while" loop) how to real i se 
very simply what the attempts above unsuccessful ly try to do. 

Remark 

Modem implementations of Pascal al low one to leave any type of loop using 
special statements (such as "leave", "break" or "exit", depending on the dialect 
used) .  

However, professional programmers are reluctant to use these statements 
without good reason . In general ,  when they modify a large program, they 
content themselves with examining the test f3 which controls the Ioop3 without 
reading the body of the loop. If the body of the loop does not contain the 
statement "leave", one knows that the condition "not {3" is true on exit ing the 
loop ; but this need not be the case if one leaves the loop by some other means .  
And rare i s  the programmer who signals this and careful ly  makes precise what 
condition is sati sfied on leaving the loop in a different way. 

Nevertheless, these statements are used very sparingly in certain circum­
stances when they hugely s impl ify the programming task. 

3.5.6. The while loop 

Consider for example the loop 

i : = a ;  C while i ::; b do begin 
I X : = X +  i ; i := i + 1 

end 

1 Programmers must work as quickly as possib le !  
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which means "repeat the body of the loop as long as i :::: b" . To execute this  
loop, the program: 

• Begins by evaluating the boolean expression i :::: b .  
• If the value of the expression i s  true, it penetrates into the body of the 

loop and executes the statements found there .  

• This  done, it  returns to  before the test and repeats the same sequence of  
actions, as  suggested by the arrow. 

• When the boolean expression becomes false, it skips to the statement 
immediately following the body of the loop (if such exists ) :  we say that it 
leaves the loop. 

In our example, the program does not modify the value of x if a > b since 
it does not penetrate into the interior of the loop. In contrast, when a :::: b ,  
what occurs is  as if program executed the statements 

X :=  X +  a; X :=  X +  a +  1 ;  . . .  ; X := X +  b .  

In a "while" loop, the test comes first. Thus i t  is  entirely possible not to 
penetrate into the loop. 

Example 

If we wish to calculate the sum S of the even numbers less than some fixed 
number n, i t  suffices to use one of the fol lowing two loops:  

s :=  0 ;  i := 1 ; 
while 2 * i :::: n do begin 
I s  := s + 2 * i ; i := i + I 
end 

Why is the loop on the right better? 

For beginners 

s : =  0 ;  i :=  2 ;  
while i :::: n do begin 
1 s := s + 2 * i ; i := i + 2 
end 

1 )  A "for" loop is  an abbreviation of the fol lowing "whi le" loop: 

I i := min ; 
. . . while i :::: max do begin 

for 1 . = mm to max do S {=::} I S . . 1 ; l : =  l + 
end 

Similarly, the "downto" variant is  translated using a "while" loop as fol lows: 

I i := max ; 
while i > min do begin 

for i := max downto min do S {=::} 1 S ; i :,;;;: i _ 1 
end 
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Recal l that a "for" loop functions al l alone :  incrementation (or decrementa­
tion) of the control variable is automatic. 

2) We can now explain how the "for" loop is protected. When a compiler 
encounters the loop 

for i : = n + 1 to n * n * do S 

it creates three special variables ( inaccessible to the programmer) which we 
call here a, w and K .  The compiler then translates the fol lowing loop into 
binary. 

a : =  n + 1 ; w : =  n * n ; K : =  a ; 
while K :::: w do begin 
S ; +- body of the original "for " loop 
K : =  K + I ;  
i :=  K 

end 

3.5. 7. The repeat loop 

The statement "repeat unti l" means "repeat the body of the loop unti l the exit 
test becomes true ."  When the program encounters the two statements 

next ,·wtement 

it first gives i the value a (the first statement), then penetrates unconditionally 
into the body of the loop where it executes the assignments "x :=  x + i "  and 
"i := i + 1 ". Only then , does i t  compare for the first time the values of i and b. 
If i > b, the program leaves the loop and executes the statements that fol low 
( if there are any) ;  otherwise, it returns to beginning of the loop and repeats 
the same sequence of operations. If we are interested in the variable x ,  what 
happens is the same as if one executed the sequence of statements 

For beginners 

x : = x + a ; x := x + a +  I ;  . . .  ; x := x + b .  
� 

always only if  a < b 

One always enters at least once into the body of a "repeat" loop. We have the 
equivalence : 

repeat a unti l  f3 {:=} { a 
h; .1 f3 d w 1 e not o a 
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3.5.8. Embedded loops 

Two embedded "for" loops can work minor miracles. Consider, for example, 
the loop 

for i : = I to a do 
for j := 1 to b do write ( i ,j) 

{ exte rna! loop } 
{ inte rna! loop } 

The body of the external loop "for i : =  1 to a do . . .  " is the internal loop 
"for j := 1 to b do . . .  " .  The external loop successively gives i the values 
1 ,  2 ,  . . .  , a. Each time that i takes a new value, the variable j sweeps out the 
integers in the interval [ 1 ,  b ] .  The result of these two loops is to write on the 
screen the pairs 

( 1 ,  1 )  ( 1 ,  2) ( 1 ,  b )  
(2 , 1 ) (2 , 2) (2 , b) 

(a , I )  (a , 2) (a , b) 

i n  the order in  which we read them. Mathematical ly, writing the couples ( i ,  j )  
one after the other defines a total order o n  the couples. I n  thi s  case, the order 
is the lexicof?raphic order. That is ,  one compares the first coordinates :  if they 
are different, the couple with the larger first coordinate is the larger; if they 
are equal , one compares the second coordinate . 

Remark 

One cannot measure the difficulty of an algorithm by the number of embedded 
loops that it contains because one can translate embedded loops into single 
loops. In the last example, observe that Eucl idean div ision sets up a bijection 
between integers n = bi + j E [0, a b - I ]  and couples (i, j) E [ 1 ,  a] x [ 1 ,  b] : 

for n : = 0 to a * b - I do begin 
i := n div b + 1 ; 
j : = n mod b + 1 ; 
write ( i ,j) 

end 

3.6. Which Loop to Choose? 

We need a loop any time that one deals with repetition of a given process. In 
order to select the right loop, keep in  mind the fol lowing: 

• Can the process be control led by an integral variable which runs  over an 
interval whose bounds are known in advance? If yes, use a "for" loop. 

• Is the process to be effected n 2: 0 times? If yes, use a "while" loop. 

• Is the process to be effected n 2': 1 t imes? If yes, use a "repeat" loop. 
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3.6.1 .  Choosing a for loop 

Is the vector x = (x 1 ,  . . •  , Xn ) zero? To answer, we examine x 1 , x2 , • . •  , Xn 
successively. This amounts to letting the index i run over the interval [ I ,  n D :  

place :=  - 1 ; place :=  - I ; 
for i : = I to n do for i : = n downto I do 

if x[i] =I- 0 then place :=  i if x[i] =I- 0 then place :=  i 

The variable place remains equal to - I  when the vector x is zero (because 
it is  necessary to take everything into consideration ! ) .  Otherwise i t  equals the 
largest index i such that Xi =I- 0 in the solution on the left, and the smallest 
such index in the right. 

3.6.2. Choosing a while loop 

Here are two examples which would be difficult to handle using a "for" loop: 

s := 0 ;  i := 0 ;  
while i * i * i + i < N do begin 

I s := s + i ;  
i :=  i + I  

end 

x := abs(a) ; y := abs(b) ; 
while (x > 0) and (y > 0) do 

if X :::0: y 
then x :=  x - y 
else y :=  y - x 

The loop on the left is controlled by an integer which runs over an interval 
whose upper l imit is not explicit ly known. In the loop on the right, the pair 
(x , y) controls the process. 

3.6.3. Choosing a repeat loop 

To pick an integer n between I and 1 0, one uses a " repeat " loop (because 
there is  at least one such) :  

repeat 
I readln (n) 
until ( I :::: n) and (n :::: 1 0) 

For beginners 

In a "for" loop, the control variable is incremented (or decremented) automat­
ical ly. By contrast, in a "repeat " or "while " loop, one needs a "motor". If 
you forget, you create an infinite loop . . .  

3.6.4. Inspecting entrances and exits 

Each time that you write a loop, stop and reread what you have written and 
try to mental ly execute the code. Careful ly inspect the entrance and exit to a 
loop, for these are the places where one most often goes astray. 
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Suppose that for some integer n > 1 ,  one wants to  execute a sequence of 
statements, 

process( ! ) ;  process(2) ; . . .  ; process(n ) .  

The best solution is ,  of course, the program 

for i : =  1 to n do process(i) 

and one scarcely needs to simulate this because of the s impl icity of the pro­
gram. 

Now, consider a solution which uses "while" loop. Beginners often write: 

while i < n do process(i) 

Let us try to enter the loop. We must compare i and n. But the value of i 
does not exist.4 Thus, the test wi l l  function in an unforseeable manner. Thus, 
we must initialize the variable i :  

i : =  1 ; while i < n do process(i) 

Now that the problem of entering the loop i s  settled, let us begin anew and 
try to execute this  new code. We leave i = 1 and are authorized to enter the 
body of the loop which has us effect process( 1 ) . After this ,  we return to the 
entrance of the loop with the same value i = 1 .  We have just detected an 
infinite loop ! 

The diagnosis is simple: the loop does not contain a "motor" .  

For the sake of demonstration, we correct this  in  an exceedingly clumsy 
manner. 

i : =  1 ; 
while i < n do begin 

I i := i + 1 ; 
process(i) 

end 

Let us begin again our mental execution of the code : we enter the loop with 
the value i = 1 (recall that n ::::, I ) . The variable i is immediately incremented, 
then we execute process(2) .  We detect our first fault :  we have forgotten to 
execute process( 1 )  and risk a crash if process(2) needs to be preceded by 
process( 1 ) . We return again to the entrance of the loop, increment i ,  then 
execute process(3 ) ,  etc . 

To test the exit of the loop, suppose that i has the value i = n - 1 .  This  
authorizes us to  re-enter the loop. The variable i takes the value n ,  we execute 
process(n ) ,  and then return to the entrance to the loop. But since the boolean 
expression i < n takes the value false, we leave the loop since we no longer 
have the right to enter. We exit the loop correctly. 

4 More precisely, the value exists, but it must be considered as aleatory - see the 
discussion on "l itter" in  Chapter 6. 
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This simulation shows that the initial ization of the variable i is incorrect. 
We should have written i := 0 or changed the placement of the motor and 
modified the test. 

i := 0 ;  
while i < n do begin 

I ��:c!s�(:) ; 
end 

Remark 

i :=  0 ;  
while i :S n do begin 

I process(i) ; 
i :=  i + I 

end 

It  is  quite legitimate to pass to a "repeat" loop here because the process is  done 
n :=:: I t imes. Passing from a "while" loop to a "repeat" loop is  mechanical : it 
suffices to take the negation of the entrance test to the first loop to obtain the 
exit test for the second loop: 

For beginners 

i :=  0 ;  
repeat 

I ��:c!s�(:) ; 
until i :=:: n 

i :=  I ; 
repeat 

I �roc�ss(i) ; 
t : =  t + I 

until i > n 

This painstaking inspection should become a reflex:  never dispense with it. 
You wil l  detect lots of faults of the sort found above: non-ini tial ized variables, 
incorrect in i tial ization, poorly chosen loops, missing motors . The minute that 
you "lose" in inspection wi l l  save hours of debugging. Your choice. 

3.6.5. Loops with accidents 

Let x [  I · · ·  n ]  be any sequence of integers . The code that fol lows was intended 
to answer to the question : is the number a in this sequence? 

for i := I to n do present :=  (a = x [i ] )  

Alas, the code is  faulty a s  the fol lowing counter-example shows:  x [ I ]  = I ,  
x [2] = 2, x [3 ]  = 3 and a = 2 .  The variable present successively takes the 
values false, true and false .  Here we must interrupt the "for" loop as soon as 
we detect the presence of the number a .  

Knowing that i t  i s  not possible to interrupt a "for" loop i n  standard Pascal 
(we refuse here to allow ourselves to take refuge in the modern statements 
"exit" or "break") ,  we first transform the loop into a while loop : 

i :=  I ; 
while i :S n do begin 

I present := (a = x[i] ) ; 
i : =  i + I  

end 
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We can now insert the boolean present in  the exit test to interrupt the loop 
at the appropriate moment. We also do not forget to initialize the boolean . 

i :=  1 ; present : = false ; 
while (i _::: n) and not present do begin 

I present := (a = x[i] ) ; 
i :=  i + 1 

end 

A number of loops wi l l  handle the general case in which a process is  ter­
minated by (one or more) specific cases. When the si tuation is sufficiently 
complicated, i t  is  preferable to use the general case; we wil l  introduce excep­
tions afterwards. 

3.6.6. Gaussian elimination 

Suppose that we want to implement the Gaussian e l imination algorithm on 
a square matrix of dimension n > 1 (perhaps we wish to invert the matrix 
or calculate its determinant) .  In order to do this ,  we successively process the 
columns I ,  . . .  , n. We deliberately stay at a relatively high level of general ity 
by not detai l ing what is  involved in processing a column. The constrain ts are : 

• if the current column is not zero, we process i t ;  

• if the current column is  zero, we halt (because we know that the matrix 
is not invertible or that its determinant is zero) .  

First Approximation. Let us go down the wrong road in  order that we may 
understand the right one. If the matrix is  invertible, the loop 

for k := I to n do process_column (k) 

does the job perfectly. However, this solution is  incorrect if the matrix i s  not 
invertible, because it does not respect the constraint "stop processing as soon 
as we encounter a column that i s  zero". 

Second Approximation. Thus, we must inquire before acting. To do this ,  sup­
pose that we introduce a boolean function zero_column which takes the value 
true when the current column i s  zero and modify the preceding loop. 

for k := I to n do begin 
if zero_column(k) 
then « interruption » 
else process_column(k) 

end 

Third Approximation. Since interrupting a "for" loop is  not al lowed in standard 
Pascal , we transform it to a "whi le" loop by i ntroducing a boolean which 
manages the interruption (and we don ' t  forget the motor ! ) .  
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k := 1 ; finish : = false ; 
while (k .::: n) and not finish do begin 

if zero_column(k) 
then finish := true 
else process_column(k) ; 
k :=  k + 1 

end 

Remarks 

I )  Another solution is  

k :=  1 ; finish : = false ; 
while not finish do begin 

if zero_column(k) or (k > n) 
then finish := true 
else process_column(k) ; 
k :=  k + 1 

end 

2) We could have used a "repeat" loop since we at least have to explore the 
first column, if only to determine whether it i s  zero and we have to interrupt 
the processing right away. 

k :=  0 ; finish : = false ; 
repeat 
k := k + 1 ;  
if zero_column(k) 
then finish := true 
else process_column(k) ; 

until (k 2: n) or finish 

For beginners 

k :=  0 ;  finish := false ; 
repeat 

if zero_column(k) 
then finish := true 
else process_column(k) ; 
k := k +  1 ;  

until (k > n) or finish 

To set up a delicate loop, proceed by successive approximations and ruthlessly 
criticize your own code. First set up the external shell of your loop, and then 
fi l l  in the body of the loop. 

k := 1 ; finish : = false ; 
while (k .::: n) not finish do begin 

I . . . +-- part to fill in eventually 
k := k +  1 

end 

3.6. 7. How to grab data 

Suppose that we want to write a program that repeats the following sequence 
a variable number of times: 
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• choose two integers a and b ;  
• process the data and display the results (for example, a curve that depends 

on the parameters a and b) .  
Suppose moreover that the modules for processing and displaying are rel i ­

able on ly  if a and b are both > 0. Thus we require that the program terminate 
as soon as one of the integers a or b is :::; 0. 

Here are two solutions typical of beginners . The solution on the left functions 
correctly. Nevertheless, repeating the statement "choose (a , b)" is  a blunder 
arising from the wrong choice of loop. 

choose(a, b) ; 
while (a > 0) and (b > 0) do begin 

repeat 

I choose (a , b) ; 
process(a, b) ; I process(a , b) ; 

choose (a, b) ; 
end 

until (a :::; 0) or (b :::; 0) 

The solution on the right, al though it does not have this defect, is  danger­
ous ! To leave the program, we could for example enter a = 0, b = -3 .  The 
program, however, performs processing with incorrect values of the parame­
ters : we risk an infinite loop or a crash. We might unwittingly provoke this 
catastrophe the moment the values are read.5 

After this avalanche of critic ism, our beginner decides to protect h im or 
herself with a test: 

repeat 

I choose(a , b) ; 
if (a :::_ 0) and (b :::_ 0) then process(a , b) 

unti l  (a :::; 0) or (b :::; 0) 

"This will work for sure !"  our beginner says. This i s  true, but the code 
has an esthetic defect :  when we want to stop, the program first evaluates the 
boolean expression " (a > 0) and (b > 0)", then its negation " (a :::; 0) or 
(b :::; 0)" which is  superfluous. Here are two more elegant solutions which use 
a boolean variable to control the loop: 

finished : = false ; 
repeat 
choose(a, b) ; 
if (a > 0) and (b > 0) 
then process(a, b) 
else finished := true 

until finished 

repeat 
choose(a, b) ; 
begin_again :=  (a > 0) and (b > 0) ; 
if begin_again then process(a,  b) 

until not begin_again 

This code is sti l l  not satisfatory because i t  is not ergonomic ! When we 
want to leave the program we first respond a = 0 when i t  prompts us. But 

5 Another proverb: "Even the first time, it i s  necessary to know how to protect one­
self .  . .  " 
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this does not stop it from asking subsequently for the value of b ( imagine the 
exasperation6 of a user who had to pointlessly enter the values of ten variables 
instead of two) .  It is  necessary to dissociate the prompt for a from that of b :  

finish : = false ; 
repeat 
choose(a) ; 
if a =  0 
then finish :=  true 
else begin 

I choose (b) ; 
if b = 0 then finish :=  true else process(a, b) 

end 
until finish 

Laziness on the part of the programmer is no excuse. Never forget that it is  
the program that must adapt to human beings. 

For beginners 

From this discussion, you should especial ly retain the two schemas 

finish : = false ; 
repeat repeat 

if condition begin_again :=  (boolean expression} ; 
then finish :=  true 
else . . .  until not begin_again 

until finish 

which you wil l  often have occasion to use. 

Exercise 2 

Imagine another solution using a procedure choose (a ,finish) .  

6 I sometimes fi n d  student complaints o n  exams such a s  "Too long ! Not enough time !"  
when they invoke a procedure such as choose(a , b ,  c, u ,  v ,  w)  which contains the 
same code six times in  succession. What is to stop them from defining a procedure 
choose(x ) with a single argument, then writ ing:  choose(a ) ;  . . .  ; choose(w)?  Let us 
make thi s  i nto a proverb : "You have forgotten a procedure if  you are writing the 
same code more than three times ! "  



Do you remember how you learned to write proofs? It took several years. 
First you were presented with simple models which you learned by heart, then 
imitated. These became more and more complex, until one day you discovered 
that you could do it on your own . 

This apprenticeship resembles the way an infant learns a language : he or 
she l istens, reproduces sounds, words, s imple sentences, changes a word here 
and there. The length and complexity of the sentences increase over time and 
the child winds up capable of coherent discourse . 

To learn to write a program, we wil l  fol low the same path : contemplate and 
understand simple models ,  learn them by heart, modify them l ightly, etc . First 
of all you wi l l  write l i ttle programs by copying then modifying 1 those given in 
the text or in other books .  S ince you have already undergone an apprenticeship 
in writing proofs, your progress wil l  be very rapid. 

You should, however, not be under any i l lusions. Writing algorithms i s  also 
difficult, often more difficult than writing proofs . A ten l ine algorithm can take 
many hours2 of effort. 

We wi l l  present and use three methods :  

• manipulation and enrichment of existing code (for example, transforming 
"for" loops into "while" loops);  

• use of recurrent sequences, which allow us to reduce to static thought 
when a problem becomes truly del icate ; 

• deferral of code writing, in order to deal with one difficulty at a time. 

As we shal l see in the examples that fol low, these three methods are not 
independent and tend to interact with one another. 

4.1 .  The Trace of an Algorithm 

To obtain the trace of an algorithm, you assign reasonable values to the inputs 
and "run it by hand". That is ,  you execute the statements one by one as a 

1 Recopying then reconstructing is a very effective way of learning by heart. 
2 We are talking here about serious algorithms - in practice, 90 % of programs cons ist 

of trivial algorithms.  

4. How to Create an Algorithm
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computer would do. Consider the algorithm 

min :=  1 + b div a ; max :=  (2 * b) div a ; 
for x1 :=  min to max do begin 

I a 1 := x 1 * a - b ; b 1 := b * x 1 ; 
if b 1 mod a 1 = 0 then x2 :=  b 1 div a 1  

end 

If a = 2 and b = 9, then min = 5, max = 9, which gives the trace: 

X ! a ! b l X2 
5 I 45 45 
6 3 54 1 8  
7 5 63 
8 7 72 
9 9 8 1  9 

The dash represents a value that has not changed. The layout on the page is  
important: present your calculations in  tabular form, as in  the example. 

For beginners 

This technique is the best way to fami l iarize yourself with the sequential 
thought foreign to most mathematicians who are more fami l iar with static 
thought. Do not kid yourself: step-by-step simulation of the functioning of a 
computer is of capital importance. Dedicate a number of hours to this activity 
and practice it systematical ly :  it wi l l  become second nature to you ! 

4.2. First Method: Recycling Known Code 

It often happens that a problem resembles one that has already been solved . 
Then, you can recycle old code. 

4.2. 1. Postage stamps 

Let I < a < b < c be three relatively prime integers that we imagine to be 
the price in cents of three postage stamps. One can show that there exists3 a 
threshold x = x (a , b ,  c) :S (a - 1 ) (c - 1 )  above which the equation 

ax + by + cz = n 

3 This result general izes to n stamps such that GCD(a � o . . .  , an ) = I .  When n = 2, it 
is easy to prove that the threshold is x (a , b) = (a - I ) (b - I ) . No formula is known 
for n ::=: 3,  but there are very effective algorithms for determin ing the threshold 
x (a 1 , • • •  , an ) . I f  we suppose that I < a 1 < · · · < an , one can prove the inequality 
x (a l · · · · · an ) .::: (a l - l ) (an - 1 ) . 
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admits at least4 one solution (x , y ,  z )  E N3 . I n  other words every amount 
n :::: x of postage is  realizable with our three stamps.  In contrast, we cannot 
supply the exact postage if n = x - 1 .  

When a = 5 ,  b = 6 and c = 1 6, the first real izable amounts are : 

X y z n X y z n X y z n 

1 0 0 5 1 2 0 1 7  5 0 0 25 
0 0 6 0 3 0 1 8  2 0 26 
2 0 0 1 0  4 0 0 20 27 

1 0 1 1  1 0 2 1  0 2 1 28 
0 2 0 1 2  0 22 4 0 29 
3 0 0 1 5  3 0 23 0 5 0 30 

0 0 1 6  0 4 0 24 3 0 3 1  

When no is real izable, so i s  n = no + ka for k :::: 0. As a result ,  
if n0 ,  n0 + 1 ,  . . .  , n0 + a - 1 are real izable, so is  every amount n ::::_ no . 
This remark, and an examination of the table above shows that we have 

X (5, 6 ,  1 6) = 20. 

4.2.2. How to determine whether a postage is realizable 

If x ,  y ,  z are solutions, we have 0 :':: x :':: nja and two similar inequal i ties 
involving y and z. Since our goal is  only to acquaint ourselves with the 
problem, we employ brute force and test al l  possible triples (x , y , z ) .  To do 
this,  we recycle three nested loops: 

realizable : = false ; 
for x :=  0 to n div a do 
for y : = 0 to n div b do 
for z :=  0 to n div c do 

if a * x + b * y + c * z = n 
then realizable :=  true 

This code functions very wel l ,  but there is no reason to continue to test other 
triples (x , y, z) after we have found a solution. This brings up the problem of 
interrupting a loop. We apply our method : that is ,  we replace "for" loops with 
"while" loops and put motors "x :=  x + 1 ", etc . at the head of the loops. 

4 Uniqueness is  of no interest because the equation under cons ideration always has 
solutions (x , y, z )  E Z' of which many will be :=:: 0 as soon as n i s  sufficiently large 
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realizable : =false ; x : = - 1 ; 
na :=  n div a ;  nb :=  n div b ; nc :=  n div c ;  
while not realizable and (x < na) do begin 

X := X + 1 ; y := - I  ; 
while not realizable and (y < nb) do begin 
y := y + I ; z := - I  ; 
while not realizable and (z < nc) do begin 

I z := z + I  ; 
if a * x + b * y + c * z = n then realizable :=  true 

end 
end 

end ; 
if realizable then writeln (x, y, z) 

(4. 1 )  

As long as realizable remains false, the three loops test the triples (x , y , z )  
in lex icographic order. When realizable becomes true for the first time, the 
three loops are interrupted one after the other without x ,  y, z changing value 
because the motors are at the head of the loops. Verifying the correctness of 
the result is then very easy. 

4.2.3. Calculating the threshold value 

It is clear that n < a is not real izable (recal l that a < b < c) . In order to 
find x .  we successively examine n = a , a +  1 ,  a +  2, . . .  and stop when we 
detect a consecutive real izable postages .  

realizable x x X X X X X X X X X X X X 

n 5 6 7 8 9 I 0 1 1  1 2  1 3  1 4  I 5 1 6  1 7  1 8  1 9  20 2 1  22 23 24 
num_succ 2 0 0 0 2 3 0 0 1 2 3 4 0 1 2 3 4 5 

Since we do not have any code to recycle, we experiment. A few tries wi l l  
show that generating the third l ine above wi l l  a l low us to determine x .  Cal l 
num_successive the value of an integer on the last l ine;  the value of the next 
integer on the same l ine is  calculated according to the rule: 

if realizable 
then num_successive :=  num_successive + 1 
else num_successive := 0 

(4.2) 

The entire l ine is  obtained by repeating this  operation; it  terminates when 
num_successive takes the value a .  It  is most natural to use a "repeat" loop 
here because the number of attempts is greater than or equal to a > I .  

n := a - I ; 
repeat 

I n ·= n + I · 
« ;alculate �um_successive » 

until num_successive = a 

(4. 3 )  
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It remains to assemble our fragments of code by inserting ( 4. 1 )  and ( 4.2) 
into (4. 3 )  to obtain the definitive code : 

n := a - I ; num_successive :=  0 ; 
repeat 
n :=  n + 1 ;  
« insert here the code ( 4. 1 )  which defines realizable » 
if realizable 

Remark 

then num_successive :=  num_successive + I 
else num_successive :=  0 

until num_successive 2: a ; 
X := n - a +  1 

We have just used two techn iques for rewriting code : 

• we have refined a trivial code ( three nested loops) and adapted it to our 
needs ;  

• we have assembled fragments of  code. 

Read careful ly the warning at the end of Section 4: i t  is  necessary to use the 
second technique with moderation to avoid writing incomprehensible code. 

Exercise 1 (Solution at the end of the chapter) 

A celebrated theorem of Lagrange states that any integer is a sum of four 
squares (Chapter 8) .  This result is best possible in the sense that there exist 
integers which are not a sum of three squares. Write an algorithm that finds 
integers n E [0, 2000] which are not sums of three squares. 

To verify the algorithm that you have just created, we avail ourselves of the 
fol lowing result . 

Theorem 4.2.1 (Gauss). An integer n is not a sum of three squares if and 
only if it is of the form n = 4k (8q + 7) .  

For example, here are the numbers :::: 3 1 1  which are not sums of three 
squares: 

7 1 5  23 28 3 1 39 47 55 60 63 
7 1  79 87 92 95 1 03 I l l  1 1 2 1 1 9 1 24 

1 27 1 35 1 43 1 5 1  1 56 1 59 1 67 1 75 1 83 1 88 

1 9 1  1 99 207 2 1 5  220 223 23 1 239 240 247 

252 255 263 27 1 279 284 287 295 303 3 1 1  

Let lE be the set of integers of the form n = 4k (8q + 7 ) .  How are we going to 
be able to write the elements :::: N of JE? Let S denote the ari thmetic sequence 
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{ 8q + 7, q ::::_ 0} and notice that 

lE = S U 4 lE (4.4) 

Put lEN =  lE n  [0, N] and apply (4.4) repeatedly to get 

lEN C JE = S U 4 S U 42 S U . . .  U 4n S U 4n+ I JE. (4.5 )  

Choose N = 2000. Since 45 = 1 024, we conclude from (4 .5 ) that a l l  integers 
in 45JE are greater than or equal to 45 x 7 = 7 1 68,  which gives the inclusion 

(4.6) 

Suppose that we have already l isted the first few elements of lEN .  Let xr denote 
the smallest number in 4t S which has not yet been l isted. The inclusion relation 
(4 .6) shows that the next number we should list is 

To easi ly find the value of x we retain the values of the auxi l iary variables 
x0 , x 1 , • • •  , x4 . When we write xe ,  we replace it by its successor xr + 8 · 4e 
in 4e S. Thus, the desired code is 

Xo :=  7 ; X 1 :=  4 * Xo ; X2 :=  4 * X 1 
X3 : =  4 * X2 ; X4 : =  4 * X3 ; 
repeat 
x := min (x0 , x1 , x2 , x3 , x4 ) ; write (x) ; 
if x = Xo then Xo : = Xo + 8 ; 
if X = x 1 then x 1 :=  x 1 + 32 ; 
if x = x2 then x2 : =  x2 + 1 28 ; 
if X =  x3 then x3 :=  x3 + 5 1 2  ; 
if X = x4 then x4 : = x4 + 2048 ; 

until x > 2000 

Exercise 2 (Solution at the end of the chapter) 
Let lE be the set of integers which are a sum of two squares. Using the cover 
of lEN = lE n [0, N] by the sets Ce = { £2 + x2 : x ::::_ k } ,  write an algorithm 
which l i sts the elements of lE in increasing order. Do the same with sums of 
cubes. 

4.3. Second Method: Using Sequences 

For a mathematician, the value of a variable is immutable. In contrast, the 
variables in a program often change value during its execution . Imagine a 

program that calculates J0
1 f (x ) dx by dividing the interval [0, I ]  into I 03 

subinterval s .  Then the variable x would take a thousand values, and it is  
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inconceivable to tie up a thousand places in memory for a single variable. It is 
for this reason that a variable x in  a program represents an adddress in the 
memory of the computer, the value of x corresponds to the contents of this 
address (we wil l  return to this in Chapter 6) .  Thus the variable x is a dynamic 
object which we cannot manipulate as we would in a proof, where everything 
is  static. Happily, one can reconcile mathematics and computer science very 
simply by introducing time.5 If we let x1 denote the contents of the variable 
x at the instant t, then we obtain a number which does not change. From this 
point of view, we can associate to each variable x in a program the sequence 
(x1 ) of succcessive values6 taken by x :  

identifier x in a program ;:::::! mathematical sequence (x1 ) 

An algorithm carries out a sequence of operations and stops when it reads 
the final result . As a result, to write an algorithm, most of the time it suffices 
to ask yourself what are the sequences whose last term must be calculated. It 
happens, but very rarely, that the desired solution consists in calculating all 
terms in a sequence. In good cases (the ones that we can handle . . .  ) ,  the value 
of a sequence at instant t + 1 can be obtained relatively simply from the value 
at the instant t (if not, one does not have an algori thm).  In other words, we 
can write a first order recurrence relation 

(4.7 )  

Once we have the recurrence, the algorithm is not  much further. It suffices 
to replace (4.7 )  by the assignment: 

x := f (x ) (4. 8 ) 

Example 

Let n be an integer :::: 1 and suppose that we want to calculate the sum 

n 
S = _L u ; . 

i = l 

Here the notation means that S is the last term of the recurrent sequence: 

Su = O, S 1 = So + u 1 , S2 = S1 + u2 , . . .  , Sn = Sn- l + un . 

We begin by replacing the three dots (which are the rustic loops that math­
ematicians use) by a "for" loop { So :=  0 ;  

for i := 1 to n do S; : = 5; _ 1 + u; 
(4.9) 

5 Time here is  not clock time, but conceptual t ime resulting from mental subdiv ision 
of the task. 

6 This is  the idea of a stroboscope. 
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Note that we are sti l l  deal ing with mathematics here;  we have only improved 
the presentation of the sequence (S; )  by using the more precise language 
borrowed from computer science. 

To transform (4.9) into an algorithm, we can consider S; as the contents of 
the memory S at the instant i .  Having made this choice, we suppress the time 
index i ,  which automatically gives us the algorithm: 

S :=  0 ; for i := 1 to n do S := S + u[i] (4. 1 0) 

The last value of S contains the desired sum. 

Remark 

We cannot suppress the index i in the u; because u 1 , • • •  , un are not the succes­
sive contents of the variable u, but the data that exi sted before our fantasizing 
about time. 

4.3.1. Creation of a simple algorithm 

The underlying idea is very simple: 

Build up to the algorithm by starting with the trace that you imagine. 
In other words, you need to know the algorithm that you are looking for. 

This seems paradoxical , but experience shows that this method succeeds 
very often . Proceed in steps:  

1 )  Try to obtain the result you want using a sequence of calculations. Do not 
be preoccupied by rigor, but let your imagination roam. Experiment with 
simple, but not stupid, examples. Present your calculations in tabular 
form, as if it were a trace. 

2) When you are sufficiently at ease with your "recipe", systematize the 
methods by becoming a mathematician . That is, introduce sequences 
and indexes. Precisely define the objects that you are manipulating (this 
helps comprehension enormously) .  Do not yet introduce loops because 
one can only do one thing well at a time;7 content yourself instead with 
the three dots " . . .  " of the mathematician. Try to handle the general 
case. The introduction of indices wi l l  usual ly result in one or more first 
order recurrences. 

3 )  When you are at ease with the mathematical description, refine and re­
place the mathematician 's  three dots " . . .  " by the appropriate loops. 
Note that you are sti l l  in the realm of mathematics, but it i s  expressed 
in a more modem language. 

7 One should not climb stairs while chewing gum. 



4.3 .  Second Method : Using Sequences 67 

4) Choose a time index in  each recurrence; replace the recurrence x; + 1 = 
f(x; ) by the assignment x : =  f (x ) and replace equal ities that are not 
tests by assignments. 

5 )  Check the algori thm obtained by executing several traces. Eventual ly 
you wi l l  want to prove it .  (The technique wil l  be presented at the end of 
the chapter. ) 

4.3.2. The exponential series 

Let x be a real number and N 2: 0 an integer. We want to calculate 

N xk 
SN (x ) = L - · 

k=O k !  

As we have already remarked, the number SN i s  the last term of the recurrent 
sequence: 

S ince we can ' t  type xk and k !  directly into our program, we name the 
objects that inconven ience us by introducing the auxi l iary sequences Pk = xk 

and Fk = k !  and then transform them into recurrent sequences :  

Po = 1 ,  Pk = x * Pk- 1 ; Fo = I , Fk = k * Fk- 1 . 

We now present the calculation of S N (x ) as a trace: 

Po = I 
P1 = x * Po 
P2 = x * P1 

Fo = I  
F1 = I * F0 
F1 = 2 * F1 

50 = 1 
s l = So +  PI I Fl 
S2 = S1 + P2/ Fz 

We can condense this trace using a "for" loop (this description remains 
correct when N is  zero) :  

Po :=  I ; Fo := 1 ; So := I 
for k := 1 to N do begin 
pk = X *  pk- 1 ; 
Fk = k * Fk- 1 ; 
Sk = Sk- I + Pk fFk 

end 

(4. 1 1 ) 

Note that we are sti l l  in the domain of mathematics :  ( 4. 1 1 ) is nothing but a 
more modern preentation of ( 4. 1 0) .  
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Now, let the index k be the time in ( 4. 1 1  ) .  If we suppress it and replace the 
equal ities by assignments, we obtain without effort the algorithm 

Remark 

P :=  1 ; F :=  1 ; S :=  1 ; 
for k := 1 to N do begin 
I P = x * P ; F = k * F ;  S = S + PIF 
end 

The in i tial ization is  delicate. If you start from the table :  

So = 1 
S 1 = So + P1 I F1 

s2 = s1 + P2I F2 

PI = X  
p2 = X *  PI 
p3 = X * P2 

F1 = I  
F1 = 2 * F1 
F3 = 3 * F2 

you wind up with a much clumsier algorithm because you are obl iged to repeat 
the statement "S := S + PI F" outside the loop 

s := 1 ; p := X ; F := 1 ; 
for k := 1 to N - 1 do begin 
I S = S + PIF ; P = x * P ; F = k * F ;  
end ; 
S = S + PIF 

Think of this each time that you encounter a schema l ike that on the right; 
choose the one on the left instead. 

Good temporal breaks Bad temporal breaks 

( l  2) (3 4) (5 6) (7 8) (9 1 0) ( I ) (2 3 )  (4 5 )  (6 7) (8 9) ( 1 0) 

Exercise 3 

• Improve thi s  algorithm by supposing that x = alb is a rational number. 
The result SN = NumNI DenN must be a rational number (that is ,  a pair of 
integers) .  

• Write an algorithm which calculates the sum 

using first order recurrences for the sequences C) and x ; . 
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• The Bernoul l i  numbers (Bn )n :o:_ l are defined as fol lows: 

I I n - l 2n + 1 
Bn = - [n - - - L ( . ) s; ] 2n + I 2 i = l 2t 
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if n :::_ 2 .  

Write an  algorithm which calculates the first N such numbers, the calcu­
lations taking place over the field of rational numbers . (The first Bernoul l i  
numbers are B1 = i · B2 = - io · B3 = 'i2 · B4 = - io · Bs = � · ) 

4.3.3. Decomposition into prime factors 

Let n > 1 be a given number. To decompose n into prime factors, we al l know 
the fol lowing method : look for a prime div isor, divide, then begin again with 
the quotient. When n = 60,900, th is  gives 

60,900 2 
30,450 2 
1 5 ,225 3 
5 ,075 5 

1 ,0 1 5  5 
203 7 
29 29 

*- stop 

We enrich this presentation by passing to trace mode ; that is ,  by introducing 
identifiers and indices ( the exchange of the columns n and d i s  to faci l i tate 
presentation of the algorithm). 

no = 60,900 d4 = 5 n4 = 1 , 0 1 5  
dl = 2 n 1 = 30,450 ds = 5 ns = 203 
d2 = 2 n2 = 1 5 , 225 d6 = 7 n6 = 29 
d, = 3 n3 = 5 , 075 d? = 29 n7 = 1 *- stop 

Now that we have sequences, we wri te down first order recurrences which 
indicate how to pass from one line to the next. 

• This i s  s imple for the sequence (n ; )  because n; = n ;  _ 1 / d; .  
• In contrast, we cannot find a recurrence relation8 for the sequence (d; ) . In 

order to get around this  obstacle, two solutions present themselves. 

The first consists in  supposing that we have access to an array p[ 1 . .  N] 
which contains the sequence of prime numbers : p[ 1 ]  = 2, p [2] = 3, 
p[3] = 5, . . . .  This  "static" solution, which beginners often propose, is  not 
very appetizing because it raises more problems than it solves: which value 
should we give N? how should we fill out our table? how should we choose 
the next prime divisor (that is, how can we choose the index k; in the formula 
d; = p [k; ] ) ?  

8 If  you could, you would become a s  famous a s  Eucl id because letting n b e  the product 
of the N first prime numbers would then give a recurrence for prime numbers. 
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S ince we can ' t  advance further, we turn to the proverb "tomorrow things wil l  
be better, . . .  " ,  and avoid solving the problem right away which is  easi ly done 
by giving a name to the smal lest div isor which we do not know. In fact, we 
already have a name since we have seen in Chapter 2 that the LD(n ) = { least 
divisor > 1 of n }  is  always a prime number. Let us again resume our trace: 

n0 = given integer > I ; 
d 1 = LD(no) ;  n 1 = no/d1 ; 
d2 = LD(n 1 ) ;  n2 = n 1 /d2 ; 

dk = LD(nk - J ) ;  nk = nk- 1 /dk ; 
stop because nk = I . 

The three dots indicate the presence of a loop? Which type? The index of 
d, is tempting because it takes the values I ,  2, 3 ,  . . . .  But since do not know 
the value of k in advance, we cannot use a "for" loop. Knowing that we must 
always seek at least once the LD of n, (if only to learn whether n i s  prime), 
we settle on a "repeat" loop: 

n0 : =  given integer > 1 ; t : =  1 ; 
repeat 
d, := LD(n, _ 1 ) ; write (d, ) ; 
n, : =  n, _ 1 div d, ; 
t : =  t + 1 

until n, = 1 

n : =  given integer > I ; 
repeat 

I d := LD(n) ; write (d) ; 
n : =  n div d 

until n = I 

The left is a mathematical description of the sequences (n, ) and (d, ) which 
manages the time index t "by hand" using the motor "t := t + 1 " .  The index t 
and the useless statement "t : =  t + 1 "  drop out on the right when we pass to 
the algorithm by suppressing time. 

Exercise 4 

Improve this  algorithm to take account of repeated prime factors : if p3 di­
vides n, i t  is  stupid to call the function LD three times in a row. 

Exercise 5 

Let n = p� ' · · · p;' be the decomposition of n into prime factors. Modify the 
algorithm so that it stores the prime divisors and their exponents as vectors 
p [ l  . .  N] and a [ l  . .  N ] .  
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4.3.4. The least divisor function 

We briefly sketch how to calculate the value of the least d iv isor function. 
Suppose, for example, that we want to find the LD of 323 .  For lack of other 
ideas, we divide n = 323 by 2, 3, 4, . . .  until we get a divisor. To determine 
if d divides n, we turn natural ly  to the remainder r = n mod d which gives 
the two l ines: 

d 2 3 4 5 6 7 8 9 1 0  1 1  1 2 1 3 1 4  1 5  1 6  1 7  

r I 2 3 3 5 1 3 8 3 4 1 1 1 1 1 8 3 0 

Naming the two sequences, we have : 

dl = 2 dz = 3 d3 = 4 d4 = 5 . . .  d1 6 = 1 7 

r l = 1 r2 = 2 r3 = 3 r4 = 3 . . .  r 1 6 = 0 

Having arrived at this stage, the temptation not to seek a recurrence relation 
is enormous because we have : 

d; = i + I and r; = n mod d; . 

But this  strategy leads to a dead end because this option gives rise to the 
fol lowing incomplete code 

for d := 2 to ??? do r := n mod d 
On the other hand, if we introduce the recurrence d; : =  d; _ 1 + 1 ,  we immedi­
ately obtain an expl icit  loop which we polish sl ightly 

Remark 

d : =  1 ; 
repeat 

I d := d + 1 ; 
r : =  n mod d 

until r = 0 

d : =  1 ;  
repeat 
1 d := d + 1 
until n mod d = 0 

In Chapter 8 we present some more sophisticated algorithms for calculating 
this vital ari thmetic function . 

4.3.5. Cardinality of an intersection 

Let a 1 < a2 < · · · < an and b 1 < b2 < · · · < bm be two strictly increasing 
sequences of integers. We want to find the number of integers common to both 
sets ; that is, the cardinality of the set { a 1 , • • •  , an } n { b 1 , • • •  , bm } . 

Consider the particular case of the sequences 2 ,  3 ,  5 ,  9 and 3 ,  4, 5 ,  8 , 9, 1 0 . 



72 4. How to Create an Algorithm 

a 
b 

num 

1 2 3 5 9 
3 4 5 8 9 1 0 
1 2 3 

We compare a 1 = 2 and b 1 = 3 .  Since a 1 < b 1 , we know that our inter­
section is equal to { 3 ,  5 ,  9} n { 3 ,  4, 5 ,  8, 9, 1 0 } .  We now compare a2 = 3 and 
b 1 = 3 .  This reduces the problem to calculating the cardinal i ty of the set 
{ 5 ,  9} n {4 , 5 ,  8, 9, 1 0 } .  We stop when we compare an and bm . The variable 
num contains the number of common elements that we have found. 

t = 1 a 1 = 2 b J = 3 num1 = 0 
t = 2 a2 = 3 b J = 3 num2 = I  
t = 3 a3 = 5 b2 = 4 num3 = I  
t = 4 a3 = 5 b3 = 5 num4 = 2 (4. 1 2) 
t = 5  a4 = 9 b4 = 8 nums = 2 
t = 6  a4 = 9 b5 = 9 num6 = 3 
t = 7  a4 = 9 b6 = 1 0  num7 = 3 

When we examine the table ( 4. 1 2  ), we see that row t does not contain 
at , bt and numt , but rather the sequences ai, , b j, and numt whose indices are 
themselves sequences (this phenomenon is very frequent) . Once the the biggest 
obstacle is  overcome (by introducing the auxi l iary sequences it and it ) , the 
passage from one line to the next i s  chi ld 's  play :  

i f  ai, = b j, then begin 
I it+ l  = it +  1 ; it+ J = it + 1 ; numt+ J = numt + I  
end 
else if ai, < b j, then begin 

S (t ) = I it + I = it +  1 ; it + J = it ; numt+ J = numt 
end 
else begin 
I it + l  = it ; it + J = it + I ; numt+ J = numt 
end 

The first order recurrences require in it ial conditions :  

S ince we stop as soon as  it > n or it > m ,  we can condense ( 4. 1 2) as: 

I i 1 = 1 ; }1 = I ;  num 1 = 0; 
S ( l ) ;  S (2) ; . . .  ; S (t ) ; 
stop as soon as it > n or it > m 

(4. 1 3 ) 

(4. 1 4) 
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Now we refine the above by introducing a loop. Since we do not know the 
last value of k in advance and since it is  always necessary to make at least 
one comparison , we choose a "repeat" loop. 

i 1 : = I ; j 1 : = I ; num 1 : = 0 ; t : = 1 ; 
repeat 

I S(t) ; 
t : =  t + 1 

until (i, > n) or (j, > m) 
Substituting (4. 1 3 ) into (4. 1 5 )  gives 

i 1 : = I ; j 1 := 1 ; num 1 := 0 ; t := 1 ; 
repeat 
if a;1 = b j1 then 
begin ir+ l  = i, + I ; jr + l  = j, + 1 ; numr+ l  = num, + 1 end 
else if a;1 < bj1 then 
begin ir+ l  = i, + I  ; j, + 1 = j, ; numr+ l  = num, end 
else 
begin ir + l  = i, ; j, + 1 = j, + I numr+ l  = num, end ; 
t : =  t +  I 

until (i, > n) or (j, > m) 

( 4. 1 5 )  

We suppress the indices t and t + 1 and replace the equality signs which 
are not tests by assignments: 

i := I ; j := I ; num := 0 ; 
repeat 
if a [i] = bUJ then begin i : =  i + 1 ; j : =  j + 1 ; num : =  num + I end 
else if a [i] < bUl then begin i : =  i + 1 ; j := j ; num : =  num end 
else begin i : =  i ;  j : = j  + I ; num : =  num end ; 
t : = t + 1 

until (i > n) or (j > m) 
In thi s  draft, we see that there are superfluous statements such as num : =  

num . We suppress them together with the now superfluous "begin end" blocks 
they had necessi tated. After tidying up a l i ttle, the final algorithm is  then : 

i :=  I ; j : =  I ; num :=  0 ; 
repeat 
if a[i] = bUl 
then begin i := i + I j : =  j + I num : =  num + I end 
else if a[i] < bUJ 

then i := i + I 
else j := j + I ; 

until ( i > n) or (j > m) 
When the algorithm terminates, the value of the variable num is the cardi­

nal i ty of the intersection. 
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4.3.6. The CORDIC Algorithm 
The CORDIC (COordinate Rotation on a Digital Computer) algorithm was 
published in 1 959 by J. Voider. 

We want to compute the value of the function tan a of an prescribed angle 
a E ] 0, �rr [. The starting idea is simple : suppose that we have a sequence 

of progressively finer approximations of a. The continuity of the tangent func­
tion implies that tan a 1 , tan a2 , tan a3 , • • •  are better and better approximations 
to tan a. It suffices to express a1+ 1  using a, and rr1+1  to have first order recur­
rences appear. But how can we find the approximations a, ? 

How to "weigh " a real number. To weigh an object using a scale with two 
platforms, we put the object to be weighed on one platform, the left, say, and 
add weights on the right, beginning with the heavier ones. The platform on 
the right remains lower that the one on the right - it is only at the very end 
that the two platforms come into equil ibrium. 

Fig. 4.1. 

We suppose that we have a decreasing sequence (rr, ), �o of weights tending 
zero.  We suppose, moreover, that for each integer n,  we have as many weights 
in the category rr, as we desire. Imagine, now, a weighing in which we suc­
cessively put the weights rro, rr0 ,  rr � o  rr2 ,  rr2 , rr2 on the right hand platform: 

a 1 = rro 

a2 = rro + rro 

a3 = rro + rro + rr 1  

a4 = rro + rro + rr1  + rr2 

a5 = rro + rro + rr1 + rr2 + rr2 

a6 = rro + rro + rr 1 + rr2 + rr2 + rr2 

At the instant t, we put a weight on the right hand platform if it does 
not make the platform descend ;  otherwise, we simply change the category of 
weights. If we deem that each of these two actions is performed in a unit of 
time, we will have introduced two sequences : 
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• The sequence (a, ) represents the sum of the weights found on the right 
hand platform at the instant t. This i s  an increasing sequence whose value 
necessari ly approaches a .  

• The second sequence i s  more subtle :  a t  a n  instant t ,  w e  d o  not necessari ly 
put the weight rr ,  on the right hand platform. Thus it is necessary to introduce 
the sequence (k, ) of indices of the weights Irk, placed on the platform at time t .  

These sequences specify the table above and oblige u s  t o  renumber the a 's :  

ko = 0 a0 = 0 
t = l k 1 = ko a 1 = ao + Irk , 
t = 2 k2 = k l a2 = a 1 + 7rk2 
t = 3 k3 = k2 + I a, = a2 
t = 4 k4 = k, a4 = a3 + 7rk4 
t = 5 ks = k4 + I  as = a4 
t = 6 k6 = ks a6 = as +  7rk6 
t = 7 k7 = ks a7 = a6 + Irk, 
t = 8 ks = ks as = a7 + Irk, 

We now seek to understand how to pass from one l ine to the next: 

• If a - a, :::_ Irk, , at instant t + I we place the weight Irk, on the right hand 
platform, so that : 

• If a - a, < Irk, , we change the category of weights at the instant t + I 
and, as agreed, put nothing on the right hand platform: 

To simpl ify, we put: 

at+ l = a, , kr + l = k, + 1 . 

I if a - a, :::_ Irk, 
S(t )  = then be�in a,+ I = a, + Irk, ; kr + l = k, end 

else begm ar+ l = a, ; kr+ l = k, + 1 end 

The weighing terminates when the approximation t i s  sufficiently good, by 
which we mean that a - a, < E, where E > 0 i s  given in advance. Thus, we 
can write our weighing succinctly as: 

ao := 0 ; ko := 0 ; 
S(O) ; S( l ) ; . . .  ; S(t) (4. 1 6) 
stop when a - a, < E 

Knowing that we have to place at least one weight on the right hand platform 
and that we do not know in advance the length of the weighing, we choose a 
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"repeat" loop to replace the three dots in ( 4. 1 9) .  As in the preceeding example, 
we are obl iged to explicitly introduce t ime because a loop of this type needs 
a motor: 

ao := 0 ; k0 := 0 ; t := 0 ; 
repeat 

I S(t} ; 
t : =  t + 1 

until a - at < E 

(4. 1 7) 

We emphasize once more : we are sti l l  in the domain of mathematics, but 
profiting from a more precise language. 

Now let us tum to the calculation of the tan k .  The equality at + l = at +  Irk, 
shows that 

tan at + tan Irk, tan at+  1 = ---------'--
1 - tan at · tan nk, 

If we use this formula, we must perform a div ision each time that t changes 
value. Since d iv ision is  a long and complicated operation, Voider suggested 
calculating the numerator and denominator of tan t separately, thereby making 
do with a single d iv ision at the end of the loop. In addition, Voider proposed 
choosing9 weights 

Put 

S ince 

nk = Arctan w-k . 

Numt 
tan at = -- , 

Dent 

I 
tan nk = - · 

J Ok 

Numt + Dent * I o-k, 
tan at + l  = , 

Dent - Numt * I O-k, 
we can choose the recurrences 

Remarks 

{ Numt+ I � Numt + Dent * I o
-
-
k
� t '  

Dent + !  - Dent - Numt * 1 0  . 
(4. 1 8) 

• For reasons of numerical stabi l i ty, it is preferable to use multipl ication by 
I o-k, rather than multiplication by I Ok, . 

• The reason for choosing Irk = Arctg w-k is c lear: one passes from Numt 
to Numt + l  by adding to Numt a number obtained from Dent by a truncation 
which supresses the last k digits ,  an instantaneous operation on a computer. 

9 In binary, one clearly should choose the weights n, = Arctan 2-k . 
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• In the era when Voider created the CORDIC algorithm, memory was 
expensive. S ince the difference between nk = Arctg w-k and w-k rapidly 
becomes negligible, one can store the first few nk in memory and replace the 
rest by 1 o-k at the price of lengthen ing the code with several tests. 

If we incorporate ( 4. 1 9) into the loop ( 4. 1 8) we obtain the fol lowing math­
ematical description of the weighing algori thm: 

a0 = 0 ; k0 = 0 ; t := 0 ; Num0 = 0 ; Den0 = I ; 
repeat 
if a - a, ::: nk, 
then begin 
at+ ! = a, +  7Tk, ; kr+ l = k, ; 
Num,+ I = Num, + Den, * 1 o-k, ; 
Den, + I = Den, - Num, * 1 0-k, 

end 
else begin 
ar+ l = a, ; kr + l = k, + 1 end ; 
t :=  t + I 

until a - a, < E: 

Having arrived at this stage, we see that it is preferable to replace t by 
f3 = t ,  which represents what remains to weigh . 

We abandon mathematics by supressing the t and t + 1 in the indices, and 
by replacing the equal ities by assignments. But it is  necessary to be prudent 
and retain the value of Num, (by introduction of an auxi l iary variable temp) 
because we need this number to calculate Den,+ I : 

f3 := a ; k :=  0 ; Num :=  0 ; Den :=  1 ; 
repeat 
if f3 ::: nk then begin 
f3 := f3 - T{k ; k := k ; 
temp : =  Num ; 
Num = Num + Den * 1 0-k ; 
Den :=  Den - temp * w-k 

end 
else begin f3 := f3 ; k := k + I end 

until f3 < E: ; 
{ one has tan a :::::: NumjDen at the end of the loop } 

This code contains the superfluous statements k := k and f3 := {3 ,  which we 
suppress. The definit ive CORDIC algorithm is then:  

f3 := a ; k := 0 ; Num : =  0 ; Den :=  1 ; 
repeat 

I if f3 ::: 7Tk then begin 
I f3 := f3 - nk : 
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temp :=  Num ; 
Num = Num + Den * 1 0 -k ; 
Den :=  Den - temp * I o-k 

end 
else k := k + 1 

until f3 < E ; 

4. How to Create an Algorithm 

{one has tan a ::::::: NumjDen at the end of the loop } 

Remark 

Thi s  algorithm has been enthusiastical ly studied since its creation ; improve­
ments of i t  were sti l l  being publ ished in 1 994 ! It has been general i sed to al l 
elementary functions. For more information, see J . -M . Mul ler, Arithmetique 
des ordinateurs, Masson, 1 989. 

4.4. Third Method: Defered Writing 

An algorithm is often an assemblage of delicate elementary algori thms car­
ried out with the aid of sequences. But when an algorithm contains many 
loops, i t  becomes very difficult to assemble all the sequences and recurrences. 
Let us try, for example, to calculate the number of divi sors of an integer 
n = p�' p�2 • • •  p�' > 1 with the aid of the formula 

d (n) = (a 1 + 1 ) (a2 + I ) · · ·  (ak + 1 ) . 

If we employ the factorization algorithm that we have detai led, we obtain the 
array in Table 4. 1 .  This array is very complex because we see two different 
calculations superimposed, each with their own rythm:  

• the calculation of the div isors Pi ; 

• for each Pi , the calculation of the corresponding exponent i .  
We draw the fol lowing lesson from this example: one does not contem­

plate a landscape (algorithm) with a microscope (a sequence). In other words, 
we should avoid nesti ng one sequence inside another. To do this, we mask 
undesirable sequences by sentences that we subsequently transform into code. 

It fol lows that developing a complex algori thm i s  l ike peeling an onion: 
we take care of the external layer ( the first loop) by introducing a sequence 
if necessary. The other loops (if there are any) are masked by sentences. 

We then make preci se the sentences or statements which remain fol low­
ing the same method and taking care to never introduce more than one loop 
at a t ime. 

An attentive reader wi l l  have noticed that we already used this technique 
without explicit ly cal l i ng attention to i t  when we grafted the caluclation of the 
tangent into the weighing algorithm to end the CORDIC algorithm. 
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n0 = prescribed integer > 1 do = 1 

P 1 = LD(no ) n 1 = no/ P I  1 

P I  = LD(n 1 )  n 2 = n 1 /P 1 2 

P I = LD(nu , - 1 )  na ,  = na , - 1 / P I  a l 

P2 = LD(na , ) na , + l  = na , /P2 I d1 = (a 1 + 1 )do 
P2 = LD(na , + l ) na , +2 = na , + l  / P2 2 

P2 = LD(na , +a, - 1 )  na i +a2 = na , +a2 - 1 /P2 a2 
P3 = LD(na 1 w2 ) na , +a,+ l  = na , +a2 / P3 I d2 = (a2 + I M 

P3 = LD(na , +a, + l ) na ,  +a, +2 = na ,  +a,+ I I P3 2 

P3 = LD(na , +u2 +u 1 - l ) na l +a2 +a� = na 1 +a2 +a1 - 1 / P3 a3 

P4 = LD(na , +a2+a -3 ) na , +a,+a1 + 1 = na , +a,+a1 / P4 I d3 = (a3 + 1 )d2 

Table 4. 1 .  Trace of the calculation of d(n) .  

Let us put  th is  advice into practice by calculating d (n ) .  
• We put in  place the external loop by recycl ing the factorization algorithm 

which we know well by now: 

n := prescribed integer > 1 ; d := 1 
repeat 
p := LD(n) ; 
« calculate a and n :=  n/ pa knowing p » ; 
d : =  d * ( I + a ) 

until n = 1 
• We develop the internal loop to "calculate a and n :=  nj pa knowing p" :  

a := 0 ;  
while n mod p = 0 do begin 
I a := a + 1 ; n := n div p 
end 

• We nest the two loops to obtain the definit ive version:  

n := prescribed integer > I ; d := I ; 
repeat 
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p :=  LD(n) ; 
a := 0 ;  

4. How to Create an Algorithm 

while n mod p = 0 do begin 

I a := a +  1 ;  
n := n div p 

end ; 
d :=  d * ( l  + a) 

until n = I 

4.4.1. Calculating two bizarre functions 

Let n = p� ' · · · p�' be the decomposition of n > I into prime factors. Put 

{ 
0
7r l + · · · + Jre 

l a l = 

{ 
O

A J 7T J + · · · + A.ene 
l l a l l  = 

" f  A J Ar I I a =  Jr l . . . 7Te > , 
if a =  I ;  

if a = n t ' · · · n;' > I ,  

if a = I .  

The values I l l  = I I l i i = 0 are not gratui tous :  they are the result of general 
conventions regarding "empty" sums. So, for example, we have: 

1 6 1 = 2 + 3 = 5 ,  
1 1 6 1 1  = 2 + 3 = 5 , 

1 72 1 = 1 23 X 32 1 = 2 + 3 = 5 ;  

1 1 72 1 1  = 1 1 23 X 32 1 1  = 2 + 2 + 2 + 3 + 3 = 1 4. 

We wish to calulate the functions 

\IJ (n) = n ( 1  + Ia; ! ) and A (n )  = n ( 1  + l l a; I I ) .  
Here are some values: 

n \11 (n ) A (n )  
58320 = 24 X 36 X 5 1 8 30 
67500 = 22 X 33 X 54 36 60 
600000 = 26 X 3 X 55 36 36 
8890560 = 26 X 34 X 5 X 73 72 1 20 

Consider first the computation of the function \11 . We first set up the main 
loop, masking the most difficult parts (that i s ,  the other loops) with sentences: 
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Ill : =  1 ;  
while n > 1 do begin 
p := LD(n) ; 
« calculate a and n : = n / p"' knowing p » ; 
« calculate S : =  I a  I knowing p » ; 
Ill : =  ( 1 + S) * Ill 

end 

8 1  

• The prime factor p being chosen, the calculation of the exponent a and 
the division of n by p"' are easy to wri te: 

a := 0 ;  
while n mod p = 0 do begin 
p := LD(n) ; 
n :=  n div p ;  
a : = a +  1 

end 

• The calculation of S = Ia I i s  added natural ly to the interior of the decom­
position of a into prime factors. S ince we know a prime div isor p of a, we 
add a to S and then "purge" a from its prime factor: 

S := O ; 
while a > 1 do begin 
p := LD(a ) ; 
S : =  S + p ; 
repeat a :=  a div p until a mod p > 0 

end 

It remains to assemble the fragments of the code. The final code (Figure 4.2) 
contains four loops. If we replace the calculation of S = I a  I by the simpler 
calculation of T =  l l a l l  we obtain code which calculates A (n ) .  

4.4.2. Storage of the first N prime numbers 

This last example is  rather difficult .  We do not, as a result ,  recommend it for 
beginners ; wait unti l  you are at ease before beginning ! Suppose that we know 
that 

P I = 2 , P2 = 3 , P3 = 5 ,  P4 = 7 . 
We want to store the first N :::: 4 prime numbers in an array : we search 

through the odd integers beginning with 9. To determine if n is prime, we 
divide it by odd prime numbers smal ler than ,Jli. If n i s  d iv i sible by none of 
the numbers, we know that it is prime and store it. Otherwise, we end the tests 
and move to the next odd integer (see the trace of this algorithm in Figure 4.3 ) . 



82 4. How to Create an Algorithm 

\II := I ; A := I ;  
while n > I do begin 
p := LD(n) ; a := 0 ; 
while n mod p = 0 do begin 
p := LD(n) ; 
n :=  n div p ;  
a := a + I 

end ; 
s : = 0 ;  
while a > I do begin 

I p := LD(a ) ; S := S + p ; 
repeat a := a div p until a mod p > 0 

end ; 
\II := ( I + S) * \II 

end 

Calculation of \II (n )  
Fig. 4.2. 

while n > I do begin 
p := LD(n) ; a := 0 ; 
while n mod p = 0 do begin 
p := LD(n) ; 
n := n div p ; 
a := a +  I 

end ; 
T := O ;  
while a > I do begin 

I p := LD(a) ; T := T + p 
a := a div p ;  

end ; 
A := ( I +  T) * A  

end 

Calculation of A (n )  

• The first draft of  our algorithm is  very natural : 

p[ l ]  = 2 ;  p[2] = 3 ;  p[3 ]  = 5 ; p [4] = 7 ;  n : =  7 ; 
for £ := 5 to N do begin 

I « n := the smallest prime number > n » ; 
p[£ ]  : =  n 

end 

• The code that follows finds the prime number which fol lows n : 
repeat 

I n := n + 2 ;  
prime : =  « n is a prime number» ; 

until prime 
• To calculate the boolean prime, we respect the constraints: we divide n 

by the prime numbers .:::: Jn, which requires that we introduce the index k of 
the smal lest prime numbers > Jn. 

«find the smallest k such that p� > n » ; 
i :=  2 ; prime :=  true ; 
while (i < k) and prime do 

if n mod p[i] = 0 
then prime := false 
else i : =  i + I 
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square £ n at tempts primes 
1 2 P I = 2 
2 3 P2 = 3 
3 5 P3 = 5 
4 7 P4 = 7 

25 5 9 3 
I I  3 Ps = 1 1  

6 1 3  3 P6 = 1 3  
7 1 5  3 

1 7  3 P7 = 1 7  
8 1 9  3 Ps = 1 9  
9 2 1  3 

23 3 P9 = 23 
49 10 25 3 , 5 

27 3 
29 3 , 5 P I O  = 29 

I I  3 1  3 , 5 P l l  = 3 1  
1 2  33 3 

35 3 , 5 
37 3 , 5 P 1 2 = 37 
39 3 

1 3  4 1  3 , 5 P l 3 = 4 1  
1 4  43 3 , 5 P l 4 = 43 
1 5  45 3 , 5 

47 3 , 5 P I S = 47 
1 2 1  1 6  49 3 , 5 ,  7 

5 1  3 
53 3 , 5 ,  7 P l 6 = 53 

1 7  55 3 , 5 
57 3 
59 3 , 5 ,  7 P 1 1 = 59 

1 8  6 1  3 , 5 ,  7 P I S = 6 1  
1 9  63 3 

65 3 , 5 

Fig. 4.3. Search and storage of the first 1 8 prime numbers . The column attempts 
enumerates the prime numbers used to obtain a response: the current integer n i s  
prime or composite. 
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• The determination of k requires that we introduce an auxi l iary variable 
square = p [kf .  If n < Pi and n + 2 :::-_ Piw then n < Pi +  2 :S Pi+ 1 : 

if n :::-_ square then begin 
I k := k + I ; square :=  p[k]2 

end 

• It remains only to assemble the fragments of code (Fig. 4.4). But this can ' t  
b e  done too mechan ical ly because the variables k and square make reference 
to an old value, so that the initialization must be imposed outside the principal 
loop. 

p[ l ] = 2 ;  p[2] = 3 ;  p[3 ] = 5 ; p[4] = 7 ;  
n :=  7 ; k :=  3 ; square :=  25 ; 
for £ :=  5 to N do begin 
repeat 
n := n + 2 ;  
if n :::-_ square then begin k :=  k + I square :=  p[k]2 end ; 
i :=  2 ; prime :=  true ; 
while (i < k) and prime do 

if n mod p[i] = 0 then prime :=  false else i :=  i + I 
until prime ; 
p[£ ]  :=  n 

end 
Fig. 4.4. Search and storage of the first N prime numbers 

Remark 

The method that we we have just practiced wil l  be reprised and amply com­
mented on in Chapter 7 .  

4.4.3. Last recommendations 

We have just presented three techniques which frequently faci l i tate the writing 
and development of an algorithm. 

• Experience shows that they tend to be used simultaneously. For example, 
the preceding section began by recycling the code (the first technique) for 
factoring an integer. We introduce recurrent sequences (the second technique) 
and prov isional ly mask the internal loops by sentences (the third technique). 

• In closing, we remark on a trap which one should avoid. It is  - too easy -

to create a one or two page monster by nesting too many l i ttle alorithms. 
The result i s  illegible, hence difficult to control .  If one of the subalgorithms 
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i s  defective, we must throw out the whole chain of deductions because the 
results are so interwoven. The same holds if we want to modify the algorithm. 

An algorithm must be, insofar as possible, a brief text. One does not real ly 
know very wel l  what is  going on beyond a dozen l ines . . . .  Divide your task 
into independent subalgorithms which can be treated as procedures or distinct 
functions when your code becomes too long. 

4.5. How to Prove an Algorithm 

To show that an algorithm is correct we must assure ourselves of the fol lowing: 

• that i t  never crashes; 

• that there are no infini te loops; 

• that it always furnishes the desired result .  

4.5. 1. Crashes 

The l i st is endless ! In general , the program crashes when it tries an impossible 
operation. The most classical cases are the fol lowing. 

• Division by zero or, more general ly, cal l ing a function or a procedure with 
an inappropriate value of the parameter (for example, cal l ing sqrt( - I ) ) .  

• Attempting to  access an  object which does not exist ,  for example 1 0 , the 
element t [O] or t [n + I ] in  the array t [ l  . .  n ] .  

4.5.2. Infinite loops 

We clearly do not have to worry about "for" loops not ending. On the contrary, 
"whi le" and "repeat" loops are often a cause for worry : how can one be sure 
that they wi l l  terminate? The most celebrated loop is ,  without doubt, the "3n + 1 
loop" : 

while n > I do n : =  T (n ) ,  

where n > is a given integer and T : N --+ N is the function 

T (n )  = I in if n is even , 

! (3n + I )  if n is odd . 

It is sti l l  not known 1 1  whether this loop terminates for any value of n !  

Most of the time, one shows that a loop terminates by using the techn ique 
of infinite descent. This techn ique was developed by Fermat and i s  based on 
the following innocuous remark : 

1 0  The R+ option (range error) on the compi ler al lows one to detect th is  type of error. 
1 1  To get an idea of the irregularity of the values of n calcu lated by this loop, show 

by induction that one has Tk (2k n - I )  = 3k n - I for al l  k, n > 0. 
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There does not exist a strictly decreasing infinite sequence in N. 

We try to find an N-valued function whose values, when calculated at the 
moment of the exit test of the loop, are strictly decreasing. If we can find 
such a function, it is  clear that there cannot be an infinite loop. Here are two 
examples. 

4.5.3. Calculating the GCD of two numbers 

Let a and b be two integers > 0. Consider the loop 

while (a > 0) and (b > 0) do � evaluate f(a ,  b) here 
if a 2: b then a : = a - h else b : = b - a 

Here,  it is clear that the function f (a , b) = a + b 2: 0 is strictly decreasing 
on each passage through the loop. As result , the loop must terminate after 
finite time. 

4.5.4. A more complicated example 

Suppose that we are given integers t 1 , • • •  , tn > 0 and that L c [ I ,  n] is a 
nonempty set of integers to start. Consider the algorithm 

while L =I= 0 do begin � evaluate the function g here 
« withdraw any element £ from L » ; 
« calculate t > 0 and k E [ 1 ,  n] using £ (it doesn 't matter how) » ; 
if tk > t then begin tk : =  t ; « add k to L »  end 

end 

Here the function Card L does not suffice because, when one withdraws an 
element £, one can add k to L which does not decrease Card L. One must also 
use the t; , which leads very natural ly to the function 

n 
g = Card L + L t; . 

i = l 

We check what happens to its value on passing through the loop. Let L' 
and t ; , . . .  , t� denote the new values of the parameters after passage through 
the loop. 

• If one does not add k to L, we know that the t; are intact. Thus, Card L' = 
Card L - 1 and ti = t; which shows that the value of g diminishes by 1 . 

• If one adds k to L ,  then t� < tk and tj = tj for j =I= k .  Consequently, 
Card L' = Card L and L tf :::: L t; - 1 which shows that the value of g 
diminishes by at least 1 . 

As a result ,  the loop terminates after a finite time, which is not evident at 
first glance. 
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Remark 

When N does not suffice, one can use the technique of infinite descent on any 
wel l -ordered set (for example, Nk with the lexicographic order) . 

4.5.5. The validity of a result furnished by a loop 

We use a variant of reasoning by induction. 

Definition 4.5. 1. Suppose that f is a function that we evaluate at the same 
time as the exit test from a loop. If we can show that these values are equal 
to those taken by the function just before the entry into the loop, we will say 
that f is an invariant of the loop. 

We demonstrate the use of loop invariants using two simple examples. 

Calculating a sum 
n 

We want to calculate the sum S = I: u ; . Consider the two loops: 
i = l  

evaluate ----" 
the invariant 
at this point 

s := 0 ;  i := 0 ;  
while i < n do begin 

I i := i + I ; 
S := S + u; 

end 

s := 0 ;  i := 1 ; 
while i _::: n do begin 

I s := S +  u; 
i := i + 1 

end 

An invariant of the left hand loop is  the function 

In effect, when we present ourselves for the first t ime at the entry of the loop, 
we have S = i = 0, whence f = 0, in  view of the usual conventions regarding 
sums on an empty set of indices. Now, suppose that at a given moment we 
have f = 0, and consider the new value f' of f when we come to the exit 
test after having executed the body of the loop. If S ,  i are the old values 
and S' , i ' the new, we clearly have S' = S + u ;+ 1  and i ' = i + I and, hence, 
the impl ication 

i ' 
==} S' = I >k · 

k= l  
Knowing that f continues to take the value 0 ,  we sti l l  have f = 0 when 

we leave the loop. At th is  moment, i = n which gives S = I:�= l  ub and the 
algorithm calculates the sum correctly. 

Similarly, one shows that the function g = S - I:��\ uk is an invariant of 
the right hand loop which always equals 0. 
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Remark 

Recall that a "for" loop is an abbreviation for a "while" loop similar to the 
right hand loop in which the control variable is incremented at the end of the 
loop. Thus, the invariant should be evaluated at the entrance to the loop. 

Calculation of the GCD of two numbers 

We want to calculate the greatest common divisor of a , b > 0 using the 
algorithm 

« evaluate the invariant just before entry to the loop » 
repeat 
I if a � b then a : = a - b else b : = b - a 
until (a = 0) or (b = 0) ; *- evaluate the invariant here 
if b = 0 then GCD : =  a else GCD : =  b 

Since we are deal ing with a "repeat" loop, which moves the test, we must al so 
calculate the value of the invariant just before the entrance to the loop. 

Consider the function f = GCD(a , b ) .  Its properties show immediately that 
it is an invariant. Consequently, if aw and bw are the final values taken by the 
variables a and b, we have 

if  bw = 0, 
if not .  

Thus, the algorithm correctly calculates the GCD. 

4.6. Solutions of the Exercises 

Exercise 1 

In view of the symmetry of the unknowns,  we can content ourselves with 
l i sting the solutions of the equation 

n = x2 + / + z2 , 0 .::: x .::: y .::: z .  

We certain ly have x .::: ( � n )  1 12 and y .::: ( !  n )  1 12 • We d o  not seek to majorize z 
because we can do better: as soon as x2 + l + z2 exceeds n ,  it is useless to 
continue to increment z ;  thus we interrupt the loop which handles z using an 
"interrupter" next_y. 

for n := 0 to N do begin 
n_x := n div 3 ;  x_max := 0 ;  
while sqr(x_max + 1 )  .::: n_x do x_max : =  x_max + I 
n_y : =  n div 2 ; y_max : =  0 ; 
while sqr(y_max + I )  .::: n_y do y_max : =  y_max + I ; 
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sum_three_squares : = false ; x := - 1 ; 
while not sum_three_squares and (x :::: x_max) do begin 
X := X +  I ; y := X - 1 ; 
while not sum_three_squares and (y :::: y_max) do begin 
y := y + I ; z := y - I ; nexLy : = false ; 
while not sum_three_squares and not nexLy do begin 
z := z +  I ;  
S :=  sqr(x} + sqr(y) + sqr(z) ; 
if S = n then sum_three_squares :=  true else 
if S > n then nexLy := true ; 

end 
end 

end ; 
if sum_three_squares then writeln (x, y, z) 

end 

Exercise 2 

89 

Let lEN be the set of integers n :::: N which are of the form n = x2 + l .  
Cover lEN with the subsets Ce = {£2 + y2 ; y � £ } .  I f  we choose the index 
k_max so that N < min CLmax+ 1 , we can be certain that the covering i s  finite : 

lEN C Co U . . . U CLmax · 

We are thus reduced to the preceding technique. Because there are many sets 
Ce , we use an array instead of independent variables to store the integers that 
have sti l l  not been written .  

If we define y[£ ]  � £ by the property "the least element not already written 
from Ce is xe = £2 + y[£f" ,  then it is clear that the element that we should 
write is x = min(x0 , . . .  , XLmax ) . Once x i s  written,  we need to remember to 
increment y[£ ]  each time that x = xe . 

The algorithm then consi sts simply of bringing to light y [O . . .  Lmax] ; the 
function £ = where_is(x) returns an index £ which satisfies x E Ce .  Since £ i s  
not always unique, the auxi l iary variable old_x avoids repeated l istings of the 
same number. 

old_x := - I ; x :=  0 ; £ :=  0 ; k_max :=  0 ; 
while 2 * sqr(Lmax + 1 )  :::: N do k_max :=  k_max + I ; 
for k :=  0 to Lmax do y[k] :=  k ; 
while x :::: N do begin 
£ := where_is(x) ; 
if old_x < x then begin writeln (x, £ ,  y[£ ] )  ; old_x :=  x end ; 
y[£] :=  y[£] + I ; 
x :=  min (y, Lmax) { i. e. the minimum of k2 + yf, k = 0, . . .  , Lmax } 

end 

One proceeds similarly with the sum of the two cubes. 



You must learn the material in this chapter by heart, because we will encounter 
i t  frequently in many different forms. 

5.1 .  Exchanging the Contents of Two Variables 

To exchange the contents of two variables, a beginner wi l l  often suggest 
y := x; x := y. This  is  incorrect because the value of y i s  destroyed by 
the assignment y x .  Therefore, we safeguard the value in a temporary 
variable: 

temp : =  x ;  x :=  y ;  y := temp 

Along the same l ines, suppose that we try to encode a planar i teration as 
fol lows: 

(x , y)  := (u (x ,  y ) ,  v (x ,  y) ) . 

If we naively wri te x :=  u (x , y ) ;  y :=  v (x , y)  we make the same error 
because the value of x used in the satement y :=  v (x ,  y) is destroyed by 
the first assignment. Once again ,  we need to safeguard the value of x in an 
auxi l iary variable: 

temp := x ; x := u(temp, y) ; y := v(temp , y) 

(We have already encountered this difficulty in dissecting the CORDIC algo­
rhm in Chapter 4. )  

Exercise 1 (Solution at the end of the chapter) 

Let A be a 2 x 2 matrix .  Translate the statement 

into code. 

5. Algorithms and
Classical Constructions
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5.2. Diverse Sums 

5.2. 1. A very important convention 

Apprentice mathematicians often protest when one writes the formula 

in the condensed form 

k- 1 

n k- 1 

s = _L ak n M; .  

k=O i=O 

They wi l l  argue that n does not mean anything when k = 0 and that you 
should write i =O 

n k - 1  

sk = ao + L ak n M; . 

k= l  i =O 

The initial way of writ ing the sum is nevertheless correct thanks to a very 
useful convention which is vi tal to assimi late. To explain it ,  suppose that 
I is a finite set. Then the associativ i ty and commutativity of addition and 
multipl ication allow one to define the symbols 

_L u; and n U ; . 
i E /  i E /  

Consider the partition I = 1 1 U 12 of  I into two disjoint subsets . We can write 

When I = 1 1 and 12 = 0, this formula becomes 

If we wish to avoid interminable (and parasitic) discussions in our proofs, i t  is 
necessary to accept "sums or products over the empty set" and to adopt the 
conventions 

_L u; = 0 and n U ;  = I . 
i Efll 

k - 1  

When we write n U ; ,  we understand n U ;  where 
i E /  

I = { i  E Z; i :::0: 0 and i .:S k - I } . 
- I 

When k = 0, the index set I is empty, so that the formula n u; = I with 
which we began thi s  discussion i s  correct !  i =<l 
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It is  important to respect the conventions employed by mathematicians and 
to adapt one 's  code as a consequence. The code on the left, which calculates 

n n 

S = L u ;  and P =  n u ; ,  
i = l i= l 

respects these conventions, while that on the right does not. 

S := 0 ; +-- good S : =  u[ 1 ]  ; +-- very bad 
for i :=  I to n do S : =  S + u[i] ; 
p : = I ;  

for i :=  2 to n do S : =  S + u[i ]  ; 
P := u[ 1 ] ; 

for i :=  I to n do P :=  P * u[i ]  for i := 2 to n do P := P * u[i ]  

Correct code Incorrect code 

5.2.2. Double sums 

To calculate the double sum 

we can run through the matrix l ine after l i ne starting with the first ( the so­
cal led television scanning order, after the way the pixels on a television screen 
are refreshed) .  Since the control variable is  the couple ( i ,  j ) ,  a translation with 
the aid of a first order recurrence must have the form 

s( i ' . j ' )  : =  Su.n + U; ' . j ' •  

where (i ' , j ' ) i s  the successor of ( i ,  j )  with respect to the televi sion scanning 
order; that is ,  the lexicographic order. But this order is  easi ly real ized by 
nesting two "for" loops : 

for i : = 1 to n do 
for j : = I to n do . . .  

If we take the precaution of beginning with S = 0 in  order that the cases 
p = 0 and q = 0 are correctly treated, the algorithm is 

s : = 0 ;  
for i : = 1 to n do 

for j : = 1 to n do 
S := S + u[i , j] 

We will general ize this to run through any product set using the lexicographic 
order. 

Exercise 2 

Calculate this sum using the boustrophedon order. 
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5.2.3. Sums with exceptions 

Suppose we want to calculate the sum with an "exception" : 

S =  L U ;  
O�i �n 
i# 

(k i s  an  integer) . 

• First solution : We run through the integers in the interval [0, n] being 
careful not to add ak : {si - 1 + u ; if i =1- k ,  

S; = ===> for i : = 0 to n do 
l s : =  0 ;  

S; - I otherwise if i =I- n  then S : =  S + u[i] 

This  solution is very clear, hence very certain .  

• Second solution : We can calculate the sum of all the u ; , then cut out uk 
when it is necessary : 

s : = 0 ;  
for i : =  0 to n do S : =  S + u[ i] ; 
if (0 ::: k) and (k :=:: n) then S :=  S - u[k] 

This solution i s  more doubtfu l .  When one works over the integers, the 
computer wil l  give the correct result ;  on the contrary, over the reals a +  x - a 
is only approximately equal to x .  We have increased the speed (there is only 
one test) ,  but at the cost of precision . 

• Third solution : We set uk equal to zero, then calculate the sum of all the 
u ; . But we must remember to re-establish the in it ial value of the uk > because 
the code that we write could very well wind up being inserted in a program 
which might perhaps need uk : 

if (0 :=:: k) and (k :=:: n) then begin temp :=  u[k] ; u[k] :=  0 end 
s := 0 ;  
for i := 0 to n do S :=  S + u[i] ; 
if (0 :=:: k) and (k ::: n) then u[k] :=  temp 

This solution is more rapid than the first (there are fewer tests) .  But it is long 
and uses a trick which is not within reach of a beginner. 

• Fourth solution : We calculate the subsums corresponding to the intervals 
[O , k - I D and [k + I , n D :  

s : =  0 ;  
if (0 ::: k) and (k ::: n) then begin 

I for i := 0 to k - I do S := S + u[i] ; 
for i :=  k + I to n do S :=  S + u[i] ; 

end 
else for i := 0 to n do S := S + u[i] 

This i s  correct, but too long to write. 
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For beginners 

The best code is always the simplest: the first solution is preferable .  When you 
program, never forget that the first priority is  a code that functions the first 
time. If it is  too slow, you can always improve the critical parts of the code . 
It serves no purpose to write rapid and clever code which is very difficult to 
debug. Which would you prefer: to refine an exact code to speed it up or make 
it more elegant or to lose hours (or perhaps days) debugging a program which 
obstinately refuses to function? 

5.3. Searching for a Maximum 

Let x i , . . . , Xn be a vector of real numbers > 0. To find the largest of the X; , 
it suffices to compare x i  and x2 , and to retain the largest, then to compare this 
to x3 , etc . We can use this procedure to store the position of the maximum 

max := x[ I ]  ; place_max := I ; 
for i : = 2 to n do 

if x[i] > max then begin max :=  x[i] ; place_max :=  i end 

The problem becomes more complicated when we need to find the maximum 
of a sub-family of the x; satisfying a given property P. In fact, the preceding 
code is incorrect if P (x i )  is not true. 

• If we know that the x; are greater than 0, for example, we give the 
maximum a value smaller than all the x, (for example max = 0) and we begin  
with i = I : 

max :=  0 ;  
for i : = I to n do 

if (x[i] > max) and P(x[i] ) then 
begin max :=  x[i] ; place_max := i end 

If max retains the in itial value 0, then we know that the set of x; which sati sfy 
the property P i s  empty; in  thi s  case, place_max means nothing (the value i s  
indefinite) . 

• If we do not have any hypotheses on the x; , the safest course is  to make 
a prel iminary reconnaisance. 

max_ exists : = false ; 
for i : = I to n do 
if P(x[i ] )  then begin 
I max_exists := true ; max :=  x[i] 
end ; 
if max_exists then for i :=  I to n do 
if (x[i] > max) and P(x[i] ) then begin 
I max := x[i] ; place_max := i 
end 
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If you find this code too "industrial" and not very intel l igent, reread the end 
of the preceding section . . . .  

5.4. Solving a Triangular Cramer System 

Consider the triangular Cramer l inear system where the diagonal coefficients 
a; . ; are al l different from zero.  

I a 1 , 1 x l + a 1 , 2x2 + · · ·  + a 1 . nXn = b 1 , 
a2 , 2X2 + · · · + a2 .nXn = b2 , 

' ' . . 
' ' 

an ,nXn = bn , 

To solve this  system, beginners tend to think in terms of formulas (that is ,  
they think in a static manner). They write 

Xn 

Xn - 1 

bn 

--- (bn - 1 - an ,nXn ) 
an - l , n - 1 

(5 .  1 )  

(5 .2) 

Xn-2 = (bn -2 - an-2 , n - 1 Xn - l  - an - 2 , nXn } , (5 .3)  
an-2, n -2 

then give up, because x11_2 is much too complicated a function of the a;, j and 
the b, . But do we real ly need a formula to create an algori thm? 

Think dynamical ly :  (5 . 1 )  allows us to calculate the value of X11 ,  then (5 .2) 
that of X11 _2 , etc .  If we know the values of X11 ,  • • •  , xe+ 1 , we can find the value 
of xe thanks to the formula: 

Thus, a first draft of an algorithm to solve the system might be: 

x[n] := b[n]ja [n] ; 
for e : = n - 1 downto 1 do 

« calculate x[€] using(5 .4) » 

To obtain xe we calculate a sum : 

temp :=  0 ;  
for j :=  e + I to n do temp :=  temp + a[f , j] * xU] : 
x[e ] :=  (b[€] - temp) fa[€ , € ]  

(5 .4) 
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Inserting this fragment of code into the preceding code gives 

x[n] := b[n]ja [n] ; 
for £ : =  n - I downto I do begin 
temp := 0 ;  
for j := £ + I to n do temp := temp + a [C , j] * xU] ; 
x[£] : =  (b[£] - temp) fa[£ , £ ]  

end 

Exercise 3 

97 

Explain why one can, without danger, incorporate the first l i ne into the prin­
cipal loop by letting £ vary from n to 1 :  

for £ : =  n downto I do begin 
temp := 0 ;  
for j :=  £ + 1 to n do temp :=  temp + a [C , j] * xU] ; 
x[£] := (b[£] - temp)ja [£ ,  £ ]  

end 

5.5. Rapid Calculation of Powers 

Suppose that we wish to calculate 

x59 = X * X * X * X * · · · * X  * X * X . 

58 multipl ication' 

It is possible to do better because x59 = x * (x2 )29 which shows that 30 
multipl ications wi l l  suffice at the cost of storing y = x 2 :  

y : =  x * x ;  x59 = x * y * y * y · · · y * y * y . 

28 multipl ications 

But, we can do the same thing again and introduce z = l .  Then x59 = X *Y*Z
1 4 

shows that 1 7  multipl ications suffice: 

y := x * x ; z := y * y ;  x59 = x * y * z * z * z · · · z * z * z . 
1 3 multipl ications 

Systematizing with the help of a formula, 

un * v = I (u2yl2 * v if n is even , 

(u2 ) (n - l l /2 * (u * v ) otherwise .  
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(The factor v i s  indispensible because the exponents are not always even . )  We 
can then calculate xs9 with only 1 0  multipl ications :  

no = 59 
n 1 = 29 
n2 = 1 4  
n3 = 7 
n4 = 3 
ns = 1 

Uo = X  
- 2 U 1 - u0 

u2 = uf 
u 3 = u� 

- 2 U4 - Us 
us = u� 

result = us vs 

v0 = I  

V4 = U3 V3 
Vs = U4 V4 

The transformation into an algorihm is immediate: 

U : = X ;  V := 1 ; 
repeat 

I if n mod 2 = 1 then v : = u * v ; 
u : =  u * u ; n : =  n div 2 

until n = 1 ; 
result : =  u * v 

Exercise 4 (Solution at end of chapter) 
Justify this algori thm and show that the number of multipl ications is O (log2 n ) .  
To d o  this ,  one shows that un * v i s  a n  invariant o f  the loop and notes that n 
diminishes by half after each passage through the loop. 

5.6. Calculation of the Fibonacci Numbers 

How can one calculate the N-th Fibonacci number? We have learned how 
to transform a recurrence relation of order 1 into an algorithm. Annoyingly, 
however, the Fibonnaci series is defined by a second order recurrence relation . 

Mathematicians have known for a long time that one can arbitrarily decrease 
the order of a recurrence relation or a differential equation by working in a 
larger dimensional space. In our case, we lower the order by putting: 

Then ,  by replacing Fn by Fn- l + Fn-2 • we can write 

Xn = ( Fn ) = (Fn- 1 + Fn-2) = ( ! � ) (Fn- 1 ) , 
Fn - 1 Fn- 1 Fn-2 
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which is  a first order recurrence relation :  

The transformation to an algorithm i s  a piece of cake 1 once one has solved 
and understood Exercise I . If the coordinates of the vector X are x and y, the 
N-th Fibonacci number is  calculated as fol lows: 

X := I ; y := 0 ;  
for i := I to N do begin 
I temp := x + y ; y := x ; x := temp 
end ; 
FN : = x 

Exercise 5 (Solution at end of the chapter) 
Write a program to rapidly calculate the N -th Fibonacci number by raising the 

matrix A = ( ! � ) to the N-th power. 

5.7. The Notion of a Stack 

Computer scientists love stacks. The picture you should have in mind is that 
of a stack of plates. You can do the fol lowing to a stack. 

• You can put a new plate on top of the stack - this i s  often cal l the push 
operation. 

• You can remove the top plate from the stack - thi s  i s  often called the pop 
operation. 

A stack is  manipulated with the aid of a number of very simple primit ives:  
• push( stack, x )  puts the object x on top of the stack; 

• x = pop(stack) removes the top element from the stack and stores its value 
in the variable x ; 

• empty(stack) prepares an empty stack: that is ,  one without plates ;  

• is_full(stack) i s  a boolean which informs us that the stack i s  saturated, 

• is_empty(stack) i s  a boolean which tel l s  us that the stack is  empty. 
The Pascal procedures that fol low and that implement a stack wi l l  proba­

bly surprise you and appear unnecessari ly ponderous. However, professional 
programmers abide these gymnastics because they know from experience that 
this is  the price one pays for maximum security (that is, a code that is  easy to 
adjust, that functions the first time and that is  independent of the rest of the 
program) .  

In this  book, we wi l l  implement our  stacks using arrays :  

1 This phrase means that there is  no difficulty :  it suffices t o  let one's hand d o  the 
writing. 
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const ht_max_stack = I 00 ; 
type stack_integers = record 
I top : integer ; plate : array[ l . .ht_max_stack] of integer 
end ; 
var stack : stack_integers ; 

The variable top is the height of the stack. 
procedure push (var stack : stack_integers ; x : integer) ; 
begin 
if is_full(stack) then writeln('full stack' ) 
else with stack do begin 
I top := top + I ; plate[top] := x 
end 

end ; 

function pop(var stack : stack_integers) : integer ; 
begin 
if is_empty(stack) then writeln (' empty stack' ) 
else with stack do begin 
I pop := plate [top] ; top := top - I 
end 

end ; 
procedure empty(var stack : stack_integers) ; 
begin 
I stack. top := 0 
end ; 

function is_full(var stack : stack_integers) ; 
begin 
if stack. top = ht_max_stack 
then is_full := true 
else is_full := false 

end ; 

function is_empty(var stack : stack_integers) ; 
begin 
if stack . top = 0 
then is_empty := true 
else is_empty :=false 

end ; 

This manner of proceeding is very efficient: one lays out a set of statements 
(with tests attached) which one can then forget. 2 It suffices to use the primi­
t ives:  no error is  possible, and there i s  no need to remember how the stack is 
implemented. 

2 A good program is made up of independent modules. Remember: one cannot c l imb 
stairs whi le  chewing gum. 
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Another advantage i s  the independence of this module: i f  we need to modify 
the implementation of our stack, it suffies to redefine the type stack and to 
rewrite the primit ives. We do not need to touch the rest of the program. 

For beginners 

One should not think that using an array is the only way of implementing a 
stack. For example: 

• If we wanted to stack characters, we could consider stacks consi sting of 
strings of characters . 

• If we want to stack integers between 0 and b - 1 ,  it may be useful to 
consider the stack as an integer n and the plates as numerals in base b . To 
push (that is ,  pile on) the number c we replace n by b * n + c ;  to pop (that is ,  
remove) the number, we divide n by the base b .  

• Very frequently, one uses cells and pointers. 

5.8. Linear Traversal of a Finite Set 

Some problems require that one l inearly traverse a fini te set E ;  mathematical ly 
speaking, this amounts to giving E a total order. The traverse is  realized by 
repeated cal l s  to the successor function. 

x := first_element(E) ; 
repeat 

I ���cessor(x,finish) 
until finish 

x :=  first_element(E) ; finish :=false ; 
while not finish do begin 

I ���cessor(x,finish) 
end 

If the set E possesses at least one element, the two codes are equivalent. The 
boolean finish permits one to interrupt the loop at the appropriate moment. 
The procedure successor assigns to x the successor of x when this is  not the 
greatest element of E; otherwise,  i t  g ives finish the value true. 

For beginners 

It is not particularly necessary to put the motor successor(x , finish) at the 
beginning of the loop. Why? 

Exercise 6 

What is the boutrophedon order good for? Not a whole lot ! There is ,  how­
ever, an interesting instance where its use is  natural . Let n = pa qf3 be the 
decomposition of n into prime factors (and suppose that we know p, q ,  a, f3 
expl icit ly) .  Imagine that we want to write the (a + 1 ) ({3 + 1 )  possible divi sors 
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of n. Writing the divisors d of n in single file amounts to using a total order. 
But which total order should we use? 

• First solution: we can use the natural order on N and run through the 
integers in the interval [ 1 ,  n ] .  

for d : = 1 to n do 
if n mod d = 0 then writeln (d) 

• Second solution: to be given a div isor d of n is  to be given a pair (i, j )  
satisfying d = p

i 
q l . We can order the pairs lexicographical ly, which leads to 

two nested "for" loops 

for i : = 0 to a do 
for j : = 0 to f3 do 

write(power(p, i) * power(q ,j) )  

• Third solution: w e  can order the pairs ( i ,  j )  with the boustrephedon order, 
which g ives the l ist  

1 2 a a a - 1 2 2 a 2 a - 1 2 
, p ,  p , . . .  , p , p q ,  p q ,  . . .  , q ,  q , pq , . . .  , p q , p q , . . .  

where we pass from one div isor to the following with a single operation 
(multipl ication or divis ion) .  

What to conclude? 

• The first solution is  the s implest (and, therefore, the most robust) . This is  
what we should think of first. 

• The second solution is  a Penelope code because when we pass from d = 
p

3
q

2 to d' = p
4

q
2

, we forget that we have already calculated p
3 and q

2
; i t  

also general izes poorly when n has more than two prime divisors . 

• The third solution is the most delicate to implement. Nevertheless, it is the 
most attractive because it general izes to the case of any integer n and because 
i t  is the most rapid. 

5.9. The Lexicographic Order 

5.9. 1. Words of fixed length 

Consider the set Mn of words with n letters (or n numerals) .  We have known 
since we were chi ldren how to arrange these words using the lex icographic 
order. 

Two embedded "for" loops real i se this  order on pairs of integers and allow 
us to l inearly traverse the set J\12 . If we want to l inearly traverse the set J\13 , 
we use three nested "for" loops. But would we find it acceptable to nest one 
hundred "for" loops to traverse J\1 100 ? Would our compiler support it? Even 
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more seriously, if we don ' t  know the value of n when we are entering the 
code, we are helpless. 

Let us return to our problem and ask ourseles how we find the successor of 
a word w given in a dictionary. To simplify, suppose that our "words" have 
five letters . 

• The successor of the word "amies" is the word "amiet' ' , which is obtained 
by augmenting the last letter of the first word ; that is ,  by replacing the letter 
"s" by the fol lowing letter "t". 

• If the word is "rasez", we cannot augment the last letter; we augment the 
second to last and the word that follows is  "rasfa". 

• Similarly, the successor of "buzzz" is  "bvaaa". 
Thus, the algori thm that we use is  the fol lowing: 

• The word "zzzzz" does not have a successor. 

• Otherwise, the word w contains a letter different from "z", and we seek 
the largest index k such that 

W = W J · • • Wk ZZ · · · Z , Wk < Z . 

If w� is the letter following wk . the desired successor i s  the word : 

More precisely, we can calculate the successor of the word w using the 
fol lowing code : 

Generalization 

finish :=false ; k :=  - 1  ; 
for i := 1 to n do if w[i] < 'z' then k := i ;  
if k = - I then finish :=  true 
else begin 

I w[k] := nexLletter(w[k] ) ; 
for i :=  k + 1 to n do w[i] :=  'a' 

end 

The general ization to other types of words is  immediate. Consider, for example, 
the set of n- tuples of integers : 

Mn = [ I ,  max 1 D x [ 1 ,  maxzD x · · · x [ 1 ,  maxn D C Nn . 

S ince each interval [ 1 ,  max; ] is total ly ordered, we can endow the product set 
Mn with the associated lex icographic order. 

This amounts to considering an element x = (x 1 , • • •  , Xn ) of Mn as a word 
whose letters are x 1 , • • •  , Xn . The smal lest word is ( 1 ,  . . .  , 1 ) ,  the greatest is  
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(max 1 , • • •  , maxn ) ,  and the passage from x to its successor x' i s  effected as 
fol lows: 

finish :=false ; k := - 1  ; 
for i :=  1 to n do if x[i] < max[i] then k :=  i ; 
if k = - 1  then finish :=  true 
else begin 

I x[k] := x[k] + 1 ; 
for i : = k + 1 to n do x[i] : = I 

end 

5.9.2. Words of variable length 

Consider now the set Nn of words containing at most n letters, and let us 
explore how one computes the successor of a given word : 

• the successor of the word w = "raz" is the word w' = "raza", 
• the successor of the word w = "mise" is  the word w' = "misea", 
• the successor of the word w = "misez" i s  the word w' = "misf' , 
• the successor of the word w = "buzzz" i s  the word w' = "bv", 

The process is  analogous to the preceding algorithm:  
• If the word contains less  than n letters, we fol low i t  by the letter "a" . 
• If the word contains n letters, we try to augment the last letter. If  th is  is  

not possible, we remove all the "z '"s at  the end; if the word that remains 
is  not empty (that is ,  w =f. "zz · · · z") , we augment its last letter. 

A l inear traverse of the set Nn is accomplished using a stack of characters . 

finish := false ; empty( stack) ; 
push (stack, 'a' ) ; {because the smallest word is w = 'a ' } 
repeat 
if not is_full(stack) 
then push (stack , 'a') 
else begin 
while not is_empty(stack) and (topval(stack) = 'z' ) do 
garbage := pop(stack) ; 
if is_empty(stack) 
then finish := true 
else begin 

I character :=  pop(stack) ; 
push (stack, next_letter(character) ) 

end 
end 

until finish ; 
Here, we need a supplementary primitive, the function topval which returns the 
value of the plate at the top of the pi le without modifying it. (If this primitive 
is  not available, one can simulate it by popping the top plate, then pushing it 
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back.) Note also, the use of the auxi l iary variable garbage, which allows us 
to get rid of useless plates. 

Exercices 7 
I )  For every integer n :::_ I ,  one has at least one equal ity of the form 

n = ± 1 2 ± 22 ± · · · ± k2 , (5 . 5 )  

where the integer k depends on n .  

Proof The assertion is  true for n = I ,  2 ,  3 , 4 since 

We continue using strong induction. Let n > 4 and suppose that the property 
is  true for all integers < n. By induction, we can write 

n - 4 = ± 1 2 ± 22 ± · · · ± k2 . 

Moreover, we always have 

which immediately gives 

Write a program which writes all decompositions (5 . 5 )  of an integer n with 
k as small as possible. 

2) Find all ways of plac ing eight queens on a chessboard so that no one can 
take any other. 

5. 10. Solutions to the Exercises 

Exercise 1 

Let A = ( � � ) .  The desired translation is then :  

temp := a * x + b * y ;  
y := C * X +  d * y ;  
x : = temp 
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Exercise 4 

Let n0 be the in i tial value of n and n 1 , n2 , • • .  , nw the values fol lowing n .  
Since nk+ 1 .::: !nk > the function f(n )  = n strictly decreases each time through 
the loop. It fol lows that thi s  algorithm never loops. From the inequal ites, one 
deduces that nw .::: 2-wn0 . Since nw = I ,  the number of passages through the 
loop satisfies w .::: Iog2 no . 

Let n ' ,  u ' and v' be the values taken by n ,  u and v after a passage through the 
loop. If n = 2m is even, we have n' = m ,  u' = u2 and v' = v ;  if n = 2m + 1 
is odd, we have n' = m ,  u '  = u2 and v' = u v .  Since um' v ' = un v ,  it fol lows 
that un v i s  an invariant of the loop. Thus, xn" * 1 = u"'" * v = u * v since 
nw = 1 .  

Exercise 5 

We have : ( FN ) = XN = AXN- 1 = . . . = AN- I X I = AN- I ( 1 ) . FN- 1 0 

The desired Fibonacci number is the ( 1 ,  I )  element of the matrix AN - I . We 
can rapidly calculate AN- I using the algorithm: 

Put U = ( u 1 
UJ 

n :=  N - 1 ; U := A ; V := /2 ; 
repeat 

I if n mod 2 = I then V : = V * U ; 
U : =  U * U ; n :=  n div 2 

until n = 1 ; 
AN- I :=  u *  v 

Uz ) and V = ( v 1 U4 V3 

v2 ) • To translate the assignments 
V4 

V :=  V * U and U : =  U * U 

use a temporary matrix :  

temp :=  V * U;  V := temp; 
temp := U * U ;  U : = temp; 

Then, this gives the algorithm: 

n := N - 1 ; 
u 1 : =  I ; u2 :=  1 ; u3 :=  I u4 :=  0 ;  { U  := A } 
v 1  :=  1 ; v2 : =  0 ;  v3 : =  0 ;  v4 : =  I ; { V  :=  /z } 
repeat 
if n mod 2 = 1 then 
begin { preliminary calculation of the matrix temp := V * U} ; 
I temp 1 :=  v 1 * u 1 + Vz * U3 ; temp2 :=  v 1 * u2 + v2 * U4 ; 
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I temp3 := v3 * u 1 + v4 * U3 ; temp4 := v3 * u2 + v4 * U4 ; 
v1 :=  temp 1 ; v2 := temp2 ; v3 := temp3 ; v4 :=  temp4 ; { V  := temp } 

end ; 

Remarks 

{ preliminary calculation of the matrix temp := U * U} ; 
temp 1 :=  u 1 * u 1 + u2 * U3 ; temp2 :=  u 1 * U2 + U2 * U4 ; 
temp3 := U>, * U 1  + U4 * U3 ; temp4 := U3 * U2 + U4 * U4 ; 
u 1 := temp 1 ; u2 :=  temp2 ; u3 :=  temp3 ; U4 := temp4 ; { U := temp } 
n :=  n div 2 

until n = I  ; 
F N : =  U l * V I + U2 * VJ 

1 ) Sequences of the type temp := U * V ;  V := temp can be avoided using 
the procedure of matrix multipl ication.  As we shal l see in Chapter 6, if we set 

procedure mult_mat(var Z :  matrix ; X, Y :  matrix) ; 
{ return in Z the product X *  Y} 

we can write mult_mat(V ,  U ,  V ) .  
2 )  Modem Pascal languages allow the better solution 

function mult_mat(X, Y :  matrix) : matrix ; 

now we can write the more natural instruction V := mulLmat(U ,  V ) .  



The goal of this chapter is not to describe the language Pascal in detai l  -
there are excellent books which do this - rather, the goal is to c larify the 
functioning of a computer and to introduce several programming devices. 

6.1 .  Storage of the Usual Objects 

The main memory of a computer (also called the random access memory 
or RAM can be represented as a very long tape parti tioned into equal s ized 
compartments numbered from 1 0 to a very large number ( these days, the 
number is usual ly between I 06 and 1 09 ) .  Each memory compartment contains 
eight minuscule condensers (each about as large as a microbe ! )  which are 
either charged or discharged. The information contained in a condenser i s  
cal led a bit ( short for binary digit). A memory compartment using eight bits 
is  cal led, quite natural ly, an octet. Since these microscopic condensers charge 
and discharge very rapidly: a computer can recharge them at least 50 times a 
second. Computer sc ientists speak of a computer refreshing its memory - in 
reality, i t  heats up because of Joule effects ! A break in electrical current, even 
if fleeting, has catastrophic repercussions because the contents of the RAM 
memory are erased, much l ike a message written on a luminous screen which 
i s  extinguished. 

If we associated to each bit an integer equal to 0 or 1 ,  we can consider an 
octet as an element (b0 , . . .  , b7 ) of the set {0 ,  1 } 8 . Thus we can store 28 = 256 
integers in an octet because the number 

x = bo + 2b l + 22b2 + · · · + 27 b7 

takes al l values between 0 and 2x 
- I = 255 .  

We wi l l  say in what fol lows that an octet contains an integer between 0 
and 255 .  But we shouldn ' t  fool ourselves - this is an illusion, nothing more.  
More general ly, when we spec ify the type of a variable, we are deciding that the 
contents of one or more variables can be interpreted as a letter, a real number, 
a boolean, etc . Suppose, for example, that an octet contains the number 65 : if 

1 Indexes always start from 0 in  a computer. 

6. The Pascal Language
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this octet is  supposed to contain an integer, we wi l l  say that it contains "65" ; 
if it is supposed to contain a letter, we wil l  say that it contains the letter "/\'. 

I t  is  good to know how octets use the objects under discussion : 

• A boolean occupies an octet (a bit would suffice, but could not be sepa­
rately managed. )  

• A integer occupies two consecutive octets i f  i t  i s  of integer type and four 
consecutive integers if it is of longint type. 

• A real number occupies six consecutive octets. 

6.2. Integer Arithmetic in Pascal 

This  surprises many beginners ! Knowing that we can store 28 = 256 integers 
in an octet, we see that: 

• the type integer permits us to store 2562 = 2 1 6 = 65 , 536 distinct integers ; 

• the type longint, which uses four octets, permits us to store 2564 = 264 = 
4, 294, 967 , 296 distinct integers . 

Since we work in Z, these integers are div ided evenly about the origin .  
Consequently, 

• one can store the integers in the interval I = [ - 2 1 5 ,  + 2 1 5 [ in a variable 
of type integer; 

• one can store the integers in  the interval I = [ - 23 1 , +23 1 [ in a variable 
of type longint. 

In practice, one remembers that the type integer allows one to work in 
Pascal with integers between -32000 and +32000 and the type longint allows 
one to work with ten digit integers which do not exceed 2 x 1 0 1 0 in  absolute 
value. 

6.2. 1. Storage of integers in Pascal 

Let N > 1 be any integer, and b > I an even integer. Put: 

Q = bN , J = [0, Q[ . 

In Pascal , one has b = 28 = 256, N = 2 for the integer type and N = 4 for 
the longint type. 

To store an integer y in the interval J = [0, Q[ ,  we can use its base b 
representation 

(6. 1 ) 

by placing each y; in a compartment in memory capable of storing an integer 
between 0 and (b - 1 ) ; in Pascal , where b = 28 , the number y then occupies N 
octets. But there are two serious critic isms of this scheme : 
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• What does one do with negative integers? It is  inadmissible to use a whole 
octet, that i s  256 bits, to store a sign which should only require a single bit. 

• Do we need two algorithms for addition and subtraction? 

Computer scientists, who never lack for imagination, have found better 
ways2 to store the integers . An elegant and wel l -known solution is to use 
a bijection 

p :  I =  [ - 4 Q ,  + 4 r2  [ ----+ J = [0, Q[ 

and store the representation (6. 1 )  of  p (x ) .  I f  we  agree to  send the positive 
integers of I to those of J using the condition p (x )  = x for x 2: 0, we obtain 
very natural ly the bijection :  

p (x )  = { x 

x + Q 

if o :s x < 4 n, 
if 4n  :s x < o. 

(6.2) 

In effect, knowing that the posit ive integers in I fil l  up the first half of J, we 
are forced to send the negative integers x to the second half by translation . 
From this definition, we note the fol lowing. 

• The bijection p - 1 i s  given by the formula: 

- { y 
p 

I (y ) = y - Q 
if 0 :s y < 4 Q, 
if 4 Q  :s y < Q. 

(6 .3)  

• The s ign of x i s  easi ly read off p (x ) :  an integer x i s  positive when p (x )  i s  
small ( that is  when p (x )  < 4 Q) and i t  is  negative when p (x )  i s  large (that is ,  

when p (x )  2: 4 Q) . 
• In particular, it suffices to remember the congruence 

p (x )  = x (mod Q) .  (6.4) 

Definition 6.2. 1. The bijection (6. 2) is called the representation complemen­
tary to the base. 

We can now define an addition , denoted EB, on the set of integers that we 
can store .  To do this ,  we demand that the fol lowing diagram be commutative: 

+ mod Q 
[0, Q[ X [0, Q[---------+ [0 ,  Q[ 

2 If this subject interests you, I highly recommend J . -M. Mul ler's book A rithmetique 
des ordinateurs, Masson ( 1 989) .  This book, which is very easy to read and as 
engaging as a crime novel, explains in  detai l  how one constructs algorithms and 
circuits which implement the four arithmetic operations.  
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Equivalently, we put 

a EB b = p- 1 ( (p (a )  + p (b ) )  mod Q)) . (6 .5) 

Since p (a )  + p (b) l ies between 0 and 2Q, i t  is  easy to be more precise: l p- 1 (p (a )  + p (b) ) if p (a )  + p (b) < Q ,  
a EB b = 

p - 1 (p (a )  + p (b) - n) if p (a )  + p (b) 2: Q .  
(6.6) 

Definition 6.2.2. The operation EB is called addition complementary to the 
base. 

We demystify this addit ion: to calculate x EB y, first calculate x + y, then add 
the approriate multiple of Q so that x + y + kQ l ies between - !Q  and !st. 

Examples 

Suppose to begin that we have b = 1 0  and N 
and ! st  = 50. 

• Since 1 7  + 3 1  = 48, we have 1 7  EB 3 1  = 48. 

2 , so that Q 

• Since -43 + 3 1  = - 1 2, we have -43 EB 3 1  = - 1 2. 
• Since 23 + 31 = 54, we subtract Q and get 23 EB 31 = -46. 
• Since -22 + -33 = -55 ,  we add Q and find that -22 EB -33 = 45 . 

1 00 

Now suppose that we are working with an integer in Pascal where Q = 2 1 6 = 
65 536 . 

• Since we have 27 856 + 15 83 1 = 43 687 > ! Q, we subtract Q and obtain 
27 856 EB 1 5 83 1  = -2 1 849. 

Final ly, suppose that we are working with the longint in Pascal so that Q = 
232 = 4 294 967 296. 

• Since -2 1 0 1 234456 + - 1 99999999 = -230 1 234455 < - !  Q, we add Q 
and find that -2 I 0 I 234 456 EB - I  999 999 999 = 1 99373284 1 .  

As we have just establ i shed, addition complemetary to the base does not at 
al l  coincide with ordinary addition ! But this is the price we pay if we want the 
same algorithm for addition and subtraction. What we have is a particularly 
elegant implementation of the additive group Zrz since (6.4) and (6. 5 )  show 
that 

a EB b  = a  + b (mod Q) . 
The principle is the same for multipl ication. In summary, 

The integers in Pascal are not those of Z, but those of £:2 , o 
or, in the case of long integers, those of £:212 . The results 
obtained are, therefore, only certain modulo 2 1 6 or 212 . 
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For beginners 

• This  peculiarity of Pascal can cause errors that are difficult to detect3 

when the capacity is exceeded in an intermediate calculation. We frequently 
encounter this problem when we want to work modulo an integer n: we must 
be very careful not to leave the interval [- � Q ,  �Q) so that the machine does 
not introduce a congruence modulo Q which could interfere in a disastrous 
way with our congruence modulo n (since x + kQ =/= x modulo n) .  

• Since the result of  a calculation with integers using addition, subtraction, 
and multipl ication i s  only val id modulo 2 1 6 or 232 , one might hope to accom­
pany a program with a theoretical study which assures one that that the results 
otained are exact provided that one enters integers within some predetermined 
good intervals .  But this  is  often just a dream . . .  

6.3. Arrays in Pascal 

Consider the array of boo leans toto[O . .  I 00] . To have room to fi l l  up this array, 
the program reserves a segment (that is ,  consecutive memory compartments) 
which is  1 0 1  octets long in RAM in which it will successively put the contents 
of toto[O] , then toto[ I ] , and so on unti l  toto[ I 00] . The program knows the 
address, which we will call the base of the first element of the array. When 
the program encounters the statement 

x : = toto[i ] ,  

i t  first calculates the offset of the memory compartment containing toto[i ] ;  that 
is, the amount of the displacement needed to reach i t  start ing from toto[O] 

address = base + offset = base + i .  

This done, i t  effects the assignment. (Exercise: what i s  the offset for toto[ a . .  b] ?) 
The array of booleans toto[O . . I OO, 0 . . 1 00] occupies a memory segment con­

sisting of I 0 I x I 0 I = I 0 , 20 I octets. This  segment starts with the first l ine, 
then the second, and so on (television scanning) . The offset of the element 
(i, j) i s  10 I x i + j and, so, its address i s :  

address = base + offset = base + I 0 I x i + j .  

(Exercise: what is the offset for the array toto[a . .  b , c . .  d ] ?) 
The situation is more complicated when we are not deal ing with booleans. 

Suppose, for example, that toto[O . . I 00, 0 . .  I 00] i s  an array of real numbers . 
Knowing that a real number occupies 6 octets, the program reserves a segment 

1 However, the V+ option in  compi l ing does permit detection of th is  type of error (at 
the expense of speed of execution) .  
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of memory 6 1 206 = 6 x 1 020 1 octets in length for the array. The first of the 
six octets where toto [ i ,  j ]  is lodged then has the address: 

address = base + offset = base + 606 x i + 6 x j. 

There is  now an extra multipl ication . 

Observe that accessing elements of an array induces hidden additions and 
multiplications and these slow the execution of a program. A programmer who 
is  unaware of this peculiari ty might imagine, for example, that the statement 

x := toto[ i ,  j ]  + toto[k , € ]  

requires a single addit ion, whereas in reality the program executes five addi­
t ions and four multipl ications !  

For beginners 

If you have assimi lated the above, the fol lowing code wi l l  dismay you : 

X[k] := 0 ; for i := 1 to n do X[k] := X[k] + a[ i] 

Although it takes a l i ttle longer to type, a good code is :  

temp :=  0 ;  
for i :=  1 to n do temp := temp + a[i ] ; 
X[k] := temp 

When a program runs too slowly, it can be helpful to replace some smal l arrays 
of fixed size by variables. 

Exercise 1 (Solution at end of chapter) 
Consider the array with k + 1 indices toto[min0 • .  max0 ,  . . .  , mink . .  maxk ] .  What 
is the length of the segment of memory that is used? What is the offset of the 
element toto[i0 , . . . , h ] ?  (Use the expansion in a variable base explained in 
Chapter 2 to generalize television scanning . )  

6.4. Declaration of an Array 

One particularly d isagreeable feature of Pascal is that an array can never 
change size during the execution of a program. If we want to work with 
matrices with real coefficients, we must know in advance the largest dimension 
and declare i t :  

const dim_max = 1 0 ; 
type matrix = array[ l . .dim_max, l . .dim_max] of real ; 
var A : matrix ; 
nb_rows, nb_col : integer ; 
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Thus, in Pascal, a matrix is a triple (A , nb_rows, nb_col) . There is ,  unfortu­
nately, no other way to handle this if one desires the comfort of the declaration 
array. 

Pascal is an old language; its modem successors do not have this l imitation. 
The reason for this l imitation has much to do with the expressed goal of Pascal : 
it is above all a language designed to inculcate good programming reflexes. It 
was never designed for the industrial world .4 

6.5. Product Sets and Types 

A mathematical problem often contains  complicated objects. Happily, the ma­
jority of such objects belong to product sets. When we wish to store such 
product sets, we must first ask ourselves whether or not the sets are equal . 

6.5. 1. Product of equal sets 

We need the set M = en . If E_type is the type of the elements of E ,  we write : 

type power_of_E = array[ l . .n] of E_type ; 
var M :  power_of_E ; 

The element with "coordinates" (i 1 , • • •  , in ) is then written as M [i � . . . . , in ] . 

Examples 

1 )  If we want to use the vectors U,  V ,  W and matrices A ,  B , C with integer 
coordinates, we write : 

type vector = array[ l . .n] of integer ; 
matrix = array[ 1 . . n, 1 . .  n] of integer ; 
var U, V, W :  vector ; 
A ,  B, C :  matrix ; 

The i -th coordinate of U is U [i ]  and the element ( i ,  j )  of A is A [ i , j ] .  

2 )  If a program manipulates the columns of a p x n matrix ,  i t  can b e  useful 
to use the type : 

type column = array[ l . .n] of integer ; 
matrix = array[ l . .n] of column ; 
var A ,  B, C : matrix ; 

The j -th column of the matrix A is A [j ] and the i -th element of the j -th 
column is A [j ] [i ] .  The compiler wi l l  not take offense if you type A [j ,  i ]  (but 
pay attention to the interchange of indices ! ) .  

4 A conference delegate from a mult inational corporation told t o  a friend the fol ­
lowing: "When I want to  certain of an algorithm,  I program it in  Pascal because I 
know that the compi ler w i l l  let noth ing pass. If I want someth ing that runs quickly, 
I program it in  C. Final ly, when I have three l i nes of code to write, I use B asic." 
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6.5.2. Product of unequal sets 

We often need the product of unequal sets, say M = £2 x F3 x G .  If E_type, 
F_type, G_type are the types of the elements of E, F ,  G, we will write : 

type product_E2_F3_G = record 
pr 1 ,  pr2 : E_type ; 
pr3 , pr4, pr5 : F_type ; 
pr6 : G_type ; 

end ; 
var M : product_E2_F3_G ; 

To store the element (e 1 ,  e2, f 1 ,  f3 ,  f3 ,  g )  of M,  we write indifferently: 

M. prl := e 1  ; M. pr2 := e2 ; 
M. pr3 :=f 1  ; M. pr4 :=f2 ; {:=} 
M. pr5 :=f3 ; M. pr6 := g 

6.5.3. Composite types 

with M do begin 
prl := e 1  ; pr2 := e2 ; 
pr3 :=f 1  ; pr4 : =f2 ; 
pr5 :=f3 ; pr6 := g 

end 

Beginners are often troubled by composite types .  Consider, for example, the 
following impressive declaration : 

type toto = record 
whole : integer ; 
exist : boolean ; 
re , im : real 

end ; 
tat a = array[ l . .n ,  l . .n] of toto ; 
titi = record 

I u :  toto ; 
v :  tata ; 

end ; 
var X : titi ; 

How can one use the the impossible object that we are cal l ing X?  To see 
how, imagine that we are a compi ler: 

• X. u i s  an object of type toto. As a resul t  X. u . whole i s  an integer, X. u . exist 
is a boolean , and X. u. re, X. u. im are two reals ;  

• X. v is of type tata, whence X. v[i] is  of type toto. As a result, X. v[i] . whole 
is an integer. so that X. v[i] . exist is a boolean and X. v[i] . x, X. v[i] . y  are reals .  
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Remark 

Pascal allows assignments between two objects of the same type :  

X : =  Y;  +--- allowable assignment 

1 1 7 

But, you should not conclude that tests of equal i ty between two objects of the 
same type are permissible - they aren ' t :  

if X = Y +--- illegal equality test 
then . . .  

For example, if your program manipulates polynomials, you can use a vari­
able of polynomial type which you might call poly_zero and in which you 
store the zero polynomial . Each time that you want to zero out a polynomial , 
it suffices to type P : =  poly_zero. 

6.6. The Role of Constants 

Suppose that we want to translate the statement t : =  r + s into Pascal where 
r and s are two fractions. We must teach our program fractions because the 
language Pascal does not contain this type (the only types avai lable are integers 
and reals) .  Knowing that a fraction is a pair (numerator, denominator) we use 
an array, which leads to the fol lowing declaration :  

type fraction = array[0 . .  1 ]  of integer ; 
var r, s, t :  fraction ; 
procedure add_frac(var t : fraction ; r, s : fraction) ; 
begin 
t[O] := r[O] * s[ 1 ]  + r[ 1 ]  * s[O] ; {calculation of the numerator of t} 
t[ 1 ]  :=  r[ I ]  * s[ I ]  ; { calculation of the denominator of t} 
simplify(t} 

end ; 

But this is the clumsy programming of a beginner! When we write this  
code, we must constantly remember that t [O] designates the numerator of the 
fraction t and t [ 1 ]  its denominator. Sooner or later, aided by fatigue, we wil l  
make a mistake5 because part of our energy i s  devoted to remembering these 
conventions. 

This is why decent programming languages allow one to name constants so 
that one can remember to what they refer. The fol lowing code 

const ---->.. { t [num] :=  r [num] * s [den ] + r [den] * s [num] ;  
num = 0 ; ----r 
den = 1 ; t [den ] : =  r [den ] * s [den ] ;  

5 One cannot c l imb stairs whi le chewing gum. 
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is better because it makes it unnecessary to recal l which index represents the 
numerator. Comments are not necessary ; the self-documentation makes the 
program more certain and legible. 

Remark 

We could have used a record to code our fractions:  

type fraction = record 
I num, den : integer ==} { t .  num

.
:: r. num * s. de� + r. den * s. num ; 

end ; t . den .- r. den * s . den , 
var r, s, t : fraction ; 

This solution has a slight advantage over the proceeding:  typing t. num 
requires five characters, whereas t [num] requires six (there are two brackets) .  
The demand on the memory is  the same because a record i s  stored in  a similar 
manner to an array. 

For beginners 

Suppose that we want to work in <Q[i ] ;  that is ,  with complex numbers of the 
form 

a 1 . a2 z = - + t - • a 1 , a2 E Z, b 1 , b2 E N* . b l b2 
To find a good type, experience shows that it is best to seek first the most 
convenient notation by trying them out in several l ines of code. Once thi s  is 
decided, the construction of the appropriate type then proceeds easi ly. 

If we want to let z. re . den denote the real part of the denominator of z ,  we 
would use the declaration on the left. But if we were to decide that z [den] . re 
i s  preferable, we would use the code on the right. 

type fraction = record 
I num, den : integer 
end ; 
type complex = record 
I re , im : fraction 
end ; 

Exercise 2 

const num = 0 ; den = 1 ; 
type fraction = record 
I num, den : integer 
end ; 
complex = array[num . .  den] of fraction ; 
var z : complex ; 

Reconstruct the declarations which correspond to z . re.den, z [re] [den] , z . re[den] ,  
z [den ] . re and z [den] [ re ] .  More general ly, what are the declarations that allow 
to write: P[i, kJ U] , Q [ i ,  k ] . coeff[j ] ,  R[ i ] . toto[3] .alpha[5 ] ,  R [i ] . toto[3 ] .beta[5 ] 
and toto . tata . titi . thing. 



6.7 . Litter 1 1 9 

6.7. Litter 

When you declare a variable x ,  you say to the program: "Reserve a segment in 
RAM to store the value of x". The program doesn ' t  do anything else: i t  does 
not "clean up" afterwards by, for example, setting all the octets to zero. If you 
do not in i tial ize the variable x, you ri sk finding remains of other programs. 

Here is  an analogy: you buy some land several miles from your house. Your 
lawyer wi l l  ask a surveyor to mark off the boundaries of the field and wi l l  
draw up a sales contract, but he or she wi l l  not clear the field which might be 
covered with l itter, broken bottles, or underbrush. This i s  left to you . 

This phenomenon is very easy to demonstrate. Type the fol lowing program: 

program litter ; 
var vector = array[ I . .  I 000] of real ; 
i : integer ; 
begin 
I for i := 1 to 1 000 do writeln ( vector[ i ] )  
end . 

If you run this program right after you have turned on your computer, 
you wi l l  probably only obtain zeroes on the screen .  However, if you run the 
program after having previously run some other program which uses a lot of 
memory, you wi l l  see numbers appear randomly on the screen which are the 
"litter" the preceding program left behind.  

For beginners 

Think of this any time that you are tempted to complain "I do not understand :  
my program worked so wel l  yesterday !" .  Yesterday, you probably used a ma­
chine that had been just turned on, so that all the memory was set to zero and 
the absence of in i tial ization did not manifest itself. Today, the faulty program 
was not the first to run on the machine, and the variables that you forgot to 
initial ize were in itial ized by the l i tter left by the preceding program resulting 
in aberrant values of the variables. 

6.8. Procedures 

One should think of a procedure as a black box which information enters and 
leaves. 

A procedure i s  a small program which functions inside the main program. For 
this reason , the syntax of a procedure resembles that of a program: 
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Fig. 6.1. 
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arguments witll var 

variables wllich exist before tile procedure en// 

procedure toto(x1 : type1 ; x2 , X3 : type2 ; var X4 : type3) ; 
declaration of the constants of the procedure ; 
declaration of the types of the procedure ; 
declaration of the variables of the procedure ; 
declaration of procedures and functions ; 

known by the single procedure toto 
begin {procedure }  
I body of the procedure 
end ; {procedure} 

Notice that following two ways in which the syntax of a procedure differs 
from that of a program: 

• if a procedure possesses arguments, the name of the procedure is followed 
by the list of arguments in parentheses ;  

• the final "end" of  a procedure is followed by a semicolon (since the final 
"end" of a program is followed by a period). 

Before explaining what a program does when it encounters a procedure or 
function call, we clarify some points of syntax . 

6.8.1. The declarative part of a procedure 

Here are three declarations of procedures: 

procedure toto ; 
procedure tata (x : real) ; 
procedure titi (x, y :  real ; var t :  real ; n : integer) ; 

• The procedure toto is a procedure without an argument (or without a 
parameter) . 

• The precedure tata possesses a single argument .  

• The procedure titi possesses four arguments. 

The words argument and parameter are synonyms. An argument can be 
preceded by the reserved word "var" . The number of arguments of a procedure 
is always the same.6 Final ly, the arguments of a procedure need not be declared 
variables. These are "placeholders" in a sense which we wil l  make precise later. 

6 With the exception of certain system procedures such as write, read and concat. 
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For beginners 

Each argument is necessari ly fol lowed by its type. Consequently, if you write 
your declaration as 

procedure toto (x : array [ 1 . . 1 0] of real) ; 

the compiler wil l  complain because "array[ l . . l O] of real" is not a type ! 
From the strict point of view of syntax , the compiler expects to find an iden­
tifier after the "x". The presence of the square bracket in "array[" triggers the 
protest. 

6.8.2. Procedure calls 

One says that one calls the procedure titi when one writes 

. . .  ; titi (u , V, W ,  k ) ;  . . .  

A procedure cal l is  a statement; the arguments are separated by commas. One 
can cal l a procedure anywhere that one can write a statement, so, for example, 
in the interior of another procedure or a function : 

x := x +  1 ;  toto; y := sin(x) ; tata (log(x) ) ;  titi (x, 2 * x +  1 , x, n) ; 

In the chapter on recursion we shall see that one can even cal l a procedure 
inside its own code ! 

There is an essential difference between parameters "with var" and parame­
ters "without var". 

• A parameter "without var" can be replaced by any ari thmetic expression, 
in particular by the name of a variable or a constant. Of course, the arithmetic 
expression in question must only contain variables known to the program at 
the moment of the procedure cal l .  

• In contrast, a parameter "with var" can only be  replaced by  a variable 
known to the program; any other arithmetic expression is rejected. If we return 
to the procedure titi, we do not have the right to type titi (x , x ,  x + y, n) or 
titi (x , x ,  1 00,  n) because the third argument is  preceded by a "var" in the 
declaration of titi. 

One says that a parameter "without var" is passed by value and that a 
parameter "with var" is passed by address. We wil l  return to this subject at 
much greater length in Chapter 1 3 . 
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For beginners 

One meets from time to time, in the body of the principal program, horrors 
such as: 

begin 

I choose_vector(var X :  vector ; var n :  integer) ; 
procedure toto(var u : integer ; a ,  b : real) ; 

end . 
These syntactic monstrosities result from a grave confusion between declar­

ing a procedure and cal l ing that procedure.  When we declare a procedure, we 
are educating our program; when we call a procedure, we are demanding that 
our program act, not learn ! 

6.8.3. Communication of a procedure with the exterior 

Remember our black box model (Fig. 6. 1 ) .  
• The values of the parameters passed by value are "photocopied" into 

special variables automatical ly created for this occasion (this is the reason that 
parameters "without var" need not be declared variables) .  S ince the procedure 
actual ly works with copies, the original parameters are therefore never modified 
by the procedure.  

• On the contrary, parameters passed by address are real ly communicated 
to the procedure which allows the procedure to actually modify their value. 
This i s  the reason that parameters "with var" can only be names of variables. 

In a somewhat more suggestive manner,we say that parameters "with var" 
leave a procedure ;  we also say that the procedure returns its calculations in 
arguments passed by address. 

• The variables local to a procedure, which are created at the moment the 
procedure is called, are destroyed at the end of the cal l .  Thus, their values do 
not leave the procedure.  

Examples 

1 )  We write a procedure to calculate the sum Z = X + Y of two vectors of 
dimension dim. 

procedure sum_ vector(X, Y :  vector ; var Z :  vector ; dim : integer) ; 
var i : integer ; 
begin 
I for i := 1 to dim do Z[i] := X[i] + Y[i] 
end ; 

We communicate the vectors X,  Y to the procedure as well as their com­
mon dimension dim: these arguments are passed by value. The result Z must 
necessarily be passed by address because it must leave the procedure .  
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2) Suppose we want to write a procedure to choose a vector X .  
procedure choose_vector(var X :  vector ; var dim : integer) ; 
var i : integer ; 
begin 
repeat 
I write (' dim = ') ; readln (dim) 
until ( 1  .::: dim) and (dim .::: dim_max) ; 
for i :=  1 to dim do begin 
I write (' X[' , i : 1 ,  ' ] = ') ; readln (X[i] ) 
end 

end ; 
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We do not communicate any information to the procedure. This arrives, 
via the keyboard, when i t  is  activated, not before. Thus, there i s  no argument 
"without var" because the procedure does not need any information to function .  
On the other hand, the arguments X and dim, which are destined to receive 
our messages and leave, are passed by address. 

For beginners 

1 )  Here is an error that one often encounters (notice the location of the 
variable Z) :  

procedure sum_vector(X, Y :  vector ; dim : integer) ; 
var i : integer ; Z : vector ; 
begin 
I for i := 1 to dim do Z[i] : =  X[i] + Y[i] 
end ; 

Syntactical ly thi s  program is correct, but semantical ly it is false ! As we have 
already pointed out, a procedure destroys its local variables once it finishes its 
work: the vector Z winds up "in the garbage" . . .  

2) Here is an even larger error ( the two vectors Z) committed by individuals 
who are genuinely indifferent to computer science (these exist) and who refuse 
to respect the difference between the "var" that one puts before an argument 
and the "var" which serves to declare the local variables in a procedure.  

procedure sum_ vector(X, Y :  vector ; dim : integer ; var Z :  vector) ; 
var i : integer ; Z : vector ; 
begin 
I for i := 1 to dim do Z[i] := X[i] + Y[i] 
end ; 

How can one distinguish the two vectors Z? This is not honest ! And how 
wil l  the compiler be able to guess what i s  going on in the programmer 's head? 
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3) We end with an error that one encounters fairly often . We want to translate 
the pseudo-statement "X : =  X +  Y" into code . 

procedure add_vector(X, Y :  vector ; var X :  vector ; dim : integer) ; 
var i : integer ; 
begin 
I for i := 1 to dim do X[i] := X[i] + Y[i] 
end ; 

Here the programmer wrongly imagines that what enters (the vector X 
alongside f )  must be distinct from what leaves (this is why "var X " is present 
at the end. The compi ler is  not bothered by the presence of two arguments 
with the same name. 

6.9. Visibility of the Variables in a Procedure 

Consider the programs visibility_ ] and visibility_2. The program visibilty_l 
writes 1 999 three times in succession while visibility_2 writes 1 999, 1 5 1 5  
then 1 999. 

program visibility_ ! ; 
var x : integer ; 

procedure toto_ I ; 
begin 
I writeln (x) 
end ; 

begin 
X : =  1 999 ; 
writeln (x) ; 
toto_ l ; 
writeln (x) 

end . 

From this observation, we can deduce: 

program visibility_2 ; 
var x : integer ; 

procedure toto_2 ; 
var x : integer ; 
begin 
l x := 1 5 1 5 ; writeln(x) 
end ; 

begin 
X : =  1 999 ; 
writeln (x) ; 
toto_2 ; 
writeln(x) 

end . 

• that the procedure toto_ I "sees" the global variable x of the program 
because it is capable of writing its value; 

• that the local variable x of the procedure toto_2 provisionally masks the 
global variable x of the program but this last variable reappears once the 
procedure ceases functioning.  

Al l  variables which exist at the moment of a procedure cal l are global 
variables for the procedure.  Consequently, the variables of a program are global 
for al l procedures. 
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A procedure sees al l variables which exist at the moment a procedure is  
called except those whose names are masked by local variables. 

Consider now the principal part of a program which chooses vectors X 
and Y and displays the result :  

begin 
choose(X, Y, dim) ; 
sum_vector(X, Y, Z, dim) ; 
display(Z, dim) 

end . 

begin 
choose(X, Y, dim) ; 
sum_vector(X, Y, Z) ; 
display(Z) 

end . 

When we write a program, it is difficult to remember at each instant that 
dim is the true dimension of the vectors. S ince all procedures see the variable 
dim, we can suppress the references to dim i n  the procedures sum_ vector and 
display (as in the program on the right). Of course, you must then modify the 
procedure sum_ vector. 

procedure sum_vector(X, Y :  vector ; var Z :  vector) ; 
var i : integer ; 
begin 
I for i := 1 to dim do Z[i] := X[i] + Y[i] 
end ; 

Procedures are simpl ified thereby. There is less "background noise" and the 
program is easier to follow and functions perfectly. But this freedom also has 
disadvantages : 

• If the program is being written simultaneously by several persons,  each 
programmer must know the l ist of global variables of the program. 

• If we write a procedure that we intend to re-use in  another program (as in 
a library of procedures), we must absolutely not allow ourselves this freedom 
because we do not know in advance what the global variables of the program 
wil l  be. It is then essential to write airtight procedures; that is, procedures 
which only communicate with the exterior via their parameters . 

6.10. Context Effects 

Consider the program context_effects whose main part is  the fol lowing: 

begin 
I x := 1 999 ; writeln (x) ; surreptitious ; writeln (x) 
end . 

Nothing allows us to foresee that the program wil l  write 1 999, then 1 5 1 5 !  
In other words, there is no way we could know that the variable x is  modified 
by the procedure surreptitious. This frightening phenomenon , called a context 
effect, is a mechan ical consequence of the visibi l i ty of global variables in a 
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procedure:  because the procedure can see global variables, it can modify them. 
Context effects are a resul t  of bad programming which must be avoided at all 
costs. A procedure should only modify parameters which are transmitted to it 
by address, and should not touch the others. 

program context_effect ; 
var x : integer ; 
procedure surreptitious ; 
begin 
l x := x - 484 
end ; 
begin 
I x := 1 999 ; writeln (x) ; surreptitious ; writeln (x) 
end . 

Nonetheless, context effects are often tolerated. Consider a medium size 
program that in i tializes 50 variables when it starts. 

begin 
message ; 
diverse_initializations ; *- voluntary context effects 

end . 
The procedure diverse_initializations gives in i tial values to the 50 variables 

by context effects : i t  would be rather painful to declare 50 arguments "with 
var" (or ten procedures with five arguments) .  But, be honest: do not forget to 
document i t  because you are playing with fire. 

For beginners 

Context effects are sometimes involuntary (these are the most frightening 
ones). Consider the main part of a program which chooses a square matrix :  

begin 
1 . . . ; choose_matrix(A)  ; . . . 
end . 

The programmer, blinded by the matrix ,  has forgotten that it is a pair (array, 
dim). Nevertheless, the program functions correctly because it is written as 
fol lows : 

procedure choose_matrix(var A : matrix) ; 
var i , j  : integer ; 
begin 
write ( 'dim = ' ) ; readln (dim) ; *- involontary context effect 
for i := 1 to dim do 
for j := 1 to dim do begin 
I write ('A [' , i :  1 ,  'j :  1 ,  ' ] = ' ) ;  readln(A [i ,j ] )  
end 

end ; 



6. 1 0. Context Effects 1 27 

The right declaration is  

procedure choose_matrix(var A : matrix ; var dim : integer) ; 

Here is another typical example of an involuntary context effect. Suppose 
that we want to calculate the determinant of a square matrix (the choice of 
algorithm does not matter) . Beginners often propose the fol lowing code: 

choose_matrix(A )  ; 
determinant(A )  ; 

When one asks the author, he or she, disconcerted ( is my identifier not clear 
enough?), responds that determinant calculates the determinant of the matrix .  
When you remark that the syntax is  that of  a procedure cal l ,  the author replies 
by promising to introduce a variable, call i t  det, in the interior of the procedure 
which allows the procedure to store the value of the determinant. But, since 
this variable is  not among the parameters of the procedure, we now have a 
context effect ! What 's  worse, the program runs !  A good solution is to use a 
function : 

choose_matrix(A )  ; 
det :=  determinant(A ) ; 

Since an arithmetic expression can contain the value of a function, the code 
on the right is  better: 

det := determinant(A ) ; 
if det =I- 0 then . . .  

6. 10.1 .  Functions 

if determinant(A )  =I- 0 
then . . .  

The syntax is simi lar to that of a procedure with two differences: 

1 )  a function has a type which one must not forget in a declaration ; 

2) one must not forget to give a value to the function : 

function sum(x : vector ; n : integer) : real ; 
var i : integer ; temp : real ; 
begin 
temp :=  0 ;  
for i :=  1 to n do temp : =  temp + x[i] ; 
sum := temp 

end ; 

function is_solution (a, b : integer) : boolean ; 
begin 
I if a div b then is_solution := true else is_solution : = false 
end ; 
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The name of a function can occur alone before the assignment sign ; in 
contrast, i t  must be fol lowed by an open parenthesis and a l ist of arguments 
after the assignment sign . The fol lowing code is  therefore incorrect :  

function sum(x : vector ; n : integer) : real ; 
var i : integer ; 
begin 
sum := 0 ; { legal}  
for i : = 1 to n do 
sum :=  sum + x[i ]  ; 
{ sum after " := " is not allowed alone } 

end ; 

You can redefine the value of a function as many times as you l ike : 

function last_place_nonzero(x : vector) : integer ; 
var i : integer ; 
begin 
last_place_nonzero := - I  ; 
for i : = 1 to n do 
if x[i] =I- + then last_place_nonzero :=  i 

end ; 

When the name of a function occurs in the code that defines the value of 
the function, one says that the function is recursive . The best known examble 
is  that of the factorial function which we will study in detai l in Chapter 1 2 . 

6. 10.2. Procedure or function ? 

A function in old Pascal can only be of basic type: boolean , integer, real, or a 
string of characters . It cannot have a more complicated type (that is ,  a type that 
one teaches to the compiler). This historical l imitation 7 of the Pascal language 
leads many beginners astray. Suppose for example that I need the product of 
two matrices. I would l ike to declare the function 

function product_matrix(X, Y :  matrix) : matrix ; 

and use it in the fol lowing very natural way 

. . .  ; Z :=  product_matrix(X, Y) ; 

However, if my Pascal does not accept functions of the type matrix, I must 
use a procedure instead 

procedure product_matrix(var Z :  matrix ; X, Y :  matrix) ; 

7 This l imitation dates to an era when machi nes were not as powerful as today and 
when modern languages did not ex ist. 



6. 1 1 .  Procedures: What the Program Seems To Do 1 29 

and type 

. . .  ; product_matrix(Z, X, Y) ; . . .  

in  the program. This is  reminiscent of a phenomenon which is  quite fami l iar 
to mathematicians :  we can explicitly define a function z of the variables x 
and y by z = f (x ,  y) or implicit ly by f(z ,  x ,  y) = 0. 

6.11.  Procedures: What the Program Seems To Do 

The description8 that follows is not at al l  realistic (we will see why in Chap­
ter 1 3 ) .  However, i t  permits us to understand and predict the effect of cal l ing 
a procedure .  

procedure toto(x, y,  z : integer ; var u : real) ; 
var i : integer ; 
begin 
i := X ;  
X :=  X +  1 ;  
u := x + y/z 

end ; 

When the program encounters the statement 

toto(i ,  1 5 1 5 , A + B  mod 3 , R} ,  

what occurs is as if the program were to execute the following sequence of 
actions :  

• creation of the auxil iary variables x_toto, y_toto, z_toto and i_toto ( this  is  
provoked by the arguments "without var" x, y ,  z and the local variable i ;  the 
variable "with var" u is  not involved) ;  

• init ial ization of the aux i l iary variables 

x_toto := i ;  y_toto := 1 5 1 5 ;  z_toto := A +  B mod 3 ;  

i n  other words, the procedure "photocopies" the values of the arguments i ,  
1 5 1 5  and A +  B mod 3 into x_toto, y_toto and z_toto (the local variable i_toto 
is not involved) ;  

• modification of the code of the procedure:  the parameter u passed by 
address is  replaced by the argument R and the variables x, y, z ,  i are replaced 
by x_toto, y_toto, z_toto, i_toto which gives the new code 

i_toto := x_toto ; 
x_toto : = x_toto + 1 ; 
R :=  x_toto + y_totojz_toto 

8 This description is the result of a collaboration with Michele Loday-Richaud. 



1 30 6. The Pascal Language 

• execution of the modified code; 

• destruction of the auxi l iary variables x_toto, y_toto , z_toto and i_toto once 
the new code i s  executed. 

In summary what happens is  as if the fol lowing actions were carried out: 

1 )  creation of the auxi l iary variables x_toto, y_toto, z_toto, i_toto; 
2) in i tialization of x_toto, y_toto and z_toto by the values occupying the 

locations of the variables "without var" x, y and z ;  
3 )  modification of the code of the procedure : 

• x, y, z and i are replaced by x_toto, y_toto, z_toto and i_toto; 
• the parameter "with var" u i s  replaced by R ; 

4) execution of the new code 

5) destruction of the new variables x_toto, y_toto, z_toto and i_toto. 

Remarks 

1 )  To create a variable means to reserve a free location in memory. Re­
member that reserve does not mean clean. It is quite possible that the location 
chosen by the program is the address of a variable which had been "destroyed" 
and which contains l i tter. 

2) To destroy a variable simply means to authorize the program to use the 
address for another procedure cal l .  

This model allows us to  understand why: 

• the parameters of a procedure need not be declared variables in the pro­
gram; 

• the statement x :=  x + 1 does not modify the variable x :  in effect, the 
procedure works on the copy x_toto and not on the original x !  

• the program does not confuse the global variable i of the program (if such 
exists) with the local variable i ;  the local variable i prov isional ly masks the 
global variable i ;  

• an arithmetic expression can not occupy the place of a parameter trans­
mitted by address and why such a parameter can change value: in our model ,  
the call toto(x , y ,  z ,  R + 1 )  would be  transformed into the absurd assignment 
R + 1 := x_toto + y_totojz_toto (absurd because R + I i s  not an identifier). 

Let us test our model with the program: 

program test ; 
var i, A ,  B :  integer ; 
procedure toto(x : integer ; var y : integer) ; 
var i : integer ; 
begin 

I wr�teln ( : ent� in�o t�to' ) ; , 

. wrLteln ( x =  , x . l , , y =  , y . l , ' , i = ' , i :  1 ) ; 
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i :=  1 0  ; X : =  X +  i ; y := X +  2 * y ; 
writeln ('x = ' , x : 1 , ' , y = ' , y : 1 , ' , i = ' , i :  1 ) ; 
writeln (' exit from toto' ) ; 

end ; 
procedure message ; 
begin 
write In (' - - - - -' ) ; 
writeln ('main program') ; 
writeln (' i = ' , i : 1 ,  ' , A = ' , A  : 1 ,  ' , B = ' , B : 1 )  ; 
writeln (' - - - - -' ) ;  

end ; 
begin 
i : = 1 994 ; A : = 3 ; B : = 5 1 ; 
message ; toto(A ,  B) ; 
message ; toto (A + 9, B) ; 
message ; toto (A , A )  ; 
message ; toto(B, A )  ; 

end . 

When we let the program run ,  here is what we obtain :  

main program: i = 1 994, A = 3 ,  B = 5 1  

entry into toto : x = 3 ,  y = 5 1 ,  i = 8 1 96 
exit from toto : x = 1 3 , y = 1 1 5 ,  i = 1 0  

main program: i = 1 994, A =  3 ,  B = 1 1 5 

entry into toto : x = 1 2, y = 1 1 5 ,  i = 8 1 96 
exit from toto : x = 22, y = 252, i = 1 0  

main program: i = 1 994, A = 3 ,  B = 252 

entry into toto : x = 3 ,  y = 3 ,  i = 8 1 96 
exit from toto : x = 1 3 , y = 1 9, i = 1 0  

main program: i = 1 994, A = 1 9, B = 252 

entry into toto : x = 252, y = 1 9, i = 8 1 96 
exit from toto : x = 262, y = 300, i = 1 0  

main program: i = 1 994, A = 300, B = 252 

1 3 1  
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We can already see the "l i tter" phenomenon . Each time the procedure toto 
is called, the procedure creates the local variable i which i s  called i _toto in 
our model .  Since i_ toto i s  not yet in i tialized when we want to see the values 
of x ,  y, i (which are called x_toto ,  y_toto, i_ toto in our model) ,  the program 
displays the unexpected value i = 8 1 96 stemming from the residue of earl ier 
activity in  the memory allocated to the local variable i .  

We also obtain these results without using our computer with the aid of our 
model .  

i := 1 994; A := 3 ;  B := 5 1 ;  

creation of x_toto and i_toto 
x_toto := A ;  i _toto :=  10 ;  
x_toto :=  x_toto + i_toto; 
B := x_toto + 2 * B ;  
destruction of x_toto and i _toto 

creation of x_toto and i _toto 
x_toto := A +  9; i _toto := 1 0; 
x_toto :=  x_toto + i _toto; 
B := x_toto + 2 * B ;  
destruction of x_toto and i_toto 

creation of x_toto and i_toto 
x_toto := A ;  i _toto :=  1 0; 
x_toto :=  x_toto + i _toto; 
A := x_toto + 2 * A ; 
destruction of x_toto and i_toto 

creation of x_toto and i_toto 
x_toto := B; i _toto := 1 0; 
x_toto :=  x_toto + i_toto; 
A := x_toto + 2 * A ; 
destruction of x_toto and i _toto 

call toto( A ,  B)  

ca l l  toto( A + 9, B)  

ca l l  toto( A ,  A)  

call toto( B ,  A )  

Executing these statements b y  hand allows us t o  recover the values displayed 
by the machine. 
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Exercise 3 

In the preceding program, replace the global variables A ,  B by x ,  y in the 
declarative part and the main body of the program. Explain ,  using the model ,  
why the displayed values are the same as before. 

6. 11. 1. Using the model 

Let us return to the procedure to choose a vector, 

procedure choose_vector(var X :  vector ; var dim : integer) ; 
var i : integer ; 
begin 
write (' dim = ') ;  readln(dim) ; 
for i :=  1 to dim do begin 
I write (' X[' , i : 1 ,  ' ] = ' ) ; readln (X[i ] )  
end 

end ; 

When the variables X and dim are transmitted to the procedure, their values 
are "random" (they are l itter: one also says that they are indefinite) .  Our model 
shows that the procedure choose gives the variables X and dim the values 
provided by the keyboard. Without touching the body of the procedure, let us 
now ask what would happen if we were to modify the declarative part : 

• One argument is passed by address and the other by value: 

procedure choose_vector(var X :  vector ; dim : integer) ; 

Here, the procedure replaces the random contents of the variable X and of the 
variable dim_choose_ vector from our model by information entered from the 
keyboard. The vector X i s  then corectly initialized. By contrast, the dimension 
(which was sent to the auxi l iary variable dim_choose_vector) is  lost and the 
variable dim retains the random value that i t  had earl ier. 

• The two arguments are passed by value: 

procedure choose_vector(X : vector ; dim : integer) ; 

Now, the procedure modifies X_choose_vector and dim_choose_vector: the 
variables X and dim retain their indefinite values. 

For beginners 

1 )  When starting, one should be very conscientious about passing parameters 
and not allow oneself any fantasies. Consider, for example, a procedure which 
returns as Z the product of the matrices X and Y .  

procedure product_matrix(var Z :  matrix ; X ,  Y :  matrix) ; 
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This declaration is the only possible. The fol lowing declaration (which attempts 
to economize on memory) is incorrect, but in a subtle way, 

procedure product_matrix(var Z, X, Y :  matrix) ; 

In effect, the result is correct each time that Z =I- X and Z =I- Y .  On the 
contrary, it is grossly false as soon as we want to calculate X := X Y  or 
X : =  X2 . To understand why, suppose that we want to calculate X := X2 

when X is of dimension 2. The procedure begins, for example, by calculating 

X [ l , 1 ]  := X [ l , 1 ]  * X [ l ,  1 ]  + X [ l , 2] * X [2 , 1 ] . 

The in i tial value of X [ l ,  1 ]  having been destroyed, the next X [i , j ]  wil l  be 
incorrect . . .  We draw from this a proverb : 

One should never modify the data of a program. 

2) If, after a procedure is called, you obtain aberrant values (for example, 
integers that are too large or negative when you are working in the interval 
[ 1 ,  1 0] ,  or else real numbers that are "infinitely large" or "infinitely smal l") ,  
this is  because you have forgotten the "var". As you see, these values are 
l i tter; the true results have been volatized . . .  

6.12. Solutions of the Exercises 

Exercise 1 

The index i1 E [min1 , max1 ] takes b1 = max1 - min1 + 1 possible values, so 
that the array contains b0 · · · bk elements. To set up a bijection between the 
elements of the array and the interval [0, b0 · · · bk [ ,  we use the expansion in 
a variable base (Chap. 2) by considering i 1 - min1 as a number in the base b1 
s ince it satisfies the conditions 0 .::: i 1 - min1 < b1 • The desired bijection is :  

(i J , . . .  , ik ) �------+ (io - mino ) + (i l - min 1 )bo 

+ (i2 - min2 )bob 1 + · · · + (ik - mink )bob 1 · · · bk- 1 · 



It seems that the work of the engineers, physicists, and draughstmen 
is, in appearance, only to polish surfaces and refine away angles, ease 
this joint or stabilize that wing, render these parts invisible, so that 
in the end there is no longer a wing hooked to a framework but a 
form flawless in its perfection, completely disengaged from its matrix, 
a sort of spontaneous whole, its parts mysteriously fused together and 
resembling in their unity a poem. It seems that perfection is attained 
when there is  nothing more that can be cut out. 1 A t the height of its 
evolution the machine dissembles its own existence. 

Antoine de Saint Exupery,  Terre des hommes 

7.1 .  Inverse of an Order 4 Matrix 

Let A be an n x n matrix with coefficients in a ring. The adjoint of A is the 
matrix of cofactors of A ;  that is, the matrix 

Ad
. 

- c 1 ) i+j · c · · ) J i . j - - mmorn- 1 1 ,  J , (7 . 1 )  

where minorn - t ( i ,  j )  denotes the (i , j ) -th minor; that is ,  the determinant of 
the (n - 1 )  x (n - I )  sub matrix obtained by deleting the i -th row and j -th 
column of A .  

Theorem 7. 1 .1 .  With the notation above, 

' Adj ( A )  · A  = A · ' Adj ( A )  = det (A ) / .  (7 .2)  

Proof When we multiply the i -th row of ' Adj ( A )  by the i -th column of A,  we 
obtain the Laplace expansion of the determinant of A along the i -th column 
which explains why the diagonal entries are det(A ) .  

When we multiply the i -th row of ' Adj ( A )  b y  the j -th column of A ,  with 
i =f. j, we obtain the Laplace expansion of a determinant whose i -th and j -th 
columns are equal , which implies that the off-diagonal entries are zero.  

1 The emphasis i s  mine. 

7. How to Write a Program
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Corollary 7. 1 .1 .  If the determinant of A is invertible in the ring in which one 
is working, then the matrix A is invertible with inverse 

7. 1 .1 .  The problem 

1 
A- 1 = --

1 Adj ( A ) . 
det ( A )  

(7 .3)  

We are going to compute the inverse of a 4 x 4 matrix with real coefficients 
in a somewhat bizarre manner. The constraints2 are the fol lowing: 

• the calculation of A - 1 must use formula (7 . 3 ) ;  

• determinants w i l l  always be  expanded along the first column (for minors 
of order 2, this  gives the traditional formula ad - be) ;  

• minors of order 2 and 3 must only make reference to the single matrix A ;  
one i s  not al lowed to employ an auxi l iary matrix to calculate the minors. 

7. 1.2. Theoretical study 

Before 1auching into programming proper, we focus on our algorithms. The 
determinant of A must be calculated using the formula: 

a2.2 a2. J a2,4 a 1 , 2  a u a l A 
det (A )  = a � , � a3 .2 a3 , 2 a3,4 - a2 . 1 a3. 2  a3, 2 a3.4 

a4. 2 a4, 2 a4,4 a4. 2 a4. 2 a4.4 
a u a u a l A a l . 2 a u a l .4 

+ a3 , 1 a2 . 2 a2 .2 a2,4 - a4. 1 a2. 2 a2 . 2 a2.4 
a4, 2 a4. 2  a4.4 a3 , 2 a3 . 2  a3.4 

S ince there is no question of typing this formula in our future program, we 
use the technique of naming the difficult objects; that is ,  of introducing the 
function minor3 : 

det (A )  = a 1 . 1 minor3 ( 1 ,  I ) - a2. 1 minor3 (2 ,  I )  
+aJ . I  minor3 (3 ,  I ) - a4, 1 minor3 (4, 1 ) .  

(7 .4) 

The adjoint requires knowing the function minor3 ( i ,  j )  for al l values of i 
and } . 

This rai ses a new problem: how can we calculate minor3 without using an 
intermediate matrix of dimension 3?  

2 This i s  not a t  all the way in  one would calculate the determinant with a computer ! 
Gaussian e l imination is infinitely more efficient. 
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At this stage, we encounter an interesting phenomenon: while it is very 
easy to explicit ly write minor3 ( 1 ,  1 ) , minor3 ( 1 , 2 ) ,  minor3 (3 , 4) , . . .  , we have 
trouble general is ing because when we try to write minor3 (i ,  j ) ,  we obtain :  

minor3 (i , j )  = a ? , ., minor2 (? ,  ?) - . . . . 

We don ' t  know how to write the appropriate indices ! In order to advance, we 
once again name that which causes the problem and postpone a finer study of 
the stubborn objects. If minor2 (i , a, j, K )  denotes the minor of order 2 obtained 
by suppressing the rows i, a and columns } , K of A, we have 

minor3 ( i ,  j) = aa.K minorz (i ,  a , } , K )  
-a/J.K minor2 (i , {3 ,  } , K ) (7 .5 ) 

+ay. K minor2 (i , y , } , K ) .  

The indices a ,  {3 , y denote the first, second, and third l ines of the matrix 
obtained from A by suppressing the row i :  as a result, these are functions of 
the single varaible i ( in  other words, j has no connection with these three 
indexes). S imi larly, the index K = K (j ) denotes the first column of A when 
one removes the column j .  

Since there are so many unknowns, we might ask i f  we can be more efficient 
with fewer functions. 3 To do th is ,  we are going to use the old trick which 
consists of replacing the three functions a (i ) , f3 (i ) ,  y (i ) by the single function 
).. ( i ,  k)  where k indicates the function that one must choose : a when k = 1 ,  f3 
when k = 2 and y when k = 3 .  

Economy demands that we  extract what is  common in  the row and column 
indices. To do this ,  consider four lottery bal l s  arranged in the fol lowing order 

8 0 0 0  
and put 

).. (i , k) = number of the k-th ball when one removes the i -th ball. 

If we let minor2 (i � o  i2 , } 1 , }z )  denote the determinant of the 2 x 2 matrix ob­
tained by deleting the rows i 1 o i2 and the columns } 1 , }z of A ,  we have 

minor3 ( i , } ) = a-'U. l l . -'U . l l  minor2 (i , A( i ,  1 ) ,  } , ).. (} , 1 ) ) 
-a-'U. 2 J . A ( j . l l minorz (i ,  ).. ( i ,  2) , } , ).. (} , 1 ) ) (7 .6) 

+a-'U. 3 l . -'U. l l minorz (i , ).. ( i ,  3) ,  } , ).. (j ,  1 ) ) . 

3 This common sense pri nciple bears the suggestive name of Occam s razor in honor 
of the medieval English ph i losopher Occam ( 1 285- 1 349?) who phrased it as follows 
"Entia non sunt multiplicanda praeter necessitatem" (Entities should not be multi­
plied needlessly) .  
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Now that it is well -defined, the function )... does not resist our efforts long: { k if k < i ,  
).._ i k -( ' ) - k + 1 if k :::. i 0 

(7 .7) 

You can see the power of this  method.4 Had we tried to solve the prob­
lem and the sub-problem together, we would have written a horrible formula 
combining (7.6) and (7 .7) .  

All  that remains is  to find the explicit value of the function minor2 . Once 
again ,  instead of trying to go too fast, we content ourselves with introducing 
the function :  

JL (i 1 , i2 , k )  = number of the k-th ball when one removes the i 1 -th and irth ball� 

Inspired by (7 .6) ,  we can now write 

(7 .8) 

The value of the function JL i s  a l i ttle more complicated than that of A. Sup­
posing that i 1 < i2 , we find that 

if k < i J , 
if i 1 _::: k and k + 1 < i2 , 
otherwise. 

(7.9) 

The only pitfal l  would be to forget the test k + I < i2 when k E [i � > i2 D ,  
because this would give JL (i 1 , i2 , k )  = i2 when i2 = i 1 + 1 and k = i 1 . 
Remark 7. 1. 1. It is possible to find a more compact formulation with i 1 < i2 : 

Mathematicians appreciate the latter formulation. On the other hand, computer 
scienti sts see many potential booby traps here. S ince the code is  opaque, all 
kinds of errors are possible ( including typing errors) ;  how could one correct 
something this obscure? 

7. 1 .3. Writing the program 

We now translate our algorithms i nto code. We begin by sketching the body 
of the main program. 

4 Tomorrow, th ings will be better; the day after tomorrow, they will be better sti l l .  
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begin 
message ; choose (A ) ; 
matrix_inverse (A , inv_A ) ; 
display(inv_A) 

end . 
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This code contains a serious flaw: it wi l l  crash if the matrix A is not 
invertible. 5 Hence we must be carefu l .  

begin 
message ; choose (A ) ; 
if abs(det(A ) )  < c 

then writeln ('matrix not invertible' ) 
else begin 

I matrix_inverse (A , inv_A ) ; 
display(inv_A) 

end 
end . 

Remember that the test u = v between two real numbers will not give 
the desired result because of numerical errors . Thus, we must replace the test 
det (A)  = 0 by the test I det (A )  I < c where c is  chosen in a real istic manner. 

But, we cannot relax too soon ! We can (and must) improve on this second 
attempt, because we can never rely bl indly on results displayed by a machine. 
They could be wrong (but the probabil ity i s  tiny) or, what i s  more likely, we 
could have made an error in coding.  So, we wil l  only accept a result after 
verifying i t :  we require our program to multiply the matrices A and inv_A and 
display the result . If we obtain a matrix very near the identity, we know that 
the probabl i l ity of simultaneous errors which cancel one another out is  very, 
very smal l .  So a good main program is the fol lowing. 

begin 
message ; choose (A ) ; 
if abs(det(A ) )  < c 

then writeln ('matrix not invertible' ) 
else begin 
matrix_inverse(A , inv_A) ; 
display(inv_A) ; 
verification (A , inv_A ) 

end 
end . 

As you can see, several l i nes of code can require lots of time. Do not be in 
too much of a hurry. Re-read and criticize . . .  

5 Even the first time, it i s  necessary to protect yourself . . .  
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Declarations 

We can now specify the declarations used in our program. These use the 
number c and the matrices A and inv_ A .  Since the matrices are arguments in 
procedures, we must define their type : 

program matrix_inverse ; 
const c = 0 .0000000 1 ; 
type matrix = array [ l . .4 ,  1 . .4] of real ; 
var A ,  inv_A : matrix ; 

The procedure message 

This is a sequence of "writel n ( '  . . .  ' )" statements that explain what your pro­
gram is going to do. 

The procedure choose 

We need two indices i and j .  It is essential to declare these variables as local 
variables of the procedure because they are the control variables of a "for" 
loop. Note also the declaration "var" which al lows the procedure to modify 
(via the keyboard) the variable A in the program. 

procedure choose (var A : matrix) ; 
var i , j  : integer ; 
begin 
for i : = 1 to 4 do 
for j := 1 to 4 do begin 
I . ( 'A [' . 1 I I • 1 ' ] ' ) dl (A [  . .  ] )  wnte , 1 : , , , ]  : , = ; rea n t , J  
end 

end ; 

7. 1 .4. The function det 

The main program uses the function det. Unlike abs, this function is not known 
to Pascal . Hence, we teach our program how to calculate it by copying (7 .4) .  

function det(A : matrix) : real ; 
begin 
det :=  

A [ 1 , 1 ]  * minor_ 3 (A , 1 ,  I ) 
-A [2 ,  1 ]  * minor_ 3 (A ,  2 ,  1 )  
+A [3 ,  1 ]  * minor_ 3 (A ,  3 ,  1 )  
-A [4, 1 ]  * minor_ 3 (A ,  4,  I )  

end ; 

Note the placement on the page, which simplifies verification. 
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The function minor _3 

Since det uses the function minor3 , we immediately use (7 .5 )  and write out 
the code for this function. The placement on the page is  very important ! 

function minor_3 (A : matrix ; i , j : integer) : real ; 
begin 
minor_3 : =  

A [A (i , 1 ) , A V, 1 ) ] * minor_2(A ,  i ,  A (i ,  1 ) , }, A V, 1 ) ) 
-A [A(i ,  2) , A V, I ) ] * minor_2(A ,  i, A (i ,  2) , } , AV, 1 ) ) 
+A [A(i ,  3 ) ,  A V, 1 ) ] * minor_2(A ,  i, A (i , 3 ) , } , AV, I ) ) 

end ; 

The function lambda 

Since minor _3 uses A ,  we must also describe how to calculate A for our 
program. 

function A (i ,  k : integer) : integer ; 
begin 
I if k < i then A : = k else A : = k + 1 
end ; 

The function minor _2 

Since the minor_3 uses the function minor_2, we also code (7 .8 ) .  

function minor_2(A : matrix ; i 1 , i2 , } 1 , }2 : integer) : real ; 
begin 
minor_2 : =  

A [JI (i J .  i2 , 1 ) ,  JIV 1 , }z , I ) ] * A [JI (i J , iz , 2) , JIV 1 , }2 , 2 ) ]  
-A [JI (i l , i2 , I ) , JIV 1  , }2 , 2 ) ]  * A [JI (i ! , i2 , 2) , JIV 1  , }2 , I ) ] 

end ; 

The function mu 

Final ly, since the function minor_2 uses the function JI , we implement JI 
using (7 .9) .  The two internal "begin  . . .  end" statements (and the vertical l ines 
that accompany them) are not needed from the point  of view of syntax . We 
retain them because they greatly fac i l i tate comprehension.  

function JI (i 1 ,  i2 , k :  integer) : integer ; 
begin 
if i 1 < i2 then begin 

I if k < i 1 then JI := k else 
if k + I < i2 then JI : =  k + 1 else JI : =  k + 2 

end 
else begin { case i2 < i 1 since i 1 =I- iz } 
I if k < i2 then JI : =  k else 
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I I if k + 1 < i 1 then JL : =  k + 1 else JL : =  k + 2 
end 

end ; 

The procedure matrix_inverse 

Now that we have finished with the calculation of the determinant function 
and its auxi l iaries, we turn to the next action of the main program that has 
not already been specified: the calculation of the inverse of A. For this ,  we 
implement (7 . 3 )  and (7 .2) .  

procedure matrix_inverse (A : matrix ; var inv_A : matrix) ; 
var i , j : integer ; � : real ; 
begin 
� := det(A ) ; 
for i : = 1 to 4 do 
for j : =  I to 4 do begin 
if (i + j) mod 2 = 0 
then inv_A [i , j] : =  minor_3 (A , j, i) / � 
else inv_A [i , j] : =  -minor_3 (A , j, i )/ � 

end 
end ; 

The code has been polished in a number of places. 
• Transposition is  accompl i shed by tinkering with the indices: (i, } ) before 

the assignment sign, (} , i )  after; 

• The calculation of ( - 1  ) ; + j is based on the pari ty of i + j 
• The determinant is handled so that it does not have to be computed sixteen 

times. 

The procedure display 

Notice how the statements "write" and "writeln" al ternate and how the display 
"write(inv_A [i ,  } ] :  8 : 4)" i s  formatted for real numbers. 

procedure display(inv_A : matrix) ; 
var i , j  : integer ; 
begin 
for i := 1 to 4 do begin 

I for j := 1 to 4 do write (inv_A [i , j] : 8 :  4) ; 
write In 

end 
end ; 
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The procedure verification 

We mul tiply the matrices A and inv_A ,  and display the result .  If it is not 
sufficiently close to the identity matrix ,  we should fear the worst. 

procedure verification (A , inv_A : matrix) ; 
var i , j  : integer ; uniLmat : matrix ; 
begin 

I mulLmatrix(A , inv_A , unit_mat) ; 
display(uniLmat) 

end ; 

The procedure mu[Lmatrix 

As the name suggests, this procedure returns the product C = A B .  The code 
is  a classical calculation of 4 x 4 = 1 6  sums. Turn to Chapter 6 if you do not 
understand the use of the local variable temp. 

procedure mulLmatrix(A ,  B :  matrix ; var C :  matrix) ; 
var i ,j ,  k : integer ; temp : real ; 
begin 
for i : = I to 4 do 
for j := 1 to 4 do begin 
temp :=  0 ;  
for k :=  I to 4 do temp :=  temp + A [i ,  k] * B[k , j] ; 
C[i, j] :=  temp 

end 
end ; 

7. 1.5. How to type a program 

The order in which we have wri tten the procedures is  not at al l the order 
required by the compiler; instead, the compiler requires them in the reverse 
order! Thus, when we are typing a program, we need to run over our notes in  
reverse. 

The order which the compiler requires is very easy to understand:  at each 
instant, i t  must know the procedures and functions called by the code i t  is 
currently translating. 

Since det uses the function minor_3 ,  the code for minor_3 must come before 
that of det. For the same reason,  the code for A. and minor _2 must precede 
that of minor_3 ,  and so on. The principal body of the program is typed after 
all the procedures and functions. Hence, one possible order i s :  

program matrix_inverse ; 
{declarations of constants ,  types and variables (in this order) } 
procedure message ; 
procedure choose (var A : matrix) ; 
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function A (i , j  : integer) : integer ; 
function JL (i 1 , i2 , k : integer) : integer ; 

7. How to Write a Program 

function minor2 (A : matrix ; i "  i2 , } 1 , }2 : integer) : real ; 
function minor3 (A : matrix ; i , j : integer) : real ; 
function det(A : matrix) : real ; 
procedure matrix_inverse (A : matrix ; 
var inv_A : matrix) ; 
procedure display(inv_A : matrix) ; 
procedure mulLmatrix(A ,  B :  matrix ; var C :  matrix) ; 
procedure verification (A , inv_A : matrix) ; 
begin 
I main body of the program 
end . 

Each procedure or function is followed by its code. 

7 .2. Characteristic Polynomial of a Matrix 

The fol lowing definition allows us to avoid errors which are difficult to detect .  
There are two ways of denoting polynomials :  

A (X)  = an X" + an _ , xn- l + · · · + a , X + ao , 

= boX" + b ,  xn- l + · · · + b" _ ' X + b" 

The first notation, where the index equal s the exponent, is the one that we 
encounter most often today. The second, where the sum of the index and the 
exponent is  equal to the degree, is  encountered more often in older works. For 
this reason, we call the first notation the modern notation and the second the 
old notation. 

Let A be a matrix with real coefficients and suppose that we want to calculate 
its characteristic polynomial . Then (note the sign and the old notation) ,  

P (A)  = (- 1 )" det (A - A / ) = A11 + p 1 A" - 1 + . . .  + Pn · 

Unl ike Maple or Mathematica, Pascal does not allow symbolic calculations 
carried out with indeterminates. Thus we cannot calculate this determinant 
because it involves arithmetic expressions containing A. This accounts for the 
difficulty (but also the charm) of this problem. 

Certain programmable calculators proceed as fol lows: they first determine 
the numerical values of the determinants P (O) , . . .  , P (n )  and then recover P 
by Lagrange interpolation.6 

6 The reader is strongly encouraged to write the corresponding program 
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We are going to explain ,  and then program, a very elegant algorithm due 
to the mathematician-astronomer Leverrier.7 Let A 1 , • • • , An be the eigenvalues 
of the matrix A so that 

Introduce the Newton sums 

Sk = A� + · · · +  A� , 

for I ::: k ::: n .  We can deduce the P I , . . .  , Pn from the sk thanks to the 
Newton-Girard formulas which we shal l establ ish in Chapter 1 0. 

I P I + S 1 = 0, 
2pz + P 1 S 1 + S2 = o, 

npn + Pn - I S I + . . .  + P I Sn - 1 + Sn = 0. 

Contrary to what one might think, one can compute the Newton sums with­
out first determining the eigenvalues. 

Lemma 7.2. 1. For every integer k :::: 0, Sk = Trace(Ak ) .  

Proof We put A i n  upper triangular form using a matrix Q (with, perhaps, 
complex coefficients). 

Then i } n 
which immediately gives 

Sk = Trace ( Q - 1 
Ak Q) = Trace (Ak ) .  

7 Urbain Leverrier ( 1 8 1 1 - 1 877) became famous for h is  discovery i n  1 846 of the 
planet Uranus by calculation alone from its perturbations of the orbit of the planet 
Neptune. 
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The algorithm that Leverrier proposed consists of the fol lowing two steps: 

• calculate A ,  . . .  , A" to get the Newton sums S1 , . . .  , Sn ; 
• solve the traingular system of Newton-Girard equations. 

Before encoding this as a program, we pause to ask how we might verify 
the resul t .  Clearly, we can run a number of preliminary tests with, for example, 
the triangular matrices. But tests, no matter how sophisticated, cannot prove 
that the program is correct; at best, they can detect a programming error by 
exhibit ing incorrect results .  

Theorem 7.2. 1 (Hamilton-Cayley). Let A be a matrix with coefficients in a 
commutative ring with unit. If P (A) = det (A/ - A ) = A" + p 1 A"- 1 + · · · + Pn 
is the characteristic polynomial of the matrix A, then the following matrix 
equation holds: 

Proof Although this result is well -known, its proof is less so. Here is a simple 
proof which makes no use of vector spaces and which, therefore, holds for 
matrices with coefficients in any commutative ring (with unit) whatsoever. If 
we replace A by the matrix (A - A I )  in (7 .2)  and if we put 

B(A)  = ( - I t I Adj (A - A/ ) ,  

w e  obtain the matrix equation (with p0 = I ) : 

(A - A / ) B (A)  = P (A ) / = (poA" + P 1 A" - 1 + · · · + Pn- I A + Pn ) / · (7 . 1 0) 

It is c lear that the matrix B(A)  is a polynomial in A of degree at most n - I ,  
so that we can write (in modern notation) 

(7 . 1 1 )  

where the B; are matrices which we want to specify. Substituting into (7 . 1 0) 
and equating coefficients of the same degree, we obtain 

I Pn l = A Bo , 
A Pn- 1 1 = A B1 - Bo , 

A2 Pn-2 1 = A B2 - B 1 , 

An - I P I f = A Bn- 1 - Bn-2 • 
A" Po l  = - Bn- 1 · 

It remains to multiply these equations by I, A ,  A 2 , . . .  , A" respectively and 
add them term by term to obtain the desired result . 
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We are going to use this celebrated theorem to verify our program: if P ( A )  
i s  the zero matrix ,  we can be reasonably certain that P i s  the characteri stic 
polynomial of A. In fact, since the verification is  total ly independent of the 
calculation of p, the probabl i l i ty of simultaneous errors that cancel one another 
out is  miniscule. 

7.2. 1. The program Leverrier 

The main body of the program 

We enounter again the classical trichotomy: 

• introduction of data (preceeded by a message explaining what the program 
does and what data is required by the computer) 

• treatment of the data; that is, calculation of Newton sums and solution of 
the l inear system of Newton-Girard equations ;  

• display of results after verification . 

begin 
message ; 
choose (A , dim) ; 
store_traces(A , Newton_Sum, dim) ; 
solve_system(Newton_Sum, char_poly, dim) ; 
Hamilton_ Cayley( char _poly, A ,  dim) ; 
display(char_poly, dim) 

end . 

Declarations 

Our program makes use of the matrix A ,  its dimension dim, and the vectors 
Newton_Sum and char _poly. 

• We want to calculate the characteristic polynomial of a matrix A of any 
dimension. S ince Pascal only allows arrays whose dimension is  fixed at the 
moment of declaration, we reserve a large space in memory even though we 
usual ly only use a smal l part of it .  This is  the reason for the appearance of the 
constant dim_max. 

• The variables Newton_Sum and char _poly are vectors of the same dimen­
sion . For convenience, the indices start at zero.  

program Leverrier ; 
const dim_max = I 0 ; 
type matrix = array[ l . .dim_max, l . .dim_max] of integer ; 
vector = array[O . .  dim_max] of integer ; 
var A : matrix ; 
Newton_sum, char _poly : vector ; 
dim : integer ; 
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We have chosen to work with integer coefficients (which simpl ify some 
tests) ;  but there is no reason that you cannot modify the program to work with 
rational , real or complex coefficients. 

For beginners 

One should avoid delusions of grandeur such as entering without thinking 
dim_ max = 1 00. Would you be wi l l ing to type the 1 002 = I 0000 coefficients 
in such a matrix?  

The procedure choose 

This procedure starts by asking for the dimension of the matrix ,  verifying that 
it is correct, and prompting for entry of the coefficients. 

• Note the "repeat until" designed to check the validity of the dimension 
of A .  

• We increase ease of use b y  displaying the name of the coefficient that is 
to be entered. We also adhere to the usual typographic conventions and place 
a space on each side of the the equals sign "

=
"

. 

procedure choose (var A : matrix ; var dim : integer) ; 
var i , j  : integer ; 
begin 
repeat 
I write (' dimension = ' ) ; readln (dim) 
until (2 ::; dim) and (dim ::; dim_max) ; 
for i :=  1 to dim do 
for j :=  1 to dim do begin 
I 0 ('A [' 0 I I I 0 1 I ] I ) dl (A [ 0 '] )  wnte , 1 : , , , J  : , = ; rea n t , J  
end ; 

end ; 

Calculating traces 

The sequence Mk = Ak satisfies the first order recurrence relation : 

Mo = I , Mk = A Mk- t if k :::0: I .  

We can then calculate the traces using the algori thm: 

M := In ; 
for k := 1 to n do begin 
I M := AM ; sk := trace (M) 
end 

To transform this  algorithm into a procedure,  we observe that we need to 
have the fol lowing at our disposal : 
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• a procedure uniLmat(X ,  n )  which implements the assignment M := In ; 
• a procedure matrix_product(Z ,  X ,  Y, n )  which returns Z = X Y ;  
• a function trace (X ,  n )  which returns the trace of a matrix X .  

procedure store_traces(A : matrix ; 
var Newton_Sum : vector ; dim : integer) ; 

var k : integer ; M : matrix ; 
begin 
unit_mat(M, dim) ; {M = /dim • whence M = A0 J 
for k :=  1 to dim do begin l product_matrix(M, A , M, dim) ; {M = AM, whence M = Ak J 
Newton_Sum[k] :=  trace (M, dim) 

end 
end ; 

The procedure unit_mat 

This procedure returns the unit matrix (do not forget the "var") .  

procedure uniLmat(var M : matrix ; dim : integer) ; 
var i , j  : integer ; 
begin 
for i : =  1 to dim do 
for j := 1 to dim do 
if i = } then M[i ,j]  := I else M[i , j] := 0 

end ; 

The procedure product_matrix 

Look over the part of Chapter 6 devoted to arrays if you do not understand 
the role of the variable temp. 

procedure product_matrix(var Z : matrix ; X, Y :  matrix ; dim : integer) ; 
var i ,j ,  k, temp : integer ; 
begin 
for i := I to dim do 
for j : = 1 to dim do begin 
temp := 0 ;  
for k :=  1 to dim do temp := temp + X[i , k] * Y[k , j] ; 
Z[i, j] := temp 

end 
end ; 

The function trace 

We use the local variable temp because we cannot use the name of a function 
to accumulate a sum 
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function trace (X : matrix ; dim : integer) : integer ; 
var i, temp : integer ; 
begin 
temp := 0 ;  
for i := 1 to dim do temp :=  temp + X[i, i] ; 
trace : =  temp 

end ; 

The procedure solve_system 

This is a classical exercise that we have already encountered. 

procedure solve_system(Newton_Sum : vector ; 

var i, k, temp : integer ; 
begin 

var coeff : vector ; dim : integer) ; 

for k : =  1 to dim do begin 
temp := Newton_Sum[k] ; 
for i : = 1 to k - 1 do 

temp :=  temp + coeff[i] * Newton_Sum[k - i] ; 
coeff[k] := -temp div k { "div " because one is working} 

{over the integers } 
end 

end ; 

The procedure display 

We observe the fol lowing conventions . 
• we do not write oxk ; 
• we write xk instead of 1 xk ; 
• we wri te -3Xk instead of + - 3Xk ; 
• we write - xk instead of - 1  xk . 

procedure display(coeff : vector ; dim : integer) ; 
var i , j  : integer ; 
begin 
write ( ' XI\ ' , dim : I )  ; 
for i : = I to dim do 
if coeff[i] > 1 then write (' + ' , coeff[i] : 1 , ' XI\ ' , dim - i : I )  
else if coeff[i] = 1 then write (' + XI\ ' , dim - i : 1 )  
else if coeff[i] = - 1  then write (' - XI\' , dim - i : I )  
else if coeff[i] < - I then write (' - ' , -coeff[i] : I , ' XI\ ' , dim - i :  I )  

end ; 

Since the procedure "write" does not display the sign of a positive number, 
we must supply it .  Why is it imperative to preceded the last "else" with a the 
test "if coeff[i ] < 0"? 
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You can further improve the display by including the fol lowing usages:  

• write 6X instead of 6X 1 ; 
• write 5 or -7 instead of 5X0 or -7 X0 . 

Exercise 1 

Let A = xn + an- I xn- l + . . .  + a ! X + ao be a monic polynomials with roots 
a 1 , • • •  , an . Let P be a second monic polynomial . We want to find a monic 
polynomial B whose roots are the numbers P (a 1 ) ,  • • •  , P (an ) .  In other words, 
knowing that 

B(X)  = (X - P (a 1 ) ) · · · (X - P (an ) ) , 

can we calculate the coefficients of B using those of A ?  To solve this classical 
problem, associate to the polynomial 

A = xn + an_ 1 xn- l + · · · + a 1 X + ao 

its companion matrix 

0 I 
0 

0 

Here, the coefficients that are not written are zero. 

1 )  By adding to the first column of (A I - A ) the successive columns multi­
pl ied by A ,  A 2 , . . .  , A n - l , show that the characteri stic polynomial of A i s  equal 
to ±A . 

2) Show (by putting A in triangular form) that the eigenvalues of the 
matrix P (A ) are precisely P (a 1 ) ,  • • •  , P (an ) .  It fol lows that the polynomial 
B = det ( P (A ) - A / )  is ,  up to sign, the desired solution and that the coeffi­
cients of  B are polynomials in the coefficients of  A and of P .  Write a program 
that calculates, then displays, the characteristic polynomial of P (A ) .  

Exercise 2 

Let A ,  B be two rectangular matrices of arbitrary dimension. Put 

a 1 . p B ) 
a2. r B 

an . p B 

Theorem 7.2.2. Let A and B be square matrices of dimensions n and m with 
eigenvalues a 1 , • • •  , an and {3 1 , • • •  , f3m , respectively. Then the eigenvalues of 
A Q9 B are the a; x {31 ; and the eigenvalues of A Q9 I + I Q9 B are a; + {31 . 
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Proof We have the identities 

(A A ' ) ® (B B' ) = (A ® B ) (A ' ® B' ) .  

I f  we bring A and B to triangular form p - I A P  = TA and Q - 1 B Q  = T8 , and 
use the fact that ( P  ® Q) - 1 = p - I ® Q- 1 , then it fol lows that 

C P 0 Q) - 1 cA 0 B ) ( P  0 Q) = c p - l 0 A 0 P) 0 c Q - 1 0 s 0 Q) = rA 0 rB . 

We finish by noting that TA ® T8 is a triangular dmatrix with coefficients a; f3j 
along the diagonal . For A ® I + I ® B ,  use the identity: 

(P ® Q ) - 1 (A ® I +  I ®  B ) ( P  ® Q) = TA ® I +  I ®  TB . 

0 

We say that a complex number z is an algebraic integer if it is the root of 
a monic polynomial with rational coefficients: 

zn + an- I Z
n- l + · · · + ao = O, a; E Q. 

By replacing "rational" by "integral" in the preceding proof, we find that 

Theorem 7.2.3. The algebraic numbers are a subfield of C. 

Exercise 3 

Write a program to explicit ly calculate a polynomial with having a + f3 or af3 
as roots given polynomials which vanish on a and {3 .  (Use companion matrices 
and tensor products . )  

7.3. How to Write a Program 

The advice that you are going to receive is not original . Re-read the proverbs 
at the beginning as well as Descartes '  Discourse on Method ( 1 637) .  

Define the problem 

This is not at al l simple ! There are frequently many implicit hypotheses that 
need to be made made prec ise and that are not perceived immediately. A good 
techn ique is to imagine that a program is running and to continual ly pose the 
questions: "What is the program doing? What am I expecting from it? What 
information must I communicate to i t ?" 

Adjust the algorithms 

This  is the stage of first order recurrences and mathematical reasoning. At this  
point,  you have total intel lectual freedom because you are not yet program­
ming. 
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Define the types 

Return to Earth . . .  You need to decide how to represent the objects under 
consideration in the memory of the machine. S ince we are using Pascal without 
pointers, we can hardly ever use arrays or pointers . On the other hand, the 
choices are unlimited for a professional . A poorly chosen type can make the 
writing of a program very painful and heavi ly penalize performance. 

To program is to role-play 

A good programmer structures his or her program; that is ,  separates a pro­
cedure into statements on the same level. It is necessary to learn to separate 
the incidental from the essential : one should not climb stairs while chewing 
gum. When we write the main body of a program for example, we must not 
ask ourselves about the contents of the procedures or functions (this is  for 
"tomorrow", or even "the day after tomorrow") ; we s imply imagine the names 
of procedures, their effect and their interplay. 

We are lead to successively play different roles: each level of the program 
corresponds to a different role .  

When I wri te the main body of the program, I am the CEO. My work 
consists in imagining, in distributing, and in coordinating the tasks; I do not 
execute them ! (One does not execute orders which have not been given. ) Once 
the body of the program is written, I become an engineer when I write the 
large procedures and give the main orders, a foreman when I write the more 
detai led procedures, then a janitor, and so on.  

A poorly structured program is one that contains orders from different levels .  
When I am the CEO, I am busy with the future of the business.  I do not ask 
myself if there is toi let paper in the second restroom on the right hand side of 
the third floor! This wi l l  come, but much later, when I am the janitor. Do not 
be too hurried . . .  

The beginning 

We write our program by beginning with the main body of the program; then 
we specify the procedures and the functions .  

The writing is  done by touching up ,  by successive refinements : one sur­
mounts difficulties one after another. In the main body of the program, we do 
not concern ourselves with useless detai l ;  we deliberately stay at the level of 
general ities. It is important not to start writing overly detai led code prema­
turely. 

To accomplish this, we mask8 very technical portions of the code by pro­
cedures and functions which we only suppose exist :  tomorrow, things will be 
better, and the day after tomorrow, better still. Have confidence, you wil l  come 

8 One does not execute orders which have not been given.  
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to the point where you write them; do not give into anx iety and try doing it 
right away. 

Some beginners often have a psychological block against working with a 
procedure which they have not already written (al though these same individu­
als will apply a theorem they cannot prove). It seems easier to accept a static 
hypothesis that one sees than a dynamic process that one does not see. (We 
shal l return to this difficulty when deal ing with recursion . )  

This way of  functioning i s  fami l iar to  mathematic ians :  "Let 's  see whether I 
can prove my theorem by provisional ly supposing that properties A ,  B and C 
are true." 

The code must remain l impid; one should be able to recognize without effort 
what algorithm is being used. 

The main body of the program 

The main body consists of three phases :  

• data entry (accompanied in due course by in itialization and a message 
explain ing what the user can expect) ;  

• treatment of the data (the program, properly speaking);  

• display of results .  

Do not be fooled by the apparent simplicity of the main body of the program. 
As you wil l  di scover, some lines require much effort, and often many tries. 

The procedures 

Multiply procedures and functions so that you wil l  not have to master more 
than five to ten l ines of code at a time. With practice, you wi l l  be able to 
increase the number of l ines a l i ttle (but do not run over a single screen ! )  

The names o f  procedures and functions are very important. For example, 
avoid cal l ing a procedure "calculation" because all  procedures calculate some­
thing. A name such as th is ,  which applies to everything, carries no information 
and wi l l  oblige you to comment !  Use your imagination ; if necessary, spend at 
least a minute to find a good identifier. 

Do not hesitate to give a very long (hence very informative) name to a 
variable or procedure that you wil l  not use too much ;  reserve short names for 
objects that you wil l  use repeatedly. 

To determine if you have forgotten a procedure or function , re-read what 
you have done. If you find yourelf making comments to yourself l ike " Oh, 
yes ! I am calculating the determinant of the matrix", then you have forgotten 
to define the determinant function . 

Be very attentive to the problems of transmitting information from one 
procedure to another. 
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Complete procedures or modules separately before assembling them. Bui ld 
l ibraries of procedures (manipulation of fractions, of matrices, of polynomials, 
and so on). 

Loops 

First put in place external loops without trying to spec ify their content: choose 
the type careful ly using solid arguments;  contemplate the result, mental ly ver­
ifying their function using a trace and careful ly examining the l imit  cases, 
because these can cause a program to crash or loop endlessly !  Proceed slowly, 
take your time. 

When you are satisfied, you can pass to a deeper level using the same 
approach.  The process resembles peel ing an onion . 

Comments 

Never forget your imaginary interlocutor because the best way to understand 
what you have done is  to explain it to yourself This technique is  a very 
powerful device to help you become more conscious of what you are doing 
and to mental ly unblock yourself. And, to be sure you are talking to this 
imaginary interlocutor, write comments. 

Avoid comments which are too long: they disfigure a program and break its 
unity. The ideal comment is  brief and fits on the same l ine as the statement 
it clarifies. Nothing is  more painful than to be obliged to read three lines of 
code fol lowed by five l ines of comments, then a l ine of code fol lowed by two 
l ines of comments, etc . 

Personal ly, I prefer to write a large comment before the code and place 
references "see ( 1 )" , "see (2)", etc . in the code. 

Re-read 

Do not be too hurried to run through your program. Re-read each procedure 
trying to implement mental ly what it does :  does the code correctly translate 
your thought? Is information being transmitted correctly? Experience shows 
that you will avoid losing many hours debugging a program that obstinately 
refuses to work. 

Verify the results 

Never believe a program, even your own ! Any time that it is possible, seek 
cross-checks. 



1 56 7 .  How to Write a Program 

7.4. A Poorly Written Procedure 

To put the preceeding advice into practice, we are going to dissect a procedure 
written by a beginner and understand why it is poorly written. This procedure 
was inserted in a program to solve a l inear system Ax = b .  

procedure triangularization (var A : matrice ; 

var i ,j ,  k : integer ; 
begin 

var b : vector ; dim : integer) ; 

test :=  test_singularity(A , 1 )  ; 
k :=  1 ;  
enlarge (A , b,  1 )  ; 
while (test = false) and (k .::: dim - I )  do begin 
for i := k + I to dim do 
for j := k + I to dim do 
A [i , j] := A [ i , j] - (A [i ,  k] /A [k ,  k] ) * A [k , j] ; 
b[ i] :=  b[i] - (A [i ,  k]/A [k ,  k] ) * b[k] ; 
enlarge(A , b, k + I )  ; 
test :=  test_singularity(A , k + 1 )  ; 
k :=  k + I 

end 
end ; 

Let us examine the code: 

• The variable k denotes the current column. This is certainly not clear at 
first glance ! It would be better to cal l i t  current_column or col. 

• The variable test is a global variable of the program which is surreptiously 
modified by the procedure so to inform the program when the matrix is  not 
invertible. Thus, we have a context effect. 

• The identifier test is  poorly chosen :  what does i t  mean? Note that test_sin­
gularity(A , k) is a boolean which tel l s  us whether or not (ai . j ) I :'Oi . j :'Ok is invert­
ible. Why not call i t  Cramer? 

• The procedure enlarge leaves one perplexed: what does it do? Does i t  
augment the matrix by bordering it? Not at al l ! When I asked this question 
to the beginner, he replied that i t  sought the number £ of the row with the 
largest coefficient (for reasons of numerical stability) in the k-th column, then 
exchanges rows k and £ .  The choice of this identifier is not judicious. Besides, 
i t  conflates in a single procedure two actions of a different nature (finding a 
pivot, exchanging two rows) and this  obscures the algorithm. 

• The statements test := test_singularity and enlarge occur outside and 
inside the "while" loop which indicate a bad choice of loop. 

• Final ly, l ines 8 to I I  ( the two embedded "for" loops and the statement that 
fol lows) are incomprehensible. One must read them very careful ly  before real-
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is ing that they ki l l  the coefficients below the pivot. This  suggests prematurely 
written code which should be replaced by a procedure .  

These critici sms al low us to improve the procedure. 

procedure triangularization (var A : matrice ; var b : vector ; 
var Cramer : boolean ; dim : integer) ; 

var col, place_pivot, coeff : real ; 
begin 
col := 1 ; Cramer : =  true ; 
repeat 
seek_largest_pivot(A , col, place_pivot, Cramer, dim) ; 
if Cramer then begin 

I exchange_rows(A , b, col, place_pivot, dim) ; 
zero_out_under_pivot(A , b, col, dim) 

end ; 
col :=  col + I 

until (col 2: dim - 1 )  or not Cramer 
end ; 

Isn ' t  the new version more comprehensible, hence more certain?  



8.1 .  The Euclidean Algorithm 

To calculate the GCD of two numbers, we play "ping pong" with the formulas 
GCD(a , b) = GCD(a , b - a) = GCD(a - b ,  b) ending with GCD(a , 0) 
GCD(O, a ) = Ia I .  This gives for example 

GCD( I 2 , 7 )  = GCD(5 , 7 )  = GCD(5 , 2 )  = GCD(3 ,  2) 
= GCD( I ,  2) = GCD( I ,  0) = 1 .  

Formal izing this, we see that we obtain two sequences of numbers (an ) and (bn ) 
such that GCD(a , b) = GCD(an , bn ) and the first order recurrence : 

if an :=:: bn 
then begin an+ l := an - bn ; bn + l = bn end 
else begin an+ 1 := an ; bn+ 1 = bn - an end 

The translation into code, called the additive Euclid algorithm, is immediate : 

a ,  b :=  integers :::: 0 ; 
while (a =f. 0) and (b =f. 0) do 

if a :::: b then a := a - b else b := b - a ; 
if a = 0 then GCD :=  b else GCD :=  a 

Some students suggest replacing the test a = 0 by the statement GCD :=  
a + b. This is  not real ly a good idea1 because a test is  much more rapid than 
an addition. In order to speed things up, we can regroup subtractions by the 
same number which amounts to introducing Euclidean divis ion.  We obtain the 
Euclidean algorithm 

a, b := integers :::: 0 ; 
while (a =f. 0) and (b =f. 0) do 

if a :::: b then a := a mod b else b := b mod a ; 
if a =  0 then GCD :=  b else GCD := a 

1 Above al l ,  no tricks ' 

8. The Integers
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This algorithm is usual ly presented using a single sequence (rn ) obtained 
from the sequences sequences (an ) and (bn ) by putting rzn = an and rzn+ l = bn . 
The GCD is then the last non-zero remainder. 

Example 

ro = a , r 1 = b , 
ro = r 1 q 1 + rz , 
r 1 = rzqz + r3 , 

a :::_ b :::_ 0 ,  
0 < rz < r 1 ,  
0 < r3 < rz , 

(rn+ l = 0 and qn :::. 2) . 

We calculate the GCD of 1 0 , 780 and 3 , 675 as follows: 

1 0780 = 2 . 3675 + 3430, 
3675 = 1 . 3430 + 245 , 
3430 = 1 4  . 245 + 0. 

(8 . 1 )  

The GCD i s  the last nonzero remainder, namely GCD( l 0780, 3675 ) = 245 . 

Theorem 8. 1 .1 .  The Euclidean algorithm correctly calculates the GCD of two 
numbers. 

Proof The algorithm terminates because the sequence (r; ) in (8 . 1 )  is strictly 
decreasing and bounded below by 0. The last nonzero remainder is  the GCD 
because GCD(a , b) = GCD(ro , r l ) = · · · = GCDCrn- l , rn ) = rn (in other 
words, the function GCD(a , b) i s  an invariant of the loop) .  D 

8. 1 .1 .  Complexity of the Euclidean algorithm 

In the middle of the last century, the French mathematician G. Lame2 proved 
that the Euclidean algorithm was very efficient. 

Theorem 8. 1.2. The number of divisions required in the Euclidean algorithm 
is less than or equal to five times the number of digits of the smallest of the 
two numbers whose GCD is being calculated. 

Proof The formulas (8 . 1 )  contain n divi sions. Let F (n) be the Fibonacci 
sequence. Knowing that F2 = 1 and F3 = 2, we immediately have rn :::_ F2 
as well as rn - 1 :::_ 2rn :::_ 2 F2 :::_ F3 . We deduce that rn -2 :::_ rn - 1 + rn :::_ 
F3 + F2 :::_ F4 whence r 1 = b :::_ Fn+ l by induction.  Let y = i O + J5) be the 

2 Gabriel Lame ( 1 795- 1 870), a rai lroad engineer, was considered by Gauss to be one 
of best French mathematicians of the era. 
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golden number; that i s  the positive root of the equation X2 = X +  1 .  A simple 
induction shows that Fn > yn-2 for n ::: 3 .  Knowing that b ::: Fn+ l > yn - l  
and log 1 0 y = 0 .208 . . .  > * · we deduce that 

log 1 0 b > (n - 1 )  log 1 0 y > k <n - 1 ) .  

To say that b can be written with k numerals i n  base 1 0  means that log 1 0 b < k .  
Consequently, n - I < 5 Iog 1 0 b < 5k shows that n _::: 5k . D 

Remark 

The precise result is not important. It suffices to remember that the number of 
required divisions is bounded by C log b where C is a constant and b is the 
smallest of the two numbers . 

8.2. The Blankinship Algorithm 

From the definition d7l = a7l + b7l of the GCD, it fol lows that there exist 
u, v E 7l such that au + bv = d . But this does not te l l  us how to calculate u 
and v .  This is a nice example of static mathematics ! One way to find u and v 
is to reverse the steps of the Eucl idean algorithm. Doing this, for example, for 
the calculation of the GCD of 1 0780 and 3675 gives :  

245 = 3675 - 3430, 
= 3675 - ( 1 0780 - 2 ° 3675)  
= 3 ° 3675 - 1 0780. 

This algorithm does not interest programmers because it requires storing all 
intermediate results. Happi ly, i t  is  possible to calculate u and v in the course 
of the Euclidean algorithm by surfing on the edge of the calculations. To do 
this, i t  suffices to adapt the method of Gauss pivoting to integers . 3 Suppose 
that we are calculating the GCD of 252 and 1 98 (see Table 8 . 1 ). To calculate 
u and v, Blankinship proposed constructing a matrix ( 252 1 0 ) 

Mo = 1 98 0 1 

and applying the Eucl idean algorithm to the first column all the while extending 
the operations to the rows of M. The algorithm terminates when the first 
column contains the GCD. At this moment, u and v are found across from 
the GCD : 

1 8  = 4 ° 252 - 5 °  1 98 .  

3 W.A. Blankinship, A new version of the Eulidean Algorithm, American Mathemat­
ical Monthly 70 ( 1 963),  pp. 742-745 . 
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Old matrix ( 252 Mo = 1 98 ( 54 M1 = 1 98 e4 Mz = 36 

c 8 M3 = 36 

1 
0 

1 
0 
1 

-3  4 -3 

Pivot Manipulation 

� ) 1 98 L 1  :=  L 1 - L2 

- ! )  54 L2 :=  L2 - 3L I 

-! ) 36 L1 :=  L 1 - L2 

-; ) 1 8  L2 :=  L2 - 2L 1 

New matrix ( 54 M1 = 1 98 e4 M2 = 36 

c 8 M3 = 36 

M 
_ ( 1 8  

4 - 0 

1 
0 
1 

-3  4 
-3 4 - 1 1  

- ! ) 
-! ) 
-; ) -5 ) 14 

Table 8. 1. The Blankinship algorithm: the values of u ,  v and d = GCD(252. 1 98)  such 
that 252u + 1 98v  = d are on the first row of M4 : d = 1 8, u = 4 and v = -5 

Proof Consider the unimodular matrices4 

U (A ) = ( 6  � ) . L (A) = ( �  � ) . T = ( � b ) ·  
Let M be a matrix with two rows and put: 

M' = U (A )M ,  M" = L (A) M ,  M"' = TM.  

A straightforward calculation shows that one passes from M t o  M' , M" , M"' 
by the fol lowing elementary row operations: 

M � M' L 1  :=  L 1 + ALz , 

M � M" L2 :=  L2 + AL I , 

M � M"' : exchange rows L 1 and L2 • 

Since we pass from M to M4 by a sequence of row operations, we have an 
equality of the form 

M4 = E3 E2 E 1 Mo = EMo , 

where the E; denote unimodular matrices which we need not know. If we write 
M4 = E Mo in the form 

( �  u 
u '  

we see why we  bordered the vector 1 (a , b) by  the identity matrix :  the product 
of the unimodular matrices appears automatical ly !  The desired result is simply 
the ( 1 ,  1 )  element of the product E ( : )  : 

au + bv = d . 0 
4 A unimodular matri x is a matri x with integer coefficients and determinant ± I .  The 

inverse of such a matri x also has i nteger coefficients. We shal l study unimodular 
matrices more ful l y  in  Chapter I I . 
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If we let M = ( % 
algorithm is then : 

ua 
ub �% ) be the matrix to  manipulate, B lankinship 's  

a ,  b := prescribed integers > 0 ; 
ua :=  I ; va :=  0 ; 
ub :=  0 ; vb :=  I ; 
while (a > 0) and (b > 0) do begin 
if a 2: b then begin 

I q : = a div b ;  
a :=  a - b * q ; ua :=  ua - q * ub ; va : =  va - q * vb 

end 
else begin 

I q := b div a ;  
b :=  b - a * q ; ub :=  ub - q * ua ; vb :=  vb - q * va 

end 
end ; 
if a >  0 
then begin gcd : = a ; u :=  ua ; v : =  va end 
else begin gcd := b ;  u := ub ; v := vb end ; 

For beginners 

• Students sometimes want to replace the variables a ,  b ,  u 1 , • • •  , v2 by a 
matrix M [i , } ] with two rows and three columns. This is not a good idea 
because it slows the execution (the reason is  explained in Chapter 6). We are, 
however, forced to use this solution when we apply B lankinship 's  algorithm 
with more than two integers . 

• One can make B lankinship's algorithm much more compact (which speeds 
it up, but makes it opaque) by only retaining the first two columns of the 
matrix M (that is, the variables a ,  b, ua , ub) .  Once the value of u is known, 
one finds v by division v = (d - au ) /  b ,  where a and b are the original values. 

8.3. Perfect Numbers 

One says that an integer n > 1 is perfect if it is equal to the sum of al l 
its proper divisors ; that is ,  if it satisfies the condition n = L d or the 

d l  n .d <n 
equivalent condition 2n = L d .  The smal lest perfect number i s  6 because 

d i n  
6 = I + 2 + 3 .  All the even perfect numbers have been know for a long time: 
they are numbers of the form 

where p a prime number such that 2P - 1 is also prime. On the other hand, 
i t  is  sti l l  not known whether there are odd perfect numbers : al l  that is known 
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is that if such exist, their size must be gigantic .  Al though perfect numbers are 
not in themselves of great interest to us, the calculation of sums of divisors 
wi l l  provide us with an opportunity to present some techniques for optimizing 
code. If we introduce the sequence whose general term is  

if d divides n, 
otherwise, 

then the calculation of the sum of divi sors is  as fol lows: 

s : = 0 ;  
for d : = 1 to n do 

if n mod d = 0 then S : = S + d 

Like Laurel and Hardy, divisors come in pairs : if d divides n ,  then njd 
divides n. This suggests using the recurrence: l Sd- 1 + d + njd if d divides n and d2 < n ,  

sd = sd- 1 + d if d divides n and d2 = n ,  
sd- 1 otherwise. 

If we do not allow ourselves recourse to the real numbers here,  we cannot 
write, for example, 

for d := 1 to round(sqrt(n ) )  do . . .  

Since we cannot use the function Jn, we abandon the "for" loop in favor of 
a "repeat" loop and write: 

s := 0 ;  d := 1 ;  
repeat 
if n mod d = 0 then begin 

I S := S + d ;  
if d2 < n then S :=  S + n div d 

end ; 
d :=  d + 1 

until d2 
> n 

(8 .2) 

We calculated the sequence d2 twice in (8 .2) .  To avoid this, we introduce 
the variable square = d2 which gives (8 .3 ) .  

S :=  0 ; d :=  1 ; square :=  1 
repeat 
if n mod d = 0 then begin 

I s : =  S + d ; 
if square < n then S :=  S + n div d 

end ; 
d :=  d + I ; square :=  d2 

until square > n 

(8 .3)  
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The above is an example of a "Penelope code" because we forget that we 
already know d2 when we calculate (d + 1 ) 2 . It is more efficient to calculate the 
new square using the formula square + 2d + 1 .  If we introduce this modification 
at the right t ime (that is, before modifying d) and if we replace the statement 
square :=  square + 2 * d  + 1 by the sl ightly faster square : =  square + d  + d  + 1 
we get 

S := 0 ; d := 1 ; square := 1 ; 
repeat 
if n mod d = 0 then begin 

I s := S + d ; 
if square < n then S :=  S + n div d 

end ; 
square :=  square + d + d + 1 ; 
d :=  d + 1 ;  

until square > n 

Exercise 1 

Compare the speeds of (8 .2) ,  (8 .3 )  and (8 .4) experimental ly. 

8.4. The Lowest Divisor Function 

Consider the code that we wrote in Chapter 3 .  

function LD 1 (n  : integer) : integer ; 
var d : integer ; 
begin 
d := 2 ;  
while n mod d > 0 do d := d + 1 ; 
LD 1 := d 

end ; 

(8 .4) 

Since it is  pointless to seek an even divisor of an odd number, we could 
hope to double the speed of the function LD 1 by proceeding by steps of 2 
starting with 3 when n is odd. 

function LD2 (n : integer) : integer ; 
var d : integer ; 
begin 
if n mod 2 = 0 then LD2 := 2 
else begin 
d := 3 ;  
while n mod d > 0 do d :=  d + 2 ; 
LD2 := d 

end 
end ; 
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We can push this idea a l i ttle further. When n is divisible by neither 2 nor 3 ,  
there i s  no point seeking divi sors of  the form 2d or 3d. Thus we can start at 
d = 5 and al ternately add 2 or 4 (Chap. 2) :  

+2 +4  +2 +4  2 
5 � 7 � 1 1 � 1 3 � 1 7 � 19  

+4 + 2  + 4  + 2  +4 
� 23 � 25 � 29 � 3 1 � 35 

+2 +4 +2 +2 
� 37 � 4 1  � 43 � 49 · · · . 

The integers that remain are those of the form d1 = 6n + 1 or d5 = 6n + 5 .  

function LD3 (n : integer) : integer ; 
var d1 , ds : integer ; 
begin 
if n mod 2 = 0 then LD3 : = 2 
else if n mod 3 = 0 then LD3 :=  3 
else begin 
ds := 1 ;  
repeat 
I d1 := ds + 4 ; ds := d1 + 2 
until (n mod d1 = 0) or (n mod d5 = 0) ; 
if n mod d1 = 0 then LD3 :=  d1 else LD3 :=  ds 

end 
end ; 

When n is a prime number, the algorithm for LD2 tries to divide n by all 
odd integers :::: n whereas we know the response as soon as d2 exceeds n. So, 
we introduce the square of d and the rapid calculation that we developed for 
the perfect numbers : 

function LD4 (n : integer) : integer ; 
var d, dd, square : integer ; 
begin 
if n mod 2 = 0 then LD4 := 2 
else begin 
d := 3 ; square := 9 ; 
while (n mod d > 0) and (square :::: n) do begin 
dd := d + d ;  
square : =  square + dd + dd + 1 ; 
d :=  d + 2 

end ; 
if square > n then LD4 :=  n else LD4 :=  d 

end 
end ; 
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Have our attempts to increase performance been successful ? Here are the 
t imes (in seconds) that i t  took a medium size computer to calculate LD for 
al l odd numbers in the intervals /1 = [2 000, 5 OOOD , /2 = [5 000, 1 0  OOOD ,  
/3 = [20 000, 30 000D and /4 = [50 000, 1 00 000D . 

/z 
7 .2  23 .8  1 37 .2  303 .7  

3 .6  1 1 .8 68 .2 1 5 1 .4 

2 .3  7 .8  46. 3  1 00. 1 

0 .3  0 .5  1 . 5 4 .9 

Since we have only looked at odd numbers, we see,  in accord with our 
expectations, that the function LD2 is close to twice as fast as LD 1 . The function 
LD3 takes about 66 % of the time taken by LD2 , which is  again what we would 
expect. In fact, the interval [ I ,  ND, contains [ N  / k ]  multiples of k ,  so there 
are N - [ N  /2] - [N /3]  + [N /6] integers which are not d iv isible by ei ther 2 
or 3 .  If N is very large, then N :::::; [N ]  and 

N - N /2 - N /3 + N /6 
= � :::::; 0.66. 

N - N/2 3 

Final ly, in spite of its compl icated and delicate code, the function LD4 surpasses 
all the others . 

8.5. The Moebius Function 

Recal l the Moebius function JL (n) is defined as 

JL(n) = I �  (- I )k 

if n = 1 ,  

if n > is  divisible by the square of a prime number, 

if n > I is the product of k distinct prime numbers, 

To calculate JL (n) , beginners typical ly store the prime numbers in an array and 
then inspect the array to calculate JL (n ) . This static conception, with its two 
separate phases, squanders lots of code, time and memory. Let us try a more 
dynamic approach by calculating "approximations" to JL (n ) as we find prime 
factors of n . Suppose that we have already found divisors p 1 < · · · < Pi of n ; 
if Pi + !  :::_ Pi is the next div isor, it is clear that we have: 

if Pi + !  > Pi , 

if Pi+ !  = Pi · 
(8 .5 )  

This method is  justified by the following result whose proof is  immediate. 
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Lemma 8.5. 1 .  The sequence 

P 1 = LD(n ) , P2 = LD(n/p l ) ,  P3 = LD(n/P 1 P2 ) , . . .  

of prime divisors of n is increasing (not necessarily strictly). 

The algorithm for decomposing n into prime factors gives a classical two-
column table. We introduce a third column containing tJ (p 1 • • • Pk ) : 

n LD f1, n LD f1, 
no = 1 050 P I = 2 fJ I = - 1 no = 2 1 0  P I = 2  fJ I = - 1 
n 1 = 525 P2 = 3 f12 = 1 n 1 = 1 05 P2 = 3 f12 = 1 
n 2 = 1 75 P3 = 5 f13 = - 1  n2 = 35 P3 = 5 f13 = - 1 
n3 = 35 P4 = 5 f14 = 0 n3 = 7 P4 = 7 f14 = 1 

stop n4 = 1 stop 

We translate this into the language of recurrent sequences. 

n0 = given number > 1 ;  
p 1 = LD(no) ; n 1 = n0/ p 1 ; 

P2 = LD(n J ) ; 

fJ I  = - 1 ;  

{ 
-M I 

f12 = 
0 

Pe = LD(n e- 1  ) ;  n e = ne- 1 /  Pe ; Me = { �
Me- l 

stop when ne = 1 or fl,e = 0 

if P I < P2 , 
if not; 

if Pe- 1  < Pe , 
otherwise; 

Note that we encounter a second order recurrence because i t  is necessary 
to know Pe- l and Pe to calculate Me · We reduce to a first order recurrence 
by passing to dimension two; that is, by introducing the sequence old_ LDe = 
Pt- 1 · If we put, to s implify, 

I old_ LDe = Pe- 1 ; Pe = LD(Ne- 1  ) ; 
S (t ) = 

{ -
Me if old_ LDe = pe , 

fJ e = 
0 otherwise 

we can describe our algorithm as fol lows l n0 = given number > I ; Mo = I ; Po = 1 ;  
S ( l ) ; S (2) ; . . .  ; S (e ) 

stop when n e = 1 or fJr = 0 .  

We suppress the time index £ in  (8 .6)  and use  a "repeat" loop: 

(8 .6) 
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function Moebius(n : integer) : integer ; 
var fl ,  old_LD, new_LD : integer ; 
begin 

11 := 1 ; new_LD := 1 ; 
if n > 1 then begin 
repeat 
old_LD := new_LD ; new_LD := LD(n) ; 
n : =  n div new_LD ; 
if old_LD < new_LD then f1 : =  - 11  else f1 : =  0 

until (n = 1 )  or (/1 = 0) ; 
end ; 
Moebius : =  11 

end ; 

Exercises 2 
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• If we store the values of the Mrebius function for 1 ::= n ::= N in an 
array /1[ I . .N ] ,  we can be more efficient. In effect, because we already know 
/1[ I ] ,  . . .  , fl[n - I ] , when d = LD(n ), formula (8 .5 )  and the lemma assure us 
that { -fl(n/d) if d does not div ide djn , 

fl (n )  = 
0 otherwise. 

• Suppose we want to verify the Mrebius inversion formula (Chap. 2) .  For 
this, fi l l  the array f[ I . . N ]  arbitrari ly, then store the values of the functions 
g(n)  = L f(d) and h (n )  = L rp (d)fl (n/d) in  the arrays g[ I . .N ]  and h[ I . . N ] ,  

d in d in  
respectively. Have your program display the values of f and of h on two 
different rows. 

• Calculate the Euler phi function rp by a s imi lar method. 

8.6. The Sieve of Eratosthenes 

In order to find al l prime numbers between 2 and N,  one often uses the age 
old algorithm known as the Sieve of Eratosthenes. Write 2 and al l odd integers 
smal ler than N (we have taken N = 1 49) .  

2 3 5 7 9 I I  1 3  1 5 I 7 19 21 23 25 2 7 29 

3 1  33 35 37 39 41 43 45 47 49 5 1  53  55  57 59 

61 63 65 67 69 7 1  73 75 77 79 81 83 85 87 89 

9 1  93 95 97 99 1 0  I 1 03 1 05 I 07 1 09 I l l  1 1 3 I I  5 1 1 7 1 1 9 

1 2 1  1 23 1 25 1 27 1 29 1 3 1  1 33 1 35 1 37 1 39 1 4 1  1 43 1 45 1 47 1 49 .  
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Now remove all multiples of 3 greater than 30 S ince 6 = 2 ° 3, it suffices to 
begin with 3 ° 3 = 9 :  

2 3 5 7 1 1  1 3  1 7  1 9  23 25 29 

3 1  35 37 4 1  43 47 49 53 55 59 

6 1  65 67 7 1  73 77 79 83 85 89 

9 1  95 97 1 0 1  1 03 0 1 07 1 09 0 1 1 3 1 1 5 0 1 1 9 

1 2 1  1 25 1 27 0 1 3 1  1 33 0 1 37 1 39 0 143 1 45 0 1 490  

S ince the prime number that fol lows 3 is  5 ,  we remove all multiples of 5 
greater than 5 0  Knowing that 2 ° 5 ,  3 ° 5 and 4 ° 5 have already disappeared 
because they are multiples of 2 or 3 ,  we begin with 5 ° 5 = 25 : 

2 3 5 7 1 1  1 3  1 7  1 9  23 29 

3 1  37 4 1  43 47 49 53  59  

6 1  67 7 1  73 77 79 83 89 

9 1  97 1 0 1  1 03 0 1 07 1 09 0 1 1 3 0 0 1 1 9 

1 2 1  1 27 0 1 3 1  1 33 0 1 37 1 39 0 1 43 0 0 1 490  

The first number that follows 5 i s  7 ,  so we remove all  multiples of 7 greater 
than 70 But since the numbers of the form 7m with m _:::: 6 have disappeared 
in the course of the preceding operations, we begin with 7 ° 7 :  

2 3 5 7 1 1  1 3  1 7  1 9  23 29 

3 1  37 4 1  43 47 53 59 

6 1  67 7 1  73 79 83 89 

97 1 0 1  1 03 0 1 07 1 09 0 1 1 3 0 0 

1 2 1  1 27 0 1 3 1  0 1 37 1 39 0 1 43 0 0 1 49 0  

The prime number fol lowing 7 being 1 1 ,  we remove numbers of the form 1 1 m 
with m 2: 1 1 ,  which only removes 1 1  ° 1 1  = 1 2 1 .  

2 3 5 7 1 1  1 3  1 7  1 9  23 29 

3 1  37 4 1  43 0 47 53  59  

6 1  67 7 1  73 0 79 83 89 

97 1 0 1  1 03 0 1 07 1 09 0 1 1 3 0 0 

1 27 0 1 3 1  0 1 37 1 39 0 0 0 1 490 

The first number fol lowing 1 1  is  1 3 , so we must suppress all numbers of the 
form 1 3m with m 2: 1 3 0 S ince 1 3  ° 1 3  = 1 69 > N, the array above contains 
no numbers of this  type, and the survivors are all the prime numbers less than 
or equal to 1 490  
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8.6.1 .  Formulation of the algorithm 

We translate the preceding operations using sequences .  

• A first sequence is  c learly formed by the successive arrays. 

T, = set of integers remaining at the instant t .  
The first element of the sequence is : 

T1 = { 2 }  U { odd integers :::: N J  
• This sequence i s  not sufficient because to deduce T,+ 1 from T, we require 

supplementary information : what is the first element not excluded from T, ?  
So, we introduce the sequence (p, ) of first non-excluded elements 

Pr+ l = min {n E T, I n > p, } .  (8 .7 )  

The first few terms are p 1 = 2, P2 = 3 ,  p3 = 5 ,  p4 = 7 ,  Ps = 1 1 .  If  we let 
big_mults(p)  designate the set of all multiples of p which are larger than p2 

(that is ,  of the form mp with m :=:: p) ,  we can write: 

T,+ l = T, - big_mults(p,+ 1 ) .  

We can now formal ize the sieve algori thm. 

T1 := { 2 }  U {odd integers :::: NJ ; 
t 1 : =  I ; p 1 : =  2 ; 
while p; :::: N do begin 
Pr + l : =  min{ T, n ] p, N ] } ; 
Tr+ l : =  T, - big_mults(p,+ 1 ) ; 
t : =  t + I  

end 

(8 .8 )  

Theorem 8.6.1 .  Algorithm (8 .8 )  is correct, which means that i t  terminates, 
does not crash, and that the last set T, is exactly the set of prime numbers less 
than or equal to N. 

Proof Consider the induction hypothesis :  

I ( i )  the prime numbers :::: N all belong to T, ; 
(9-C, ) ( i i )  the t prime numbers are p 1 , • • •  , p, ; 

( i i i )  T, contains no numbers mp 1 , • • •  , mp, with m > I .  

We are going to show that (9-C, ) is  an invariant of the loop, which means that 
it is  true each time we enter the loop. It is clear that (9-C 1 ) holds. Suppose 
that (9-C, ) i s  true on entry into the loop and that p; :::: N, which allows us to 
re-enter the loop. Let q be the first prime number that is  encountered after p, . 
The corollary of Bertrand's postulate assures us that p, < q < p; :::: N .  
Condition ( i )  then shows that q belongs to T, . Consequently, T, n ] p, , N]  i s  
not the empty set, whence Pr+ l exists and the algorithm does not crash. S ince 
the sequence of numbers p, i s  strictly increasing and bounded by ,JN, we 
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conclude that the algorithm must terminate. Now, we establ ish that (9-Cr+ l ) is 
true upon entering the loop again . 

• The set T,+ 1 i s obtained by removing the strict multiples of Pr+ l from T, , 
and hence conditions (i) and (i i i ) are satisfied. 

• Suppose that (ii) were false; that is , that Pr+ l is not the smal lest prime 
number greater than p, . With the notation above, we have p, < q < Pr+ l which 
contradicts the definition of Pr+ l · A single formal ity remains: we must show 
that when the algorithm terminates, the set T, contains all prime numbers .::: N 
and nothing else. Condition (i) already shows that T, contains all primes .::: N. 
Suppose that T, were to contain a composite integer n = qn' with q prime, 
q .::: n ' and q 2 .::: n .::: N. Conditions (i i ) and (i i i ) imply that q > p, _ 1 • Since 
we are at the exit of the loop, we have p; > N, whence q2 > p, > N which 
contradicts q 2 .::: n .::: N. o 

8.6.2. Transforming the algorithm to a program 

We get rid of the time t in (8 .8 )  to obtain a "true" algorithm. 
T = { 2 } U {odd integers .::: N} ; p := 2 ; 
while p2 .::: N do begin 

I P :=  min {T n ] p, N ] } ; 
T :=  T - big_mults(p) 

end 

(8.9) 

The discussion so far has not deal t with storage of the sets T .  To do this, it is 
natural to choose an array of booleans called is_removed 

const max = 2000 ; 
type vector = array[2 . . max] of boolean ; 
var is_removed : vector ; p : integer ; 

The meaning and use of the variable is_removed is as its name suggests: { true if n i s removed, 
is_removed[n]  = 

false if not. 

We are going to work "on site"; that is, with the single vector is_removed, 
where we consider the set T, to be the state of the vector is_removed at the 
instant t .  This said, the main body of our program is : 

begin 
initialize (is_removed) ; 
p := I ;  
while p * p .::: max do begin 

I p := first_non_removed(p, is_ removed) ; 
remove_large_mults(p, is_removed) 



8.6 .  The Sieve of Eratosthenes 

I end · 
display(is_removed) 

end . 

The procedure initialize 

To remove the even integers > 2, we do not use the statement 

for m := 2 to max div 2 do is_removed[2 * m] := true 

because it is much faster to repeatedly add 2 :  

procedure initialize(var is_removed : vector) ; 
var m : integer ; 
begin 
is_removed[2] : = false ; 
m := 3 ; 
while m :::; max do begin 
I is_removed[m] : = false ; m := m + 2 
end ; 
m := 4 ; 
while m :::; max do begin 
I is_removed[m] := true ; m := m + 2 
end 

end ; 

The procedure remove_large_mults 
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The first number to remove is p2 • We again replace multipl ications by additions 
in order to speed things up. 

procedure remove_large_mults(p : integer ; var is_removed : vector) ; 
var m : integer ; 
begin 
m := P * P ; 
while m :::; max do begin 
I is_removed[m] := true ; m := m + p 
end 

end ; 

The function .first_non_removed 

We use here a programming trick to speed up the execution : the two parameters 
are passed by address to the procedure (the declarations "var") . This avoids 
unnecessary recopying. It is also without danger because we cannot consult 
these parameters without modifying them. 
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function first_non_removed(var p : integer ; 
var is_removed : vector) : integer ; 

var q : integer ; 
begin 
if p = 2 then first_non_removed := 3 
else begin 

I q := p + 2 ;  while is_removed[q] do q := q + 2 ;  
first_non_removed : =  q 
end 

end ; 

Advice on finishing the program 

• Take care with the presentation ! Display your prime numbers in 1 0  · 1 0  
packets. 

num_displayed := 0 ; num_rows := 0 ; 
for q : = 2 to max do 
if not is_removed[q] then begin 
write (q : 6) ; 
num_displayed :=  num_displayed + 1 
if num_displayed = 1 0  then begin 
I writeln ; num_rows := num_rows + 1 ; num_displayed := 0 
end ; 
if num_rows = 1 0  then begin writeln ; num_rows : =  0 end 

end ; 

• Check that 1 789 (which is prime) appears on your screen . Also, compare 
your result with the values of n (x ) l i sted in Chapter 2. 

Exercise 3 

One can speed up the sieve by treating the case p = 2 separately. But one 
can gain more speed and, in particular, economize on memory by deal ing only 
with odd numbers. We begin with a compact version. 

for i : = 1 to (max - 1 )  div 2 do is_removed[2 * i + 1] : = false ; 
p : =  3 ;  
while P * P _:::: max do begin 
X : = p * p ; 
while X _:::: max do begin 

I is_removed[X] := true ; 
X : = X + 2 * P  

end ; 
repeat P : =  P + 2 until not is_removed[P] 

end ; 
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Note the increment "X :=  X +  2 * P" :  as we are only sieving odd integers, 
it is not necessary to try to remove the even integer X + P .  Introduce now 
P = 2p + 1 and X = 2x + 1 .  In the algorithm that fol lows, is_removed[x ] 
indicates whether or not the integer X = 2x + 1 is removed. 

for i := I to (max - I )  div 2 do is_removed[i] : = false ; 
p := 1 ; M :=  (max - 1 )  div 4 ; 
while p * (p + 1 ) :S M do begin 
x := 2 * P * CP + I ) ;  
while x ::; max do begin 

I is_ removed[x] := true ; 
X := X +  2 * P + I  

end ; 
repeat p :=  p + I until not is_removed[p] 
end ; 

On a medium powered computer, del iberately slowed, the classical sieve 
with N = 30,000 took 1 .02 seconds compared with 0.40 seconds for the new 
algorithm. 

8.7. The Function pi(x) 

Let (p; ) ; � 1 be the strictly increasing sequence of prime numbers (p 1 = 2, 
p2 = 3 , etc . ) . Recall that the function n (x )  i s defined as fol lows for any real 
number x :  

n (x )  = number of primes :S x 
= the largest index i such that p; :S x 

If x is not too large, a table of primes suffices to calculate n (x ) . But what 
happens otherwise? The response to this question is useful because, if we can 
calculate n (x ) without knowing in advance all the prime numbers ::; x, we 
know the size of a table of prime numbers ::; x .  

8. 7.1 .  Legendre 's formula 

Let x :::: 2 be a real number. We can partition the [x ] integers between I and 
x i nto three classes. 

• the integer I , 
• prime numbers ::; x ,  
• composite integers ::; x .  

Taking cardinalities of these classes, we get 

[x ] = I + n (x )  + Card (composite integers ::; x ) .  
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A composite integer has least divisor less than or equal to Jx, so that it can 
be written in the form 

n = mp , with m :::: 2 and p prime .::: y'x. 
To simplify, put 

a =  n (JX ) . 

Since there are [x I p 1 multiples of p which are .::: x , there must be [x I p 1 - 1 
composite integers .::: n which are divisible by p .  It is very tempting to assert 
that there are 

composite integers n .::: x . This enumeration is incorrect beacuse it double­
counts multiples of the numbers p; p j because they are simultaneously mul­
tiples of p; and p j .  It is necessary, to subtract the number of integers of the 
form [x I p; p j 1 and introduce a new correction for multiples of p; p j Ph and so 
on. If we put 

the correct formula is : 

Card( composite integers .::: x ) = Legendre (x , a) - a. 

We obtain the celebrated Legendre formula 

n (x ) = [x1 - 1 
+

a - Legendre (x , a)  with a =  n (JX ) . 

The correction term and the words to describe it 

(8 . 1 0) 

Take x = 50 so that a = n ( J50 )  = n (7) = 4. The correction term 
Legendre (x , a) is equal to: 

[ ;J + [ ;J + [ ;J + [ ;J 
- [ P�z ]- [ P�3 ] - [ P�4 ]- [ P;P3 ] - [ P;P4 ] - [ P;P4 ]  

+ [ P I ;2 P3 ] + [  P1 ;2P4 ] + [  P 1  ;3PJ+[ P2;3PJ 

- [ P I P;P3PJ · 

In this formula, the essential role is played by the indices 

1 , 2, 3, 4, 1 2 , 1 3 , 14, 23 , 24, 34, 1 23 , 1 24, 1 34, 234, 1 234. 
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because it is possible to reconsti tute [n/ p; p j pd from i ,  j ,  k .  Observe also the 
appearance of words whose letters 1 ,  2, 3, 4 form an increasing sequence. A 
program that calculates these words in fact defines a total order on the words 
because it calculates them in order one after the other. Since we are talking 
about words, this immediately brings to mind the lexicographic ordering: 

1 ,  1 2 , 1 23 , 1 234, 1 24, 1 3 , 1 34 , 14, 2, 23, 234, 24, 3 , 34, 4. 

Now, trying to find an algorithm to create these words and display them ver­
tical ly on the screen leads naturally to the structure of a stack. 

-
4 

,.-- - ,.-- -
3 3 4 4 4 - - 1--- - - ,.--

2 2 2 2 3 3 4 3 3 4 4 

It 1--- 1-- l4l 1 1 1 1 I 1 1 2 2 2 2 3 3 
Note that we move from one word to the next using one of the fol lowing 

two operations: 
• if the top s of the stack is < 4, we push (insert) s + I on top of s ;  
• i f the top of the stack i s 4 , we pop (withdraw) it ; i f this does not empty 
the stack, we increment the top of the new stack. 
We realize the stack as a pair (array, height) ; the variable s contains the 
next integer to push . The fol lowing algorithm produces the words w = a 1 · · · ak 
in increasing order. These words are composed of the letters 1 ,  2, . . .  , a and 
satisfy the condition I .:S a 1 < a2 < · · · < ak .::: a .  

s := I ; h : = 0 ;  
repeat 
if s .::: a 

{ the stack is empty) 

then push (stack , h ,  s) 
else pop_increment(stack, h)  ; 
if h > 0 then s : = stack[h] + 1 

until h = 0 { the stack is empty again } 

The procedures push and pop_increment are immediate. 
procedure push (var stack : vector ; var h, s : integer) ; 
begin 

I h := h + I  ; 
stack[h] : = s 

end ; 
procedure pop_increment(var stack : vector ; var h : integer) ; 
begin 

I h := h - 1 ; 
if h > 0 then stack[h] : = stack[h] + I 

end ; 
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Exercise 4 

We could use another strategy to produce the words w .  In effect, to be given 
indices 1 .::: a 1 < · · · < ak .::: a amounts to being given a non-empty subset 
of [ 1 ,  a D .  To this subset, we associate its characteristc function 

(8. 1 1 ) 

the b; indicating whether or not the index i occurs in the word w .  Thus, it 
suffices to write in base 2 al l integers between 1 and 1 + 2 + · · · + 2"' - I = 2"' - 1 
to obtain each word w once (and only once) . 

8. 7.2. Implementation of Legendre 's formula 

With the integers in Pascal , we can in theory calculate5 n (x )  for x < 2 1 5 . This 
requires us to store in a vector p[  1 . .42] the list of prime numbers smal ler that 
1 8 1 (since 1 8 1 2 < 2 1 5 < 1 822 ) : 

2 3 5 7 1 1  13 17 19 23 29 3 1 
37 4 1 43 47 5 3 59 6 1 67 7 1 73 79 
83 89 97 10 1 103 107 109 1 1 3 1 27 1 3 1 1 37 
1 39 149 1 5 1 1 57 163 167 1 73 1 79 1 8 1 

Let a 1 < a2 < · · · < ah be the indices contained i n the stack at a given 
moment and term the number associated to the word w = a 1 • • • ah : 

[ X ] term = . 

Pa , · · · Pah 
We must be careful because we are entering the delicate world of numerical 
calculation. The naive approach 

" First, I calculate P = Pa , · · · Pah , then I divide x by P" 

comes to a screeching halt, because when we use integers in Pascal , we must 
never exceed 2 1 5 = 32 , 768 in the course of a calculation. Thi s bound is quickly 
exceeded because 2 · 3 · 5 · 7 · 1 1  · 1 3 · 1 7 = 5 1 0 ,5 10. Instead of dividing x by the 
product of the the p; , we are going to div ide x by P � o  then divide the result 
by p2 , and so on. This slows the execution of the program, but it never results 
in an overflow of the capac ity because the integers produced are decreasing. 
This strategy is justified by the fol lowing, easi ly establ ished result . 

Proposition 8. 7. 1. For every integer x, 

5 In theory only, as we w i l l  prove in the next paragraph 



8.7 . The Function pi (x) 1 79 

The code for the function Legendre is now simple to write: each time that we 
modify the stack, we calculate the associated term that we add to or subtract 
from Sum. 

function Legendre (x, a : integer ; var p : vector) : integer ; 
var h ,  s, Sum : integer ; stack : vector ; 
begin 
s := 1 ; h : =  0 ; Sum := 0 ; 
repeat 
if s .::: a then push (stack, h, s) else pop_increment(stack, h) ; 
if h > 0 then begin 
s := stack[h] + l ; 
if h mod 2 = 0 
then Sum :=  Sum + term(p, stack, h, x) 
else Sum := Sum - term(p, stack, h ,  x) 

end 
until h = 0 ;  
Legendre :=  Sum 

end ; 

In order to avoid unnecessary recopying and to gain time, we communicate 
the addresses of the vectors p and stack: there is no danger here because we 
only need to consult the values of these variables. 

function term(var p ,  stack : vector ; h ,  x : integer) : integer ; 
var i : integer ; 
begin 

I for i := l to h do x := x div p[stack[i] ] ; 
term :=  x 

end ; 

8. 7.3. Meissel 's formula 

The time needed to calculate the correction term Legendre (x , a)  grows rapidly 
with x. As we have already remarked, the words formed by the indices of the 
prime numbers are in bijective correspondence with non-empty subsets of 
{ 1 ,  . . .  , a }  which gives a pal lette of 201 - 1 words to use. If we try to calculate 
rr ( l 04} , since a =  rr ( l 02 ) = 25 , there would be 

225 - 1 = 33 554 43 1 

integer parts to calculate : the response would be a very long time coming . . .  
In 1 885 , using an improvement of Legendre 's theorem, Meissel announced that 
rr ( l 09 ) = 50, 847 ,534. Considering the primitive tools for calculation available 
in this era, this result, although slightly erroneous,6 was a real tour de force. 

6 In  1 958,  D.H. Lehmer, using a computer, found that rr ( l 09 )  = 50, 847 ,478 .  



1 80 8. The Integers 

Let x :::: 4 be a real number, and a and f3 be indices such that 

This means that 
a = rr ($ ) , f3 = rr (./X ) . 

Having made these choices, we re-parti tion the integers ::: x into four classes. 
• the number 1 ;  
• the prime numbers ::: x ; 
• the composite integers ::: x whose L D  i s ::: Pa ; 
• the composite integers ::: x whose LD is > Pa . 

The cardinal i ties of the the first two sets are obviously 1 and n (x ) . Reasoning 
as we did for Legendre 's formula, it is easy to see that the cardinal i ty of the 
third class is Legendre (x , a) - a . Let n be an integer in the fourth class and 
decompose it into prime factors n = p; , · · · p;, with a < i 1 ::: • • • ::: h and 
k :::: 2. The bound p�+ l ::: p; , · · · p;, ::: x < p�+ l shows that k = 2. Finally 
the condition n ::: x, which can be re-written as p;2 ::: xI p; , , shows that 
i2 ::: n (xlp; , ) .  Thus, there are n (xiPa+ l ) - a integers of the form Pa+ I Pi 
with i :::: a +  1 ,  hence n (x l Pa+2 ) - (a +  1 ) integers of the form Pa+2 p; , with 
i :::: a +  2, and so forth up to integers of the form Pf3 Pi because Pf3+ I Pi :::: 
p f3 + 1 2 > x .  Because these integers are distinct, the cardinal i ty of the third 
class is equal to 

L {n (xl  p; ) - (i - 1 ) }  

= - { a  + (a + 1 ) + · · · + ({3 - 1 )  } + L 7r (xI p; ) 
a < i S/3 

= 4f3 <f3 - 1 ) - 4a (a - 1 )  + L n (xlp; )  
a < i S/3 

If we put 
Meissel (x , a, {3) = L n ( -�·} 

a < i S/3 p, 

we obtain Meissel 's formula7 

n (x )  = [x ] + 4f3 <f3 - 1 ) - 4 (a - 1 ) (a - 2) 
-Legendre(x , a) - Meisse l (x , a, {3 ) ,  

where we have put a =  n (.rx )  and f3 = rr (y'x ) . 

7 One can find much more sophisticated algorithms in Hans Riesel 's  book Primes 
Numbers and Computer Methods for Factorization, Progress in Mathematics, 
vol . 57,  B i rkhauser, Boston-Basel-Stuttgart ( 1 958) .  
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Example 

Let us calculate rr (200) . Since J200 = 5 .8 , we have a = 3 prime numbers 
smal ler than J200, which gives: 

[
200
] [
200
] [
200
] Legendre (200, 3) = T + } + S 

- [
2
�
0
] - [
2
1
0
0
0
] - [
2
1�
0
]+ [
2
3
0
0
0
]= 146 . 

Since J200 = 14. 1 , we have f3 = 6 primes less than or equal to J200 , which 
gives: 

(
200
) (

200
) (

200
) Meissel (200, 3 , 6) = n T +n ll +rr 13 = 22. 

Note that the Legendre correction term uses integer parts while the Meissel 
correction term uses the function n .  Thus desired value is : 

rr (200) = 200 + 15 - 1 - 146 - 22 = 46. 

Exercise 5 

Let M = 2 1 5 = 32768 (the upper limit of the integers in Pascal ) . The sieve 
of Eratosthenes on the interval [2, 3000] allows us to transfer into the vector 
p[ I . .  430] the prime numbers less than or equal to 3 · 1 03 (p430 = 2999 and 
P43 1 = 300 1 ) . 

• If x ::::: 3 · 1 0\ we calculate n (x ) by direct inspection of the vector p .  
• I f 3 · 1 03 ::::: x ::::: M, then rr (� ) ::::: rr (,fi ) ::::: rr (.:/M } ,  which gives 
6 ::::: a ::::: 1 1  and f3 = rr (JX ) ::::: rr (2 1 512 ) = 42. If we use Meissel ' s 
formula to calculate n (x ) : 

t> the time to calculate Legendre(x , a )  becomes reasonable because this 
function contains no more than 2a ::: 2 1 1  = 2048 integer parts ; 

t> the time needed to calculate Meissel (x , a,  {3) is very short ; in effect, 
this function contains f3 - a  ::::: 36 terms of the form n (xI p; ) that we 
can calculate directly by inspecting the vector p since p; 2: Pa+ 1 > 
p7 = 17 implies that xI q ::::: M I 1 7 ::::: 1 928. 

8.8. Egyptian Fractions 

The ancient Egyptians, it seems, only liked the fraction 213 and the fractions 
of the form 1 In and they wrote their fractions as sums of inverses of whole 
numbers. To honor this whim, we call the inverse of an integer an Egyptian 
fraction. Is it always possible to write a given rational number as a sum of 
Egyptian fractions? And is this expression unique? 
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Theorem 8.8. 1. Every rational number a lb > 0 is a sum of Egyptian frac­
tions: 

a 1 1 1 
- = - + - + · · · - , 
b X 1  X2 Xk 

1 ::: X I < X2 < . . .  < Xk , X; E N. 

Proof We wil l use an algorithm first written down by Leonardo de Pisa (Fi­
bonacci) and rediscovered and verified by Sylvester. 

• Suppose first that a I b < 1 and define n 1 2: 2 by the condition : 

a 
- < - < ---· 
n 1 - b n 1 - 1 

If alb equals 1 1n � o we are done. Otherwise, put a 1 = an 1 - b and b 1 = bn � o 
so that: 

a 1 a 1 
- = - + - · 
b n 1 b 1 

Since a (n 1 - 1 )  < b, it fol lows that a 1 < a .  Beginning again with a 1 lb 1 , we 
let n2 2: 2 be the integer satisfying the condition : 

a l 
- < - < --- · 
n2 - b 1 n2 - 1 

Putting a2 = a 1 n2 - b 1 et b2 = b 1 n2 , we now have: 

a 1 1 a2 
- = - + - + - · 
b n 1 n2 b2 

As above, we have a2 < a 1 • On the other hand, we can write: 
b 1 bn 1 

n 2 > - = ---- a 1 an 1 - b 
n 1 n 1 

--- > ---- = n 1 (n 1 - 1 )  > n 1 .  
a 
-n 1 - 1 
b 

Since the sequence of the a; is strictly decreasing, the process must stop after 
at most a steps, and gives fractions with strictly increasing denomiators . 

• If a I b > 1 ,  put: 
1 1 1 

Hn = l + l + . . .  + 
;; · 

Since the harmonic series Hn diverges to +oo, we know that there exists an 
integer n 2: 1 such that: 
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If ajb equals Hn , we are done. Otherwise: 

a 1 
0 < - - Hn < -- · 

b n + l  

1 83 

This reduces us to the first case with the condition that the first fraction to 
introduce must have denominator > n + 1 since 

Remarks 

I a 1 
- < - - H < -- ==} n 1 > n + 1 .  
n 1 - b n n + I  

D 

I )  This algorithm presents some serious inconveniences. As the bound nk+ 1 > 

nk (nk - I )  indicates, it tends to choose denominators that are factorials and 
that grow excessively. For example, the algorithm gives 

1 53 I 1 I 1 1 1 
100 1 = 

7
+ 1 0 1 + 1 1 234 + 1 1 35768634 

+ 
227 1 53727 

+ 
2579940782227989 1 8 

while there exist "better" decompositions such as 

153 I I I I 
1 00 1 = 8 + 

3 6 
+ 1 44 1 5 + 346305960

. 

2) A decomposition of a rational number into a sum of Egyptian fractions 
is never unique because one can always replace the last fraction by a sum of 
two new fractions thanks to the identity 

I I I 
-

=
--

+ . 

x x + I x (x + 1 ) 

Restricting the number of fractions does not fi x anything. We shall see later 
that the fraction � admits a single decomposition as a sum of two Egyptian 
fractions, six decompositions as a sum of three fractions and eighty decompo­
sitions as a sum of three fractions . This method of representing the rationals 
is not very practical ! 

8.8.1. The program 

We want to find all decompositions of a given fraction as a sum of two or 
thee Egyptian fractions. The main body of the program is : 

begin 
message ; choose (a, b) ; 
decomposition_into_two_fractions(a,  b) ; 
decomposition_into_three_fractions(a,  b) 

end . 
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The procedure decomposition_into_two_fractions 

We are going to use "brute force" to consider all possible couples (x 1 , x2 ) .  But 
instead of varying x 1 and x2 independently, we let x 1 take all possible values. 
Once x 1 is chosen, we check that whether the rational number x2 defined by 
the condition 

a 
X2 b X 1  

i s an integer. In other words, our scheme i s the following: 

for x 1 := 1 to oo do begin 

I « calculate x2 using (8 . 1 2) » ; 
if x2 E N then writeln (x 1 ,  x2 ) 

end 

(8 . 1 2) 

We need to get rid of the infinite bound. A short reflection shows that x 1 
and x2 cannot be too large since the sum of two infinitely smal l numbers is 
infinitely smal l . Let (x � > x2 ) be a solution of (8 . 1 2) satisfying the condition 
I .:S x 1 ::: x2 • The double inequal ity 

1 a 2 
- < - < ­
X 1  b - X 1  

immediately furnishes the bounds 

� < X J :'S 
2: � [ �] + 1 :'S X J  :'S [

2:] -

We note in passing that (8 . 1 4) implies x 1 .::: x2 since 

1 a I I 
- = - - - < - · 

X2 b X 1  X J 

(8 . 1 3) 

(8 . 1 4) 

We now specify our algorithm. Here x 1 runs over the interval defined by (8 . 1 4  ) . 
To avoid manipulating rationals, we put 

so that x2 = b 1 /a 1 is an integer if and only if a 1 divides b 1 . 

procedure decomposition_ into_two_fractions(a, b : integer) ; 
var a 1 ,  b 1 , x 1 , x2 : integer ; 
begin 
for x 1 := lower_bound(a, b ,  1 )  to (2 * b) div a do begin 

I new_fraction (a, b ,  x 1 , a 1 , b 1 ) ; 
if is_integer(a 1 ,  b 1 ) then begin x2 :=  a 1 div b 1 ; write_2 (x 1 ,  x2 ) end 

end 
end ; 
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The code for the functions and procedures is easy to write. The seemingly 
bizarre introduction of the parameter k in the funtion lower_bound will be 
justified below. 

function lower_bound(a, b, k :  integer) : integer ; 
var temp : integer ; 
begin 

I temp := 1 + b div a ; 
if temp 2: k then lower_bound : = temp else lower_bound :=  k 

end ; 

procedure new_fraction (a, b, x : integer ; var a i , b i  : integer) ; 
begin 
I a i  := x * a - b ; bi : =  b * x ; simplify(a i , b i ) 
end ; 

function is_integer(a, b : integer) : boolean ; 
begin 
I if b mod a = 0 then is_integer := true else is_integer : = false 
end ; 

The procedure decomposition_into _three _fractions 

We continue to use brute force by assigning X i  and x2 all possible values and 
checking to see whether the equation 

a 1 1 1 
- = - + - + ­
b X i  Xz X3 

(8 . 1 5 ) 

defines an integer value of x3 . As in the preceding case, we must find rea­
sonable intervals in which x i  and x2 l ive . Consider a solution of (8. 1 6) which 
satisfies Xi ::: x2 ::: x3 . The double inequal i ty 

I a 1 1 1 3 - < - = - + - + - < ­
X i  b X i  X2 X3 - X i  

immediately implies that 

� < X i  ::: 3: � [�] + 1 ::: X i  < [ 3: l 
Having chosen x i  consistent with this, and putting a2 = ax i - b and b2 = bx i ,  
we are reduced to studying the equation 

a i 1 1 
- = - + - . 
b i  X2 X3 

(8 . 1 6) 
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This is something we know how to do. It suffices to choose x2 , to put a2 = 
a 1 x2 - b 1 and b2 = b 1 x2 , and to test whether x3 = b2/a2 is an integer. 
Experience shows that even x2 _::: x3 is a solution of (8 . 1 6  }, we cannot be 
certain of obtaining x 1 _::: x2 • For example, when a = b = 1 and x 1 = 3, we 
obtain a 1 jb 1 = 1 - 1 /3 = 2/3 which defines the interval x2 E [2, 4] . To be 
sure that x2 :::: x 1 , we must choose x2 in the interval : 

This precaution is the reason we introduced the parameter k in the function 
lower_bound(a , b, k ) .  

procedure decomposition_into_three_fractions(a, b : integer) ; 
var a J , b J , a2 , b2 , x 1 , x2 , x3 : integer ; 
begin 
for x 1 := lower_bound(a, b ,  1 )  to (3 * b) div a do begin 
new_fraction (a, b, x 1 , a 1 , b 1 ) ;  {a 1 jb 1 = a/b - 1 /xd 
for x2 :=  lower _bound(a 1 , b 1 , x 1 ) to (2 * b 1 )  div a 1 do  begin 
new_fraction (a J , b J , X2 , a2 , b2 ) ;  {a2/b2 = a 1 /b 1  - l /x2 } 
if is_integer(a2 , b2 ) then begin 
I x3 := b2 div a2 ; write_3 (x 1 , x2 , x3 ) 
end 

end 
end 

end ; 

The procedures write_2 and write_3 

Because the integers in Pascal are limited, it is prudent to double check before 
accepting them: one of the integers x2 and x3 might be too large and become 
negative ! Thus, we are going to check the equal ity a 1 jb 1 = I jx 1 + I jx2 + I jx3 
by redoing the calculation using real numbers. 

procedure write_3 (x 1 , x2 , x3 : integer) ; 
begin 

I write (' = I j' , x 1 : 1 , ' + l /' , x2 : 1 , ' + l / ' , x3 : 1 ) ; 
writeln (' , precision = ' , a/b - I jx 1 - I jx2 - l /x3 ) 

end ; 

If the "solution" is correct, the displayed real number must be very smal l (let 
us say of order at most 1 0-7 ) .  If this is not the case, beware ! The procedure 
write_2 is similar. 

8.8.2. Numerical results 

The numerical results are impressive. As one might predict, the number of 
decompositions increases with the number of fractions one allows. The size 
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of integers that appear is surprising. One also observes that some rationals are 
not the sum of two (or three) Egyptian fractions. 

• One sees, for example, that there is a single decomposition of 3/4 as a 
sum of two fractions: 

3 1 1 
- = - + - · 4 2 4 

• When one allows three fractions, there are six solutions : 

Exercise 6 

3 1 1 I 
4 = 2 + 5 + 20 

I 1 1 
= 2 + 6 + 12 

1 1 1 
= 2 + 8 + 8 

1 1 1 
= 3 + 3 + 12 

1 1 1 
= 3 + 4 + 6 

1 1 1 
= 4 + 4 + 4 '  

If you have access to long integers, write a Pascal program which finds al l 
decompositions of ajb as a sum of four fractions. 

8.9. Operations on Large Integers 

If we wish to add, subtract or multiply two integers of 30 digits, the integers 
already defined in Pascal wil l not suffice ; a special program is necessary. We 
are going to work in base b > 2 with integers that have at most n digits : 

(8 . 1 7 ) 

As usual , we use the notation x = Xn · · · x0 to denote (8 . 1 7 ) . 

8.9.1. Addition 

Put z = x + y and add the representations (8 . 1 7 ) of x and y :  

Z = (Xo + Yo) + (X ! + Y l )b  + · · · + (Xn + Yn )bn . (8 . 1 8) 

The sum x0 + y0 is not a digit if it is greater than or equal to b . Thus, we 
divide by b 

Xo + Yo = P 1 b + zo , 0 :::: zo < b .  (8 . 1 9) 
to obtain the digit z0 .  The quotient p 1 is cal led the first carry. Combining 
(8. 1 8) and (8. 1 9) gives 

(8 .20) 
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Dividing in tum x 1 + y 1 + p 1 by b gives us the second carry. 

X 1  + Y l + P I = bp2 + Z i > 0 _::: Z 1 < b .  

Substituting (8 .2 1 ) into (8 .20) gives 

Z = Zo + Z 1 b + (x2 + Y2 + P2 )b2 + · · · + (Xn + Yn )bn . 

Proceeding l ittle by little, we finally arrive at the equal i ty 

Z = Zo + Z 1 b + zzb2 + · · · + Znbn + Pn+ l bn+ l , 0 _::: Z; < b .  

(8 .2 1 ) 

(8 .22) 

(8.23) 

The bounds 0 .::: xo + y0 .::: 2(b - 1 ) show that 0 .::: p 1 .::: 1 .  More general ly, 
all the carries are equal to 0 or 1 , because if 0 .::: p; .::: 1 then 

0 _::: X; + Y; + P; _::: 2b - 1 ==} 0 _::: Pi+ ! _::: 1 .  (8.24) 

This bound is important, because it wil l allow us to avoid exceeding capacity 
when we are programming. When the last carry Pn+ l is zero, (8.22) shows 
that the representation of z in base b i s z = Zn · · · z0 . The transformation into 
an algorithm is immediate: 

p : = 0 ; {because p; + 1 is a function of p; } 
for i := 0 to n do begin 

I temp : = X; + Y; + p ; Z; := temp mod b ; 
if temp < b then p : = 0 else p : = 1 

end ; 
if p > 0 then overflow {x + y has more than n digits } 

Note that the calculation of the new carry p does not use division by b 
which greatly speeds up the algorithm. 

8.9.2. Subtraction 

Consider the representations (8. 1 7 ) of x and y and let z = x - y :  

Z = (xo - Yo) +  (X J - Y J )b  + · · · + (Xn - Yn )b'' . (8 .25 ) 

The difference xo - y0 is a digit if and only if it is positive or zero. When it 
is negative, we "borrow", which amounts to defining zo as follows: { 0 if xo - Yo :=::. 0, 

zo = xo - Yo + P 1 b ,  P 1 = 
1 if xo - Yo < 0. 

Combining (8 .26) and (8 .27 ) gives 

Z = Zo + (X J - Y 1 - P l )b + (xz - Y2 )b2 + · · · + (Xn - Yn )bn . 

(8 .26) 

(8.27) 
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When we have -b .::: x 1 - y 1 - p 1 < b, we must borrow again to obtain the 
digit Z 1 : { 0 if X I - Yl - P I � 0, 

P2 = 
l if X I - Yl - P I < 0. 

Proceding l ittle by li ttle, we final ly obtain 

(8 .28) 

One cannot have Pn+ l = 1 when x � y because it fol lows from (8 .28) that 

Z _::: (b - 1 ) ( 1  + b + · · · + bn ) - bn+ l = bn+ l - 1 - bn+ l = - 1 . 

Consequently, x � y implies that Pn+ l = 0, which shows that the expression 
Zn · · · zo given by (8 .28) is the representation of z in base b . The subtraction 
algorithm is, therefore : 

p := 0 ;  {because Pi+ I is a function of Pi } 
for i := 1 to n do begin 
Zi := Xi - Yi - p ; 
if Zi < 0 then begin Zi :=  Zi + b ; p := 1 end 
else p := 0 

end ; 
if p > 0 then underflow { that is x < y} 

8.9.3. Multiplication 

Put Z = x * y .  The formula 
n 

z = x * y = L:cxi * y) * bi 
i=O 

allows us to reduce multipl ication to adding the results of multiplication of a 
number and a digit . So, suppose that 0 .::: c < b is a digit and put 

Z = C * X  = CXQ + CX 1 b + · · · + CXnbn . (8 .29) 

The inequalities 0 .::: cx0 .::: (b - 1 ) 2 , where the bounds can be obtained, show 
that cx0 is not always a digit. Thus, we divide by the base 

cxo = P 1 b + Zo , 0 .::: Zo < b ,  

which gives the first carry p 1 • We now have [ CXQ ] [ b2 - 2b + 1 ] [ 1 ] 
0 _::: P I = b _::: b 

= b - 2 + b = b - 2. 

(8 .30) 
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If we substitute (8 . 30) into (8 .29) we get 

Z = Zo + (cx 1 + P J )b + · · · + CXnbn . 

Dividing cx 1 + p 1 by the base gives the next carry : 

Its size is 
CX J + P I = P2b + Z J , 0 .::: Z ! < b .  

(8 .3 1 )  

[ CX J + P i ] [ b2 - 2b + 1 + b - 2 ] [ 1 ] 
O < p2 = < = b - 1 - - = b - 2  - b - b b 

and we have 
Z = Zo + Z 1 b + (cx2 + P2 )b + · · · + cxnbn . 

Proceeding in this manner, we find that the carries can equal at most (b - 2) 
and we finally obtain 

(8.32) 

If the last carry is zero, we obtain the representation Zn · · · z0 .  Otherwise, we 
exceed the capacity. 

p :=  0 ;  {because Pi+ ! is a function of p; } 
for i := 0 to n do begin 

I temp :=  c * x; + p ;  
Z; :=  temp mod b ; p :=  temp div b 

end ; 
if p > 0 then overflow {c * x possesses more than n digits } 

The estimates 

0 :'S CX; + p; :'S (b - 1 ) 2 + (b - 2) < b2 (8 .33) 

are very valuable because they protect us from exceeding the capacity when 
we program. 

8.9.4. Declarations 

We are going to work in base B = I 00. In the program "digit" (in quotes) 
wil l refer to a digit in base B, that is, an ordinary integer between 0 and 99. 
The machine knows knows how to add and multiply two "digits". The bounds 
B2 < 2 1 \ (8 .20) and (8. 32) guarantee that the intermediate calculations will 
never produce negative integers when starting with Pascal integers. Knowing 
that a line on a screen contains 80 characters , we wil l only be interested in 
(positive) integers with at most 80 digits . Such an integer can be stored with 
n = !SO = 40 ordinary Pascal integers : 

X =  Xo + x 1 b + · · · + x39 B39 • 

Thus, our declarations wil l be as follows 
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const B = 1 00 ; ind_max = 39 ; 
type bigint = array[O . .  ind_max] of integer ; 
string80 = string[80] ; 

8.9.5. The program 

1 9 1 

The main body employs the boolean variables finish, ovetjlow, undetflow and 
the bigint x, y, z. This program repeatedly requests the values of x and y and 
displays the sum, difference and product whenever possible; that is, whenever 
the capacity is not exceeded. One leaves the loop when x = y = 0 which 
allows us to test the pairs (x , 0) and (0, y ) .  

begin 
message ; 
repeat 
choose ('x' , x,finish) ; 
if not finish then choose ('y' , y,finish) ; 
if not finish then begin 
big_sum(x, y, z ,  ovetflow) ; display('x + y' , z ,  overflow) ; 
big_subtraction (x, y, z, undetflow) ; display('x - y' , z, underflow) ; 
big_multiplication (x, y, z, overflow) ; display('x * y' , z, ovetflow) ; 

end 
until finish 

end . 

(Division wil l be treated separately because it is more complicated. ) 

The procedures choose and display 

As always, the procedures for interfacing with the exterior (entrances and 
exits) are the most del icate to write. Here are some traps and problems: 

• It is necessary to convert chains of chosen characters into bigint. 
• The "digits" with weak weight (those which multiply I ,  B ,  B2 , • . •  ) are at 
the beginning of the arrays . This explains the appearance of "downto" loops . 

• We should display "03" and not "3" when the "digit" is equal to 3. 

The procedure choose 

When we type 1 234567890 1 23456, we send the machine a chain of characters 
which it must convert into a sequence of "digits". 

• We cut the chain into two digit pieces, which requires that we adjoin a 
'0' when it contains an odd number of digits ; 

• We convert the ordinary digits (which are characters) into the correspond­
ing integers using the statement "ord(chain [i ] )  - ord('O' )" ;  

• A final snare awaits us : the indices of the chain range between I and 80; 
in bigint x, they range between 0 and 39. 
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procedure choose (letter : char ; var x : bigint ; var finish : boolean) ; 
var i, £ : integer ; chain : string80 ; 
begin 
write (letter, ' =' ) ; 
readln (chain) ; 
if chain =' 0' 
then finish :=  true 
else begin 
finish : = false ; 
if length (chain) mod 2 = 1 then chain :=  concat('O' , chain) ; 
annul(x) ; 
£ :=  length (chain) div 2 ; 
for i :=  1 to £ do 
x[£ - i] := 10 * (ord(chain[2 * i - 1 ] ) - ord('O' ) )  

+ord(chain[2 * i] ) - ord('O' ) 
end 

end ; 

In order to beter understand the subtleties of this procedure, you should run 
a trace when chain = ' 1 234567 ' . (The procedure annul is left to the reader. ) 

The procedure display 

We want to display the "digits" properly on the screen. For example, if we 
have x [O] = 0, x [ 1 ]  = 9 and x [2] = 7, the other "digits" being zero, we must 
display 70900 and not 790 or 00 · · · 0070900 ! (The convenience of the user 
always comes before that of the programmer. ) 

procedure display(word : string80 ; x : bigint ; impossible : boolean) ; 
var i, start : integer ; 
begin 
if impossible then writeln ('no result : overflow or underflow') 
else begin 
writeln (word) ; 
for i :=  1 to ind_max do if x[i] > 0 then start :=  i ; 
write (x[start] : 1 )  ; 
for i :=  start - 1 downto 0 do 
if x[i] < 1 0 then write ('O' , x[i] : 1 )  else write (x[i] : 1 )  ; 
writeln 

end 
end ; 

The procedure big_sum 

This procedure returns z = x + y when this number has less than 80 digits; 
exceeding the capacity is stored in the boolean variable overflow. 
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procedure big_sum(x, y : bigint ; var z : bigint ; var ovetjlow : boolean) ; 
var i, carry, temp : integer ; 
begin 
carry :=  0 ;  
for i := 0 to ind_max do begin 
temp := x[i] + y[i] + carry ; 
if temp > B 
then begin z [i] := temp - B ;  carry : =  1 end 
else begin z[i] := temp ; carry := 0 end ; 
if carry = 0 then ovetflow : = false else ovetflow : =  true 

end 
end ; 

The procedure big_subtraction 

This procedure returns z = x - y when x :::: y ;  otherwise the variable undetjlow 
becomes true. 

procedure big_subtraction (x, y :  bigint ; 

var i, carry, temp : integer ; 
begin 
carry :=  0 ;  

var z : bigint ; var undetjlow : boolean) ; 

for i := 0 to ind_max do begin 
temp := x[i] - y[i] - carry ; 
if temp < 0 
then begin z[i] :=  temp + B ; carry :=  1 end 
else begin z [i] := temp ; carry := 0 end 
if carry = 0 then undetflow : = false else undetjlow := true 

end 
end ; 

The procedure big_multiplication 

This procedure returns z = x * y when x * y has less that 80 digits. We use the 
formula z = L:1�o x; * y * B; and the algorithm for multiplying by a "digit". 
If x * y has more than n digits, the boolean variable ovetjlow becomes true. 

procedure big_multiplication(x, y : bigint ; 
var z : bigint ; var ovetjlow : boolean) ; 
var i : integer ; temp : bigint ; 
begin 
i := 0 ; annul(z) ; ovetjlow : = false ; 
repeat 
{ temp :=  x[i] * y} 
big_multiplication_by_digit(x[i] , y, temp, ovetjlow) ; 
if not ovetflow then begin 



1 94 

shift(temp ,  i, overflow) ; { temp :=  temp * Bi } 
if not overflow 
then big_sum(z, temp, z ,  overflow) {z := z + temp} 

end ; 
i : =  i + 1 

until (i = ind_max) or overflow 
end ; 

The procedure shift is left to the reader. 

The procedure big_mult_by_digit 

Suppose that x is a "digit", that is x E [0, B - 1 ] .  

8. The Integers 

procedure big_multiplication_by_digit(x : integer ; y : bigint ; 
var z : bigint ; var overflow : boolean) ; 

var i, carry, temp : integer ; 
begin 
carry :=  0 ;  
for i := 0 to ind_max do begin 

I temp := x * y[i] + carry ; 
z[i] : = temp mod B ;  carry :=  temp div B ; 

end ; 
if carry = 0 then overflow : = false else overflow :=  true 

end ; 

Exercise 7 

Adapt the algorithms and the program to a representation complementing 
base B (Chapter 6) . 

8.10. Division in Base b 

Let x ,  y > 0 and q ,  r be the quotient and the remainder upon division of x 
by y :  

x = qy + r, 0 .::: r < y .  

As school children, we learned an algorithm to determine the numbers q 
and r from x and y .  This algori thm, however, uses guesses, which makes 
it unprogrammable, so that a careful theroretical study is in order. 

8. 10.1 .  Description of the division algorithm 

Suppose that we know the addition and multipl ication tables in base b. To be 
precise, suppose the fol lowing: 

• We know how to add, subtract and multiply numbers written in base b. 
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� y 
� � 

X � 5 6 2 6 9 3 2 3 7 
q l y � 4 2 2 6 5 9 3 
� I � 4 0 6 t t t t 

q2y � 1 8 5 q l q2 q3 q4 
�2 � 2 2 1 9 

q3y � 2 3 3 
�3 � 8 6 3 

q4y � 7 
r � 5 2 

Fig. 8.1. Euclidean division of x = I , 562 , 693 by y = 237 

• On the other hand, we do not know how to div ide anything other than a 
number having no more that two di igts by a digit (which we do by "reading 
the multipl ication table in reverse") . 

This said, we recal l how we divide x = 1 , 562, 693 by y = 237 (working in 
base 10) . 

• Let �0 = 1 562 be the smal lest integer � y formed from the first digits 
of x .  

• To find the integer part of �o/ y ,  we ask the question "How many times 
does 237 go into 1 562?" Since we do not know the multipl ication table, we 
cannot immediately answer this question. For this reason, we replace the ques­
tion by a simpler one: "How many times does 2 go into 1 5 ?" The estimate 
q 1 = 7 that we obtain turns out to be too large since 7 · 237 = 1 659 > 1 562, 
so we reduce it by one. Since 6 · 237 � 1 562, we now know that q 1 = 6 is 
the integer part we seek. 

• We calculate next that r 1 = �0 -q 1 y = 1 40, then we "bring down" the digit 
of x which fol lows �0 •  This means that we have made � 1  = 1 0r 1 + 6 = 1 406. 

• We estimate the integral part of � 1  I y with the question "How many times 
does 2 go into 14?". The answer q2 = 7 is too large because 7 · 237 = 1 659 > 

1 406. We decrease q2 by a unit and find that this sti l l does not work because 
6 · 237 = 1 422 > 1 406. We begin again and determine finally that the integer 
part is q2 = 5 . 

• We calculate r2 = � 1 - q2y = 22 1 ,  then we bring down the next digit of 
x to obtain 6 = 1 0r2 + 9 = 22 1 9 . 

• We estimate the integral part of �2/ y = 22 1 9/237 by asking "How many 
times does 2 go into 22?". Since the response is greater than the greatest digit, 
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�0 

X ----+ Xn · · · Xm Xm - 1 · · · Xo Y f-------{ r 1 = �o - q l y 

�� = br 1 + Xm- 1 { r2 = �� - q2y 

�2 = br2 + Xm-2 

{ Tm = �m- 1 - qm y 

�m = brm + Xo 

Tm+ l = �m - qm+ I Y 

Fig. 8.2. Sequences which arise when dividing x by y 

namely 9, we try q3 = 9. This turns out to be correct . 
• The next partial remainder is r3 = �2 - q3y = 86. We find that 6 
1 Or3 + 3 = 863, whence q4 = 3 . 

• The division comes to an end with r4 = 6 - q4y = 1 52 because there i s 
no digit to bring down. The quotient we seek is 6593 and the remainder 1 52. 

8. 10.2. Justification of the division algorithm 

The division algorithm uses two auxi l iary sequences (r; ) ; :': 1 and (�J )  ) :':0 : 

{ r; = �i - 1 - q; y ,  

�i = br; + Xm-i · 
(8 .34) 

The sequence (�1 ) begins with the smallest integer �0 :::: y formed from the 
first digits of x ; let 

�0 = Xn · · · Xm . 

The sequence of digits of the quotient is defined by 

· -
[� ] q, - , 

y 

(8 .35) 

(8.36) 

where, as always, the bracket indicates the integral part. Thus, to a first ap­
proximation, we can write the division algorithm as follows: 
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« to determine �o = Xn · · · Xm » ; 
for i : = 1 to m do begin 

qi := [�; - J /Y1 ;  
r; : =  �i - 1 - q;y ;  
�; : =  br; + Xm-i ; 

end ; 
rm+ l : =  �m - qm+ I Y 

1 97 

Theorem 8.10.1.  The division algorithm defined by (8 . 34), (8 .35 ) and (8 . 36) 
correctly determines the digits of the quotient. 

Proof Multiply each r; by bm+ l -i and add the resulting equations term by 
term to get 

bm r 1 = �0 - q J y ,  
bm- l r2 = br 1 + Xm- 1 - q2y ,  

b rm = brm- 1 + X 1 - qm y ,  

rm+ l = brm + Xo - qm+ I Y · 

After simplifying, we get: 

X = (qmbm + qm- l bm - l + . . .  + qo)Y + rm+ l · (8 .37) 

If the q;  defined by (8.36) are digits (that is, if they satisfy 0 ::: q;  < b) ,  
and if the last remainder satisfies 0 _::: r m+ 1 < y ,  and we know that the 
expression of the quotient in base b is q = q 1 · · · qm+ l · We begin by showing 
that y _::: �0 < by . Consider the numbers � ' formed by all digits of �0 except 
the last. That is, � ' = Xn . . .  Xm- l , so that �o = b� ' + Xm (if m = n, take 
�� = 0.) The definition of �0 ensures that � ' < y. Returning to �0 , this gives 
�0 _::: b(y - I ) + b - I _::: by - I < by . Using the inequality y _::: �0 < by, 
we deduce that q 1 = [�0/ y 1 is a digit different from 0 and that r 1 = �o - q 1 y 
satisfies 0 _::: r 1 < y. The bound 

�I = br 1 + Xm- 1 .:S b(y - I ) +  b - I = by - I 

now allows us to conclude that q2 is a digit and 0 _::: r2 _::: y .  A simple induction 
establ ishes the theorem. o 

8.10.3. Effective estimates of integer parts 

If we examine our provisional division algorithm, we find an action which 
we cannot execute with the primitives at our disposal , namely calculating the 
integer part of [ujv 1 when u possesses more than two digits (remember that 
we need to have a multipl ication table in order to read it in reverse) . Thus, we 
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replace q = [ulv ]  by the estimate q = [ ul v ]  obtained from the multipl ication 
table. Let u and v be two integers sati sfying the condition 

0 < v ::::: u < bv ,  

which ensures that q = [u I v ]  i s a digit different from zero. Set 

with un+ l = 0 when u and v have the same number of digits. Put B = bn and 
- - -

u = Un+ J Un , u =  Un- l · · · uo , u = B u +  u, 0 :=:: u < B ;  
- - -

v = Vn- 1  · · · vo , v = B v  + v, 0 ::::: v < B . 

The number u is made up of the first or two first digits of u according as the 
number of digits of u is equal to or one more than v .  If we only have a simple 
multipl ication table in base b, we can only calculate the digit 

q = min { b - 1 ,  [ � J } . (8 .38) 

The estimate q that we obtain is sometimes catastrophic : in base 1 0, if u = 99 
and v = 1 9 then q = 9 whereas q = 5 . More generally, if f3 is the digit 
f3 = b - 1 ,  with u = 1 00 = b2 and v = T{j = 2b - 1 we have q ::::::: b whereas 
q ::::::: �b if b is large ! 

Lemma 8.10. 1. With the same notation as above, q ::::: q. 
Proof Suppose that q < b - 1 and write: 

u B u + u B u + B - I 
-----= < ---------

v B v +  v B v  

Since the integer part is an increasing function , we wil l be done if we can 
prove that the integer part of the upper bound of ulv i s q; that is if we can 
establ ish the inequal it ies: 

B u  + B - 1 
q ::: < q + l . 

B v  

• The left inequality is immediate : 

u B u  B u + B - 1 
q ::: � = 

B v
< 

B v  

• To establish the right one, multiply u I v < q + 1 by v to obtain the 
inequal ity u ::::: ii( q + 1 )  - 1 .  We have 

B u + B - 1 < B ( ( q + l ) ii - l ) + B - 1 
< B ( q + l ) ii - 1 < B( q +  l ) ii. D 
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We have seen that it can happen that q - q has the same order as 4 b. 
Happi ly, this catastrophe only occurs when the first digit v of v is smal l , as 
the fol lowing result shows. 

Lemma 8.10.2. If v � 4b, then q - q _::: 2. 

Proof We are going to establ ish the contrapositive 

q - q ::::. 3 ==> v < 4b . 

By the definition of the integer part, we can write: 

It fol lows that 

u u 3 _:s q - q < -= - - + 1 . 
v v 

- -u v - u v u u 
2 < - - - < --­

v v - v v  
- - - -

Since iiv - U V =  ii(B v + v ) - (B ii + ii ) v = ii v - ii V, we have 

u v - u v ii V  UB u b 
2 < ---- ::: -=- < -=- ::: -=- ::: -= 

v v  v v  v v  v v  v 

since ujv is bounded above by b . 0 

When the first digit v of v is not too large, we can replace u ,  v by 8 u ,  8 v ,  
which does not change q but which multiplies the remainder r by 8 .  I f we 
choose 8 wel l , the first digit of 8v will be sufficiently large. 

Proposition 8.10.1 .  Suppose that b is even and v < 4b, and put 8 = [ b I ( v + 1 ) ] . 
Then 8 v  has the same number of digits as v and the first digit of 8v is greater 
than 4b. 

Example 8. 10. 1 . In base 10, when v = 293 , 578, we have v = 2, 8 = 3 and 
8v = 880 734 ; when v = 4999, we have ii = 4, 8 = 2 and 8v = 9998. 

Proof The condition v < b shows that 8 ::::_ 1 and 8v � v .  From v < B, we 
deduce that 

8v < [
v
: 
1
J cs v +  B) ::: s [

v
: 
1
J c v + 1 ) ::: Bb 

since [b/ ( v + 1 ) ] _::: bj ( v + 1 ) . Thus 8 v  has the same number of digits as v .  
Knowing this and that 8 v  = (8 v) B + (8 v ) , we see that the first digit c 1 

of 8 v  equals 8 v plus, possibly, a contribution from 8 v: 
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We can write 

c 1 > 8 v > (-
b
- - 1 ) v > � - 1 > [� ] - 1 - v +  1 - 2  - 2 

because v(b/ ( v + l ) - 1 ) - �b + 1 = ( �b - v - l ) ( ii - 1 ) / ( ii + 1 ) :::: 0. 

We are done upon remarking that the strict inequal ity c 1 > [ �b] - 1 between 
integers implies that c 1 :::: [ �b ] .  D 

8. 10.4. A good division algorithm 

When the base is an even number, we can prepare x and y, meaning that we 
can replace x and y by 8x and 8y so that the first digit of 8y is greater than �b. 
We can then be certain that our estimates are good because q wil l equal either 
q ,  q + 1 or q + 2: the internal loop "while r; < 0 do begin . . .  end" will be 
traversed at most twice. 8 := 1 ; v : = digit of highest weight of y ; 

if 2 v < b then begin 1 8  := b div ( l + v )  ; 
x :=  8x ; y : =  8y 

end ; 
« determine �o = Xn · · · Xm » ; 
for i := 1 to m do begin 
q; := estimate (�; - J , y) ; {q; = qJ 
r; := �i - 1 - q; * Y 
while r; < 0 do begin 
I r; := r; + y ; q; := q; - 1 
end ; 
�i :=  br; + Xm-i 

end ; 
r :=  x - q * Y 

Exercise 8 
Write a program that divides one biginteger by another. 

8.11 .  Sums of Fibonacci Numbers 

In what fol lows, x » y means x :::: y + 2 and x « y means x _::: y + 2.  

Theorem 8.11. 1 (Zeckendorf, 1972). Every integer n :::: is a sum of Fibo­
nacci numbers: 

n = F; , + F;2 + · · · + F;1 • (8 . 39) 
Moreover, if one requires that the indexes satisfy i 1 » i2 » · · · » h » 0, 
then this decomposition is unique. 
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Here are the Zeckendorf decompositions of the integers 2 ::: n ::: 25 . 

2 = F3 
3 = F4 
4 = F4 + Fz 
5 = Fs 
6 = Fs + Fz 
7 = Fs + F3 
8 = F6 
9 = F6 + Fz 

Remarks 

1 0 = F6 + F3 
1 1  = F6 + F4 
1 2 = F6 + F4 + Fz 
1 3 = F7 
1 4 = F1 + F2 
1 5 = F1 + F3 
1 6 = F7 + F4 
1 7 = F1 + F4 + F2 

1 8 = F1 + Fs 
1 9 = F1 + Fs + Fz 
20 = F7 + Fs + F3 
2 1 = F8 
22 = Fs + F2 
23 = Fs + F3 
24 = Fs + F4 
25 = Fs + F4 + Fz 

20 1 

1 ) One can show that the Fibonacci sequence is the only sequence with this 
property. 
2) Please refer also to the Hofstadter function (Chap. 1 2, §2) . 

Lemma 8.11.1. For all  e :::0: 2, one has 

Fe+ ! = 1 + Fe + Fe-2 + Fe-4 + · · · , (8 .40) 

the sum extending over all indices e - 2i :::0: 2 (the last term is F2 ( resp. F3) 
if e is even (resp. odd)). 

Proof The identity fol lows easi ly by induction upon repeatedly applying the 
definition 

Fe+ ! = Fe + Fe- ! = Fe + Fe-z +  Fe-3 = · · · . 
When e is even, one stops at Fz + F1 = F2 + I ;  when e is odd, at F3 + F2 = F3 + I  
(the equal i ty F2 = F1 = 1 is essential ) . o 

Proof of Zeckendorf's theorm 

We begin with existence. Set n0 = n .  Since F1 tends to infinity, there exists 
an index i 1 ::: 2 (and only one such) such that: 

Put n 1 = n0 - F; , . If n 1 i s zero, we are done; otherwise, we have the bound: 

Since 1 ::: n 1 < F; , - h i t fol lows that there exists a (unique) index 2 ::: i2 < 

i 1 - 1 such that: 
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Put n2 = n 1 - F; , . If n2 is zero, we are done. Otherwise, 

which allows us to begin again . Since the sequence (n; ) ; �o defined in this 
way is strictly decreasing, the algori thm cannot run endlessly. (Once again, 
the equal i ty F2 = F1 = 1 is vital , because it ensures a correct stop . ) It is 
clear that one can extract an algorithm from this argument which wil l supply 
the decomposition (8 .39) . Now we establ ish uniqueness. The conditions i 1 » 
i2 » · · · » h » 0 imply that for all t = I ,  . . .  , k ,  one has: 

2 + 2 (k - t )  :::: it :::: i l - 2 (t - 1 ) . 

Since the Fibonacci sequence i s increasing, identity (8 .40) allows us to write 

n = F; , + F;2 + · · · + F;, 
< F; , + F; , - 2 + F; , -4 + · · · + F; , -2 (k - I J = F;, + l - I .  

Two cases arise: 
• n = Fe i s a Fibonacci number. It fol lows from the bound Fe < F; , + 1 that 

£ :::: i 1 and thus that k = l . 

• n is not a Fibonacci number. The bounds F; , < n < F; , + l establ ish the 
uniqueness of i 1 • 

The uniqueness of the other indices now fol lows by induction. 

The Zeckendorf decomposition (8 . 39) of n + I can be obtained very simply 
from that of n thanks to (8 .40). Let £ E [ 1 ,  k] be the smallest index such that 
i e+ l  :=:: i e + 3 : 

n = F; , + · · · + F;, + ,  + ( F;, + F;,_2 + F;,_4 + F;, _, + · · · + F;, ) .  

I n other words, we put in parentheses those F; that we encounter when we 
start from the right letting the indices grow by 2: 

• 16 = F7 + ( F4 } ,  
• 25 = Fs + ( F4 + Fz ) , 
• 20 = ( F7 + F5 + F3 ) . 

Proposition 8. 11. 1. With the notation above: l F; , + · · · + F;, + F2 if ik ::: 4, 
n + 1 = F; , + · · · + F;, + ,  + F;, + 1 if ik :::: 3 and £ > I ,  

F;, + l  i f  ik :::: 3 and £ =  I .  

Proof This is an immediate appl ication of the identity (3 .40) . D 
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Example 

Let us start, for example, with the decomposition 25 = F8 + ( F4 + F2 ) .  We 
have 26 = Fs + ( F4 + F2 + 1 ) = F8 + F5 i n view of (3 .40) . Then we get 
27 = Fs + ( Fs + 1 ) = Fs + Fs + F2 and then 28 = Fs + Fs + (F2 + 1 ) = 
Fs + Fs + F3 . The next decompositions are: 

26 = Fs + Fs 
27 = Fs + Fs + F2 
28 = Fs + Fs + F3 
29 = Fs + F6 
30 = Fs + F6 + F2 

Exercises 9 

3 1 = Fs + F6 + F3 
32 = Fs + F6 + F4 
33 = Fs + F6 + F4 + F2 
34 = F9 
35 = F9 + F2 

36 = F9 + F3 
37 = F9 + F4 
38 = F9 + F4 + F2 
39 = F9 + Fs 
40 = F9 + Fs + F2 

• Write a Pascal program to display al l Zeckendorf decompositions of inte­
gers in the interval [ I , 2000D knowing only that 1 = F2 . 

• Let n = F; , + · · · + F;, be any sum if Fibonacci numbers . Write a Pascal 
program which computes the Zeckendorf decomposition of n .  

• Write a Pascal program which adds two numbers whose Zeckendorf de­
compositions are given . 

8.12. Odd Primes as a Sum of Two Squares 

We know from Chapter 2 that a prime number p of the form 4n + 1 is a sum 
of two squares. We are going to prove this theorem differently. This time, our 
proof will be constructive and be based on Euler 's proof. 

First step: finding a particular solution of X2 + 1 = 0 

We work modulo p .  Euler 's theorem (Chap. 2) tel l s us that there are as many 
squares as nonsquares in z; and that if x =f. 0, then 

x <p- I J /2 = 
{ + 1 if x is a square in ZP , 

- I otherwise. 

To find a particular solution of the equation X2 + 1 = 0 mod p ,  we choose 
an element x E z; at random and raise it to the power 4 (p - 1 ) using the 
algorithm for fast exponentiation. If squares and nonsquares were uniformly 
distributed in z;, we would have exactly one chance in two of choosing a 
nonsquare ; practice shows that we very rapidly obtain a nonsquare . When this 
is the case, x<p- l l/2 = - I ,  which shows that X = x <p- l l/4 is a solution of 
X2 + I = 0 mod p .  
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In Pascal one chooses an integer x E [0 , p - I ]  at random by typing 
x := random(p) . To obtain a random integer x E [ 1 ,  p - 1 ] , i t suffices to 
write 

x := 1 + random(p - 1 ) .  

Second step: decomposing p into a sum of two squares 
Let X0 and Yo be two integers such that X0 ¥= 0 or Y0 ¥= 0 and xg + YJ = 0 
modulo p :  

X� + YJ = pNo . (8 .4 1 ) 
• If N0 = I ,  chance i s on our side and we are done. 
• If N0 :::: 2 ,  we divide X0 and Yo by p using divis ion with centered re­
mainders : 

Xo = p� + x , l x l < k p ,  
Yo = p1J + y , I Y I < k P ·  

(8 .42) 

(The inequal ities are strict because p is odd . ) It fol lows from (3 .4 1 ) and (3 .42) 
that x2 + y2 = xg + YJ = 0 mod p, whence : 

x2 + / = np , n :::: I .  (8 .43) 

We certainly have n > 0, because n = 0 and (8 .42) would imply that both X0 
and Y0 are multiples of p ,  contrary to hypothesis . 

• If n = I , we are done because p = x2  + / .  
• If n > 1 ,  we divide x and y by n ,  which i s reasonable since the inequal ity 

pn .::: x2 + y2 < ± P2 shows that n < ± p :  

x = na  + a , I a  I .:S k n ,  
y = nf3 + b ,  l b l .:S kn .  

(8 .44) 

It fol lows from (8 .43) and (8 .44) that a 2 + b2 = x2 + / = 0 mod n, whence 

(8.45) 

Putting pn = x2 + y2 together with (8 .44), using (8 .45 ) and dividing by n ,  we 
find that 

p = n (a2 + {32 ) + 2 (aa + {Jb) + N1 . 
If we multiply (8 .46) by N1 , we obtain8 

pN1 = nN1 (a2 + {32 ) + 2NI (aa + {Jb) + Nt 
= (a2 + b2 ) (a2 + {32 )  + 2NI (aa + {Jb) + Nt 
= (N1 + aa + f3b? + (a{J - ba) 2 . 

8 Euler had a prodigious capacity for calculation. 

(8.46) 

(8.47) 
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Putting X 1 = I N 1 + aa + f3b l  and Y1 = l af3 - ba l ,  (8 .47) becomes : 

pN1 = X � + Y12 • 
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(8 .48) 

Let us estimate the orders of magnitude of n and N1 •  If � is not zero in (8 .42) 
we can write I Xo l 2: P I �  I - lx l 2: p - lx l > 4 p > lx l ; if � is zero, we only 
have I Xo l 2: l x l .  One shows in the same way that I Yo l 2: l y l .  These bounds 
imply that I ::; n ::; N0 . Since we also have nN1 = a2 + b2 ::; ±n2 , we final ly 
get: 

I :S N1 :S ±n :S ± No . (8 .49) 
Let us justify the inequality N1 2: 1 .  If N1 were zero, we would have a = b = 0 
because of (8.45 ) as wel l as x = na and y = nf3 , so that x2 + y2 = np becomes 
n (a2 + {32 ) = p.  Since p i s prime, this means that n = p or n = l .  The bound 
pn ::; x2 + y2 < 4 p2 prohibits the case n = p, so that we must have n = I ,  
which is contrary to our working hypothesis . 
If N1 = I ,  we are done because (8 .48) is the decomposition of p as a sum 

of two squares. 
If N1 > 1 ,  we begin anew the calculations above replacing X0 , Y0 by X 1 ,  Y1 •  
(If X 1 = 0 and Y1 = 0 mod p ,  we deduce from (8 .48) that N1 = 0 which 
is impossible since 1 :S N1 :S ±n < -It, p . )  This process creates a sequence 
No > N1 > · · · > Nk = I which decreases very rapidly: Nk+ l :S ± Nk . Euler 's 
algorithm for writing p as a sum of two squares is therefore: 

« Seek X such that X2 + 1 = 0 mod p »  ; 
y : = I ;  
while X2 + Y2 > p do begin 
centered_division(X, p, �, x) ; 
centered_division( Y, p ,  1] ,  y) ; 
n : = (x2 + y2 ) div p ; 
if n = I then begin X : = x ; Y : = y end 
else begin 
centered_division(x, n ,  a ,  a)  ; 
centered_division(y, n, {3, b) ; 
N : = (a2 + b2 ) div n ; 
X : = abs(N + a  * a  + b * {3) ; 
Y := abs(a * f3 - b * a ) ; 

end 
end 

Here is the trace of this algorithm when p = 1 9 1 3 . Note the very rapid 
decrease in N which accords with what we would expect theoretical ly. 

N X y n X y N X y n X y 

754 1 20 1 I 265 7 1 2 I 5 94 27 5 94 27 
26 223 3 26 223 3 8 43 
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Remarks 

There are two ways of leaving the loop: either because n = I (that is, p = 
x2 + y2 ) , or because N = I (that is, p = X2 + X2). The two cases arise: 

• p = 40 1 , X0 = 38 1 and Yo = I give the solution x = 20 and y =  I .  
• p = 397, X0 = 334 and Yo = I give x = -63 , y = I which in tum give 

rise to the solution X 1 = 19 and Y1 = 6. 

Exercise IO 

To find all solutions of the equation x 2 + y2 = n such that 0 ::: y ::: x,  we can 
"tack" around the track defined by the circle x2 + y2 = n leaving the point 
( [.Jfl ] ,  0) and moving vertically when we are inside the circle and diagonally 
to the left when we are on the exterior of the circle (Fig. 8 . 1 ) . 
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n = 1 25 n = 1 28 n = 1 45 

Fig. 8.3. How to find all solutions 0 ::; y ::; x of the equation x2 + y2 = n 

Translation into Pascal is easy; if we want to speed it up, we can replace 
the first loop which calculates [ Jn ]  by a dichotomous search. 

X : = 0 ;  y := 0 ;  
while (x + I ) * (x + I )  ::: n do x : = x + I ; 
repeat 

/1 := X * X  + y * y - n ; 
if /1 = 0 then writeln(x, y) ; 
if /1 > 0 then x : = x - I ; 
y : =  y + I  

until x < y 

Exercise II 
Show that this algorithm is correct. 
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8.13. Sums of Four Squares 

Theorem 8. 13.1 (Lagrange). Every integer n 2: 0 is a sum of four squares. 

Proof Let U, V be two quaternions. The identity I U V I 2 = I U I 2 · I V I 2 can be 
written: 

(a 2 + b2 + c2 + d2 ) (x 2 + y 2 + 22 + t2 ) 

= (ax + by + cz + dt )2 + (ay - bx - ct + dz )2 (8 .50) 

+ (az  + bt - ex - dy ) 2 + (at - bz + cy - dx )2 . 

D 

Thus the product of two sums of squares is again a sum of squares and we 
are reduced to proving the theorem in the case when n = p is a prime. The 
cases p = 2 and p = 4€ + 1 have already been settled, so we can suppose 
that p = 4€ + 3 . We first show (Lemma 8 . 1 3 . 1 )  that kp is a sum of four 
squares when k is sufficiently large. We then improve this result by showing 
(Lemma 8. 1 3 .2)  that the smal lest value of k i s I .  

Lemma 8.13.1. Let p = 4€ + 3 be a prime number. Then the equation x2 + 
y2 + z2 = 0 has a solution (x , y ,  z )  =I- (0, 0, 0) in Zr. In other words, there 
exists k 2: I for which kp is a sum of three squares. 

Proof We show that the equation x2 + y2 + z2 = 0 admits a solution of the 
form (x , y, 1 ) . Let d E [2 , p - 1 D be the smal lest integer which is not a 
square, so that d<r- l l /2 = d2f+ l = - 1 . Euler 's theorem tel l s us that -d i s then 
a square since ( -d )2f+ 1 = I .  Thus the equations y2 = -d and x2 = d - I 
each have a solution since d - 1 is a square. o 

Lemma 8.13.2. Let p = 4€ + 3 be a prime number and k 2: the smallest 
integer such that kp is a sum of four squares. Then k = I .  

Proof The first lemma guarantees the existence of an integer k such that 
x2 + y2 + z2 + t 2 = kp. Choose x ,  y, z ,  t 2: 0 with k 2: 1 a minimum. The 
identity (p - x )2 = p2 - 2px + x2 allows us to write 

[k + p - 2x ]p = (p - x )2 + / + z2 + t 2 . 

Since k is minimal , we must have k + p - 2x 2: k .  Thus, 0 ::: x < � p ,  where 
the inequal ity is strict because p is odd. Since this bound also holds for the 
numbers y, z ,  t, we have 

(8 .5 1 )  

Suppose that k > I : 
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• If k is even, the possibi l i ties for x ,  y, z ,  t are as follows: all are even; two 
are even, two are odd; all are odd. By relabel l ing if necessary, we may assume 
that x = y mod 2 and z = t mod 2. We find that 

4kp = [ 4 <x + y ) ] 2 + [ 4 <x - y) ] 2 + [4 <z + t ) ] 2 + [ 4 <z - t )f 
which is absurd. 

• If k is odd, let � = x mod k be the remainder after centered division of x 
by k ,  which ensures that I � I < 4k .  Simi larly, we associate the remainders 1J , 

l; , r to the numbers y ,  z ,  t .  The congruence � 2 + 172 + 1; 2 + r 2 = 0 (mod k) 
can be written as 

ke = �2 + 172 + r; 2 + r 2 with 0 :S £ < k . (8 .52) 

If £ = 0, we have x = y = z = t = 0 mod k by (8 .53) .  Upon putting 
x = kx' , etc . , we obtain k (x '2 + y'2 + z '2 + t '2 ) = p, which implies that k = p 
because k > I . But this is forbidden by (8 .52) . If £ > 0, we use (8 .53)  and 
(8 .5 1 )  to deduce that: 

(kp ) (k£)  = (x� + Y1J + zl; + t r )2 + (x 17 - y� - zr + t l; )2 

+ (xl; + yr - z� - t 1]) 2 + (x r - yl; + Z 1J - t� )2 • 

These four squares are divisible by k2 since, modulo k ,  we have 

x� + Y1J + zl; + t r = � 2 + 172 + 1; 2 + r 2 = 0, 

X 1J - y� - zr + t l; = � 11 - 17� - l; r + r l; = 0, etc . 

As a result , we obtain an equation of the form 

e p£ = (kX) 2 + (k Y } 2 + (kZ) 2 + (kT} 2 , 

which leads to contradiction upon dividing by the term k2 • 

Exercise 12 

Transform this proof into an algorithm. 

8.14. Highly Composite Numbers 

0 

Suppose that we wish to store in a vector d [  I . .  dim_max] al l divisors of a 
given number n :::_ I .  Knowing only, say, that n ::; 200, what value should 
we give dim_max ? If n = p�' · · · p�' i s the decomposition of n i nto prime 
factors, then our problem amounts to finding the maximum of the function 

d (n )  = number of divisors of n = (a 1 + I ) · · ·  (ar + I )  

as n varies from 2 to 200. 

(8 .53)  
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Fig. 8.4. The function d(n)  for 2 _:::: n _:::: 200. 

Imagine that the sticks in our diagram are soldiers which march to the left. 
Only the soldiers which are taller than all those before them see where they 
are going. Let us bring these "tall soldiers" to the fore. 

max :=  0 ;  
for n :=  2 to 200 do begin 
num_div := 0 ; 
for d := I to n do 

if n mod d = 0 then num_div := num_div + 1 ; 
if num_div > max then begin 

I max :=  num_div ; 
writeln(' d(' , n : 1 ,  ' ) = ' , num_div : 1 )  

end 
end 

(8 . 54) 

Running this code tel ls us that there are ten intermediate viewers (the "tall 
soldiers") obtained (Fig. 8.4) when n = 2 ,  4 ,  6 ,  1 2 , 24, 36 ,  48,  60, 1 20, 1 80.  If 
fol lows immediately from this calculation that the number of divisors of an 
integer n ::; 200 is always less than or equal to d ( 1 80) = 1 8 . When n runs 
over a very long interval [2 , N] the code (8 .55 )  i s not very fast. In fact, let 
us estimate the time spent in the two loops. 

for n : = 2 to N do 
for d := 1 to n do 

if n mod d = 0 then num_div := num_div + 1 

Since the inner loop makes n divisions, the total time, neglecting additions , 
is proportional to 2 + · · · + N, the constant of proportionality depending on the 
speed with which the divisions are made. If we replace the sum by J2N x dx 
which does not change the order of magnitude, we conclude that the time 
required for the calculation is on the order of 4 N2 • When N = 2 1 5 = 32768, 
we have 4 N2 = 230 � 5 · 1 08 . If we are using a microcomputer of average 
power (in 1 995 ) which can do 1 000 divi sions a second, the calculation wil l 
last at least 5 · 1 05 seconds, that is 1 39 hours . . .  
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The notion of a highly composite integer, which was introduced by S. Rama­
nujan9 leads to an elegant solution of this problem. 

Definition 8. 14.1 .  An integer n > I is called highly composite if d (n' )  < d(n )  
for every integer n '  < n. 

Proposition 8. 14. 1. If H is the largest highly composite integer less than or 
equal to N, then the maximum number of divisors of an integer less than or 
equal to N is d (H ) . 
In fact, for al l n E [H ,  ND , we must have d (n )  _::: d (H ) ;  otherwise the 

smallest integer n > H such that d (n )  > d (H)  would be a highly composite 
integer, contradicting the defini tion of H .  

8. 14. 1. Several properties of highly composite numbers 

Let (Pi ) i :': 1 be a strictly increasing sequence of prime numbers. To the decom­
position 

N = p�' 0 0 0 p�' ,  I ::: i I < 0 0 0 < i, 

i nto prime factors, we associate the number 

N = P7 ' . . .  pf' , fJ1 2: fJ2 2: . . .  2: f3r ,  (8 .55)  

where the exponents f3i are obtained from the ai by reordering them into a 
decreasing sequence. For example: 

N = 35 · 72 · 1 33 · 1 72 · 239 ==> N = 39 · 75 · 1 33 · 1 72 · 232 . 

Theorem 8. 14. 1  (Ramanujan). d(N)  = d(N)  and N _::: N. 

Proof The first equation follows from (8 .55) .  To establ ish the inequal i ty, note 
that since (puq " ) j (p "qu ) = (pjq ) u - v , we have: 

(u 2: v )  and (p _::: q) ==> puq v _::: p"q u . 

If we permute the ai to obtain the f3 j ,  we decrease N : 

PtJ, . • . pfJ' < p"' ' . . .  p"'' = N. l ]  f 1  - I J  f,-

We wind up with the obvious inequality N _::: p� ' · · . p�' . 

Corollary 8. 14. 1. A highly composite integer necessarily has the form 

0 

(8 .56) 

0 
9 S. Ramanujan,  Highly Composite Numbers, Proc. London Math. Soc. X I V  ( 1 9 1 5 ), 

pp. 347--409. 
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Recal l that the integers in Pascal do not exceed 2 1 5 • Knowing that 
2 . 3 . 5 . 7 . 1 1 . 1 3  < 2 1 5 < 2 . 3 . 5 . 7 . 1 1 . 1 3 . 1 7 ,  

we are going to try to find all highly composite integers whose greatest prime 
divisor is less than or equal to 1 3 .  We begin by estimating the exponents in 
the decomposition (8 .56 ). 

Theorem 8. 14.2 (Ramanujan). Let N = 2"'2 3"'' · · · p"'1' be a highly composite 
integer and P the prime number that follows p. For every prime q .:S p, the 
following holds: [ log p ] [ log P J -- < a < 2 -- . 

log q -
q

- log q 

Proof We first bound aq from below. We suppose here q < p ;  let x 
[ log pI log q ] be such that qx < p < qx+ 1 , and consider the integer: 

I N 
N = -qx < N.  

p 

We have d(N1 ) < d(N)  because N is highly composite and N1 < N.  Elimi­
nating the common terms in the inequality d(N1 ) < d (N) ,  we obtain 

(aq + x + l )ap < (aq + l ) (ap + 1 ) .  

Upon expanding out and simplifying, we get x < aq + I .  
To bound aq from above, we put y = [log P I  log q ] , which implies that 
qY < P < qY+ 1 • If aq :::: y + I ,  we can consider the integer 

I N 
N = --1 P < N.  

q v+ 

As before, we have d(N1 ) < d(N ,  which can be written 
2(aq - y) < aq + 1 ==> aq < 2y + I . 

Remarks 

D 

1 )  This theorem shows that there are only a finite number of highly com-
posi te integers whose greatest prime divisor is p .  

2) For p = 3 , 5 ,  7 ,  1 1 ,  1 3 , the theorem above gives the fol lowing ranges for 
the a; :  

p a2 a, as a7 a 1 1  a l 3 

3 I . .  4 I . .  2 

5 2 . .  4 I . .  2 I . . 2 

7 2 . .  6 1 . . 4  1 . .  2 I . .  2 

I I  3 . .  6 2 . . 4  1 . .  2 I . . 2 I . .  2 

1 3  3 . .  8 2 . . 4  1 . . 2 1 . . 2 I . .  2 I . . 2 
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We see from this table that the highly composite integers whose greatest 
prime is 1 3  is not accessible using the integers in Pascal because 23 · 3 · 5 · 7 · 
1 1  · 1 3  = 1 20 1 20 > 2 1 5 • When the greatest divisor is 1 1 ,  we must eliminate 
the integers 2a2 • • • 1 1  a" where a2 2: 4 because 24 · 32 · 5 · 7 · 1 1  = 55440 > 2 1 5 . 

3 )  Ramanujan was able to show that the last exponent of (8 .56) i s 
a P = 1 when N =I- 4 or N =I- 36.  

8. 14.2. Practical investigation of highly composite integers 

Thanks to (8 .57) ,  we know that highly composite integers are hidden among 
the integers of the form 

To decide if N is highly composite, we need only verify that d(M)  < d(N)  
for al l integers M < N.  Moreover, Theorem 8 . 1 5 . 1  allows us to restrict our 
tests to integers of the form: 

M = 2fJ2 3tJ' 0 0 0 q f!,, , fh :::. fh 2: 0 0 0 2: {3q 2: 1 ,  M < N.  (8 .57) 

To bound f3r from above, we put M = rfJ, W.  Then r W 2: 2 . 3 . 5 . . . . .  q shows 
that 

N · r 
rfl, < ------

2 ° 3 ° 5 ° 0 0 0 0 q (8 .58)  

Propositio!!_ 8. 14.2. The integer N = r'2 3a , · · · pa,, is highly composite if and 
only if d (M)  < d (N)  for all integers M satisfying (8 .57)  and (8 . 58) .  

Example 

Is the integer N = 50, 360 = 24 · 34 · 5 · 7 highly composite? Since 

2 . 3 . 5 . 7 . 1 1 . 1 3  < N < 2 . 3 . 5 . 7 . 1 1 . 1 3 . 1 7 , 

we must perform the test d (M)  < d (N)  for all integers M < N of the form 

(i ) 2fJ2 , 

( i i ) 2fl2 3fJ' , 
( i i i ) 2fl2 3tJ' 5tJ' , 
( iv ) 2fJ' 3fl1 5tl' 7fJ7 , 

(v) 2fl2 3fl' 5fJ, 7fJ' 1 1 f!" , 

(v i ) 2ih 3th 5fJ' 7fJ7 1 1 fJ 1 1  1 3fJ" , 

where the {3; are a decreasing sequence whose size is controlled by (8 .59) . 
A computer capable of handl ing long integers gives the response in a few 
seconds : N = 50, 360 is highly composite. 
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We make a note of this result : an integer less than or equal to 50, 360 
possesses at most 

d (24 .  34 · 5 · 7) = 5 · 5 · 2 · 2 = 1 00 divisors . 

Exercise 13 

Find al l Pascal integers which are highly composite . 

8.15. Permutations: Johnson's' Algorithm 

How can one list all n !  permutations of the integers 1 ,  2 , . . .  , n ? The fol­
lowing algorithm, due to Johnson in 1963, uses integers decorated with a 
"weathervane" such as : 

+--- +--- +--- ---+ +--- ---+ ---+ 
I 3 5 7 6 4 2 . 

One says that a integer with a weathervane is mobile it it can "see" a smal ler 
integer or if it "looks outside" (that is, if it sees no one). In our example, the 
integers 3, 5 ,  7, 4 are mobile and I , 6, 2 are not. 
Johnson 's algorithm proceeds as fol lows: 

(i ) Start with the permuation I , 2 , . . .  , t1 . 
( i i ) Look for the largest mobile integer. If there is not one, the algorithm 
terminates; otherwise, let m be the largest mobile integer and v the integer 
seen by m.  

( i i i ) Interchange m and v without changing their weathervanes. 
( iv) Change the direction of the weathervanes on all integers k > m and return 
to (i i ) . 

Example 

Let us see what this gives when n = 3 . The first three permutations are in 
the table on the left : in the first two, the largest mobile integer is 3 ,  which 
explains why it moves from right to left; no weathervane changes direction 
when 3 moves because there is no integer greater than 3 . 

+- +--- +---
I 2 3 

+- +--- +---
I 3 2 

+--- +- +---
3 I 2 

---+ +---
3 2 

+--- ---+ 
2 3 

+--- +---
2 I 

+-
I 

+-
I 

---+ 
3 

In the third perm�ation, !he largest (and only) mobile integer is m = 2. We 
first interchange I and 2 (without modifying their weathervanes) ; we then 
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change the direction of the weathervane which decorates 3 since 3 > m .  The 
effect of this operation is to unblock the number 3, allowing it to move to the 
right. The algorithm stops when no mobile integer remains and we do indeed 
obtain the 6 = 3 ! permutations of I ,  2, 3 . 

Exercise 14 

When n = 4 (Fig. 8.5), one finds that the number 4 zigzags across four line 
blocks. When one takes 4 out of the six blocks of four lines, one is left with 
the permutations made by Johnson 's algorithm when n = 3 .  

• )  : I  : I  • )  : I  • I 

-:a : I  • I  
-

• I  :! .t :I :I I 
.J :! : I  :I . t  • I  :I .j . , 

T :! : I  :I :! : I  • I  

- I 4 I :I :! :! :I :! : I  
: I  · I :! :! :I 4 :! I . : I  
:I :! 4 :! .j :I :! I : I  
: I  • )  . j  .f • I  : I  . , : I  I 

Fig. 8.5. Johnson s algorithm when n = 4  

Show that this behavior is general . In more modern terms. Johnson 's algo­
rithm is fractal, which is to say that it contains different scales. 

Exercise 15 

Let k E [ 1 ,  n !] be the number of the permutation s in Johnson's algorithm. 
Knowing that the permutations decompose into blocks of n permutations, 
let B j be the block containing s and i E [ 1 ,  n] the row on which s occurs. 

Bj (j even) 

Since k - 1 = n (j - I )  + i - 1 and 0 .:::: i - 1 < n, we conclude that 

j = I +  (k - 1 )  div n ,  i = 1 + (k - I )  mod n .  
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If j i s odd, we know that the place p of n i n the permutation i s p = n - i + 1 ;  if 
j is even, the place of n i n s i s p = i .  Cal l 8s the permutation of 1 ,  . . .  , n - I 
obtained from s by suppressing the integer n .  We know that 8s is the j -th 
Johnson permutation of I ,  . . .  , n - I ,  which allows us to put the element n - 1 
into s ,  etc. 

n = 7 k = 1 994 j = 285 i = 6 p = 2  • 7 • • • • • 

n = 6 k = 285 j = 48 i = 3 p = 3  • 7 • 6 • • • 

n = 5 k = 48 j = 1 0  i = 3 p = 3  • 7 • 6 5 

n = 4 k = 1 0  j = 3 i = 2 p = 3  • 7 • 6 5 4 • 

n = 3  k = 3  j = 1 i = 3 p = l 3 7 • 6 5 4 • 

n = 2  k = l j = 1 i = 1 p = 2  3 7 • 6 5 4  2 

n = l k = l j = l i = I  p = 1 3 7 1 6 5 4 2  

Fig. 8.6. Reconstitution of the permutation s E 67 whose number in Johnson s algo­
rithm is k = 1 994. The number p denotes the place of n in the permutation s. 

Write a Pascal program which lists the n !  permutations of 1 ,  . . .  , n using 
this algori thm. 

8. 15. 1. The program Johnson 

The types 

In order to teach a computer what a weathervane integer is, one thinks im­
mediately of the pair (integer, boolean) . But one quickly changes one's mind 
when trying to specify the integer seen by k .  Systematic tries establ ish the 
superiority of the pairs ( integer, vane) where vane = ± I  symbol ises the 
weathervane (with the convention + I  if it points to the right and - 1  if it 
points to the left) . After this delicate choice, another difficulty awaits us: how 
can we express simply that an integer which looks outside is not mobile? In 
order not to compl icate the programming with distracting tests, we border 1 0  

our permutation to the left and right with the integer n + I as, for example: 
+-- � +-- � 

5 2 1 4 3 5 .  

(We do not need to endow n + 1 with a weathervane . ) Now, an integer which 
looks outside sees n + I and cannot be mobile . We now use an array whose 
indices vary from 0 to I I  i n order to be able to treat the cases n E [2, 1 0] .  

1 0  Yes, th is  is a trick. But it is vital , which justifies it. We remark that mathematicians 
often say that a method i s  a trick that occurs at least three times. We wil l  use th is  
trick again in  Chapter 1 2  
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type integer_vane = record num, vane : integer end ; 
permutation = array[0 . .  1 1 ]  of integer_vane ; 
var s : permutation ; 

With these declarations, s [k ] .num sees s [k + s [k ] . vane] .num which is what 
we want. 

The main body of the program 

The main body is a simple loop. The auxi l iary variable counter wi l l be used 
by the procedure display to vertical ly separate blocks of n permutations . 

begin 
message ; 
counter : =  0 ; finish : = false ; 
initialize(s, n) ; 
repeat 

I display(s, counter) ; 
next(s, finish) 

until finish 
end . 

The procedure display 

The permutations are displayed in blocks of n ,  which allows one to inspect 
the movement of the integer n across successive blocks. 

procedure display(s : permutation ; var counter : integer) ; 
var i : integer ; 
begin 
for i := 1 to n do write (s[i] .num : 5 ) ; 
writeln ; 
counter :=  counter + 1 ; 
if counter mod n = 0 then writeln 

end ; 

The procedure initialize 

As mentioned above, we border the permutation by the integer n + 1 (there is 
no reason to define weathervanes at s [O] and s [n + 1 ] ) .  

procedure initialize(var s : permutation ; var n : integer) ; 
var i : integer ; 
begin 
repeat write ('n = ' )  ; readln(n) until (n 2: 2) and (n ::::: 1 0) ; 
s [O] .num :=  n + 1 ; s[n + 1 ] .num :=  n + 1 ; 
for i : = 1 to n do 

with s[i] do begin num : =  i ;  vane :=  - 1  end 
end ; 
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The procedure next 

This procedure determines the next permutation (when it exists) . When there is 
a next permutation , the boolean variable finish remains false and s contains the 
fol lowing permutation ; otherwise, finish remains true and s does not represent 
anything. 

procedure next(var s : permutation ; var finish : boolean) ; 
var place_bm, value_bm, i : integer ; 
begin 
biggest_mobile (s, place_bm, value_bm, finish) ; 
if not finish then begin 

I move_biggest_mobile (place_bm, s) ; 
the_ wind_turns( value_bm, s) 

end 
end ; 

Here is a rather subtle error: the fragment of code that fol lows is false 
because information in it circulates badly. 

if not finish then begin 

I move_biggest_mobile(place_bm, s) ; 
the_ wind_turns(place_bm, s) +--- erroneous statement ! 

end 

In effect, after move_biggesLmobile(place_bm, s ) , the biggest mobi le is not 
in place_bm ! 

The procedure biggest_mobile 

A sweep allows one to find the placement and value of the biggest mobi le 
integer. The procedure gives the boolean finish the value false when it does 
not find a mobile integer. 

procedure biggest_mobile (s : permutation ; 
var place_bm, value_bm : integer ; var finish : boolean) ; 

var i : integer ; 
begin 
finish := true ; value_bm := 0 ; 
for i :=  1 to n do with s[i] do 
if (num > s[i  + vane] .num) and (num > value_bm) then begin 
I place_bm := i ; value_bm := num ; finish : = false 
end 

end ; 

The procedure move_biggest_mobile 

This procedure exchanges the mobile integer which is leaving with the integer 
that is arriving which it sees. It does not change the weathervanes. 
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procedure move_biggest_mobile (leaving : integer ; var s : permutation) ; 
var temp : integer_vane ; arriving : integer ; 
begin 
arriving :=  leaving + s[leaving] . vane ; 
temp : =  s[arriving] ; 
s[arriving] : =  s[leaving] ; 
s [ leaving] :=  temp 

end ; 

Here is a vicious pitfall which causes many programmers to stumble. Can 
you explain why the fol lowing fragment of code is fal se? 

temp :=  departing ; 
s [departing] :=  s[departing] + s[departing] . vane ; 
s [departing + s [departing] . vane] := temp 

The procedure the_wind_turns 

This procedure changes the direction of the weathervanes on the integers which 
are greater than m. To avoid useless work, we only examine an permutation 
when we are certain that there is a weathervane that needs to be changed ; that 
is, when m < n .  

procedure the_wind_turns(m : integer ; var s :  permutation) ; 
var i : integer ; 
begin 

I if m < n then for i : = 1 to n do 
with s[i] do if num > m then vane :=  -vane 

end ; 

8. 16. The Count is Good 

This section is inspired by a popular French TV game. Suppose that we are 
given five integers a 1 ,  • • •  , a4 > 0 and goal. We want to obtain the integer goal 
using a succession of operations on the a; , the operations being chosen from 
among the four possible ones. The constraints are as fol lows. 

• Each number a; must be used once and only once. 
• The result of a subtraction must be greater than 0;  division must be defined 

and without remainder. 

Let us take, as an example, a 1 = 2, a2 = 5 ,  a3 = 7 and a4 = 1 0 . A 
succession of operations amounts to being given a parenthesized arithmetic 
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progression, the parentheses specifying the order of the operations. For exam­
ple: 

( (a2 + a1 ) /a 1 ) * a4 = ((5 + 7 ) /2) * 10 = 60, 

( (a 1 + a3 ) + a2 ) - a4 = ((2 + 7)  + 5 ) - 10 = 4, 

(a4/a 1 ) + (a3 - a2 ) = ( 1 0/2) + 7 - 5  = 7 . 

On the other hand, we are not allowed to use the expressions 

because a 1 ja2 i s not an integer and because a 1 - a2 i s negative . To solve the 
problem, we will use "brute force" and consider all possible expressions and 
compare the values of those that are legal to goal. (We shall see in Chapter 1 2 
that i t i s possible to proceed i n a more intel l igent manner. ) 

8. 16.1 .  Syntactic trees 

We can associate to an arithmetic expression a binary tree which describes 
the order in which the calculations are made. Conversely, we can reconstruct 
a total ly parenthesized arithmetic expression from a syntactic tree. 

Knowing this , we can break the search for all parenthesized arithmetic ex-
pressions into two subproblems: 

• the search for all binary trees with four leaves; 
• the search for all decorations of a binary tree with four leaves. 

The leaves are the a; ; the decoration is formed by the operators. It is easy 
to sketch five binary trees with four leaves (see Fig. 8 .4 ). But are there others? 
A little theory wil l reassure us. 

Definition 8. 16.1 .  Let n :::_ I .  The n -th Catalan number Cn is defined to be the 
number of binary trees with n leaves. 



220 8 .  The Integers 

tree 1 tree 2 tree 3 tree 4 tree 5 

tree ! = ( (a e l b) e2 c) e3 d ,  tree2 = (a e2 (b e l c ) )  e3 d ,  

tree3 = (a e l b) e3 (c e2 d ) ,  tree4 = a  e3 ( (b e l c) e2 d) ) ,  

trees = a  e3 ( b  e2 ( c  e l d ) ) .  

Fig. 8.8. The five binary trees with four leaves 

Considering a leaf as a binary tree with one leaf, we have c 1 
have c2 = I and c3 = 2 .  

Theorem 8. 16.1 .  For any n > I ,  

I . We also 

Cn = C J Cn - 1 + C2Cn-2 + · · · + Cn - J C J = --1- ( n ) . 
2n - I 2n - I 

Proof Consider a binary tree with n :::: 2 leaves. The branch on the left of 
the root is binary tree with p leaves (reduced eventual ly to one leaf) and that 
on the right is a binary tree with q = n - p leaves. To make a binary tree 
with n :::: 2 leaves, it suffices to take a root and to attach two binary trees with 
p and q leaves, which gives cpcq choices. One obtains all binary trees once 
and only once by letting p vary from I to (n - I ) . The explicit expression 
using the binomial coefficient is proved by induction or with the aid of formal 
�ri�. D 

The first few Catalan numbers are now c 1 = I , c2 = I , c3 = 2 and, 
most importantly, c4 = 5 . We can estimate the total number of arithmetic 
expressions: there are five binary trees with four leaves; to decorate a tree, we 
need three operations and four leaves, which gives 

5 · 43 · 4! = 7 , 680 arithmetic expressions. 

The declarations and the main body of the program 

We shal l store a 1 ,  • • •  , a4 in an array. 
type data = array[ l . .4] of integer ; 
var a , data , goal : integer ; 
begin 

I message ; 
choose (a , goal) ; 
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I the_count_is_good(a , goal) 
end . 

The procedure the_counLis_good 
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To understand the following it is necessary to realise that a tree is only a 
representation of a schema for calculation. We choose a tree which we "dec­
orate" with the operations op 1 , op2 , op3 and the leaves asu >  where s E 64 
is a permutation. We then communicate these parameters to the procedure 
calculate : if we obtain a legal arithmetic expression which possess a value, 
we compare this value with goal and we display the result if they are equal . 
Changing permutations is real ised by the procedure next of Johnson 's program 
with n = 4. 

procedure the_count_is_good(a : data ; goal : integer) ; 
const addition = 1 ; subtraction = 2 ; 
multiplication = 3 ; division = 4 ; 
type {add here the type permutation (see Johnson) }  ; 
var tree , op 1 , op2 , op3 , value : integer ; 
s : permutation ; finish , exist : boolean ; 
begin 
for tree := 1 to 5 do 
for op 1 := addition to division do 
for op2 := addition to division do 
for op3 := addition to division do 
for op4 := addition to division do begin 
permutation_ identity(s) ; finish : = false ; 
repeat 
calculate ( value , exist, tree , op 1 , op2 , op3 , a , s) ; 
if exist and ( val = goal) then write ( value , op 1 , op2 , op3 , a , s) ; 
next(s,finish) 

until finish 
end 

end ; 

The procedure calculate 

Since a tree is a little program, we have five programs to manage. In order 
not to try the patience of the reader (and to leave something for him or her 
to write) , we only detail the case of the first tree. When an operation gives 
an integer less than 0 or if a div ision has nonzero remainder, the procedure 
partiaLresult informs us via the boolean exist: we know that there is no point 
in pursuing such a case. 

procedure calculate(var value : integer ; var exist : boolean ; 
tree , op 1 , op2 , op3 : integer ; a :  data ; s :  permutation) ; 
var i, temp 1 , temp - 2 : integer ; leaf : data ; 
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begin 
for i := 1 to 4 do leaf[i] := a [s[i] .num] ; 
exist :=  true ; 
case tree of 
I :  
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begin { calculate value = ((/1 op J f2 )opd3 )opJI4 and exist} 
partiaLresult(temp 1 , exist, leaf[ 1 ] , op 1 , leaf[2] )  ; 
if exist then partiaLresult(temp2 , exist, temp 1 , op2 , leaf[3 ] )  ; 
if exist then partiaLresult(value , exist, temp2 , op3 , leaf[4] ) ; 

end ; 
2 :  
begin « calculate value = (/1 op2 (f2 op J i3 ) )  opJ4 and exist » end ; 
3 :  
begin « calculate value = (/1 op J f2 )op3 (f3 opJ"4) and exist » end ; 
4 :  
begin « calculate value = f1 op3 ((/2 op Ji3 ) opJ"4) )  and exist » end ; 
5 :  
begin « calculate value = f1 op3 (/2 op2 (f3op 1f4) )  and exist » end ; 

end ; { case } 
end ; 

The procedure partiaLresult 

We know the operands and the operation . We examine the four cases of pos­
sible figures and signal incorrect partial results (subtraction giving a number 
less than 0 or division that leaves a nonzero remainder) Recall that the boolean 
exist has been initialized to true in the procedure calculate. 

procedure partiaLresult(var temp : integer ; 
var exist : boolean ; a , op, b : integer) ; 
var temp : integer ; 
begin 
case op of 
addition : temp :=  a +  b ; 
substraction : if a > b then temp : = a - b else exist : = false ; 
multiplication : temp :=  a * b ; 
division : if a mod b = 0 then temp := a div b else exist : = false ; 

end ; { case } 
end ; 

The procedure display 

We do not attempt to sketch a tree on our screen ; we content ourselves with 
displaying the corresponding arithmetical expression. For this it suffices to 
consider each tree. 
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procedure display( value, tree, op 1 , op2 , op3 : integer ; 

var i : integer ; leaf : data ; 
begin 

a : data ; s : permutation) ; 

for i : =  1 to 4 do leaf[i] : =  a [s[i] .num] ; 
write ( ' value = 1 ) ; 
case tree of 
1 :  writeln(' ( (1 , leaf[ l ] : 1 ,  op(op 1 ) , leaf[2] : 1 , 1 ) 1 , 

op (op2 ) , leaf[3] : 1 ,  1 ) 1 , op(op3 , leaf[4] : 1 ) ; 
2 : 0 0 0  
3 :  0 0  0 
4 : 0 0 0  
5 :  0 0  0 

end { case } 
end ; 
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The function op converts the integer op; into the corresponding character: 

function op(operation : integer) : char ; 

Remark 

begin 
case operation of 
addition : op : =  1 +1 ; 
subtraction : op : =  1- 1 ; 
multiplication : op : =  1 * 1 ; 
division : op : =  1 / 1 ; 

end ; { case } 
end ; 

The interest of this program resides in the ideas that it puts into play. We note 
in particular the distance that separates concepts from their translation; that is , 
theory from code. We also remark that without theory we would not be able 
to create and understand the code at al l . 
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Let Z[i ] denote the set of complex numbers of the form x + i y with x ,  y E Z. 
If we endow this set with addition and multipl ication inherited from the com­
plex numbers, we obtain a ring. This ring is a commutative integral domain 
and is called the ring of Gaussian integers in honor of their creator, Gauss, 
who introduced them around 1 830. 

• If a =  x + iy belongs to Z[i ] , we set 

N (a)  = l a l 2 = x2 + i;  
and cal l N (a)  the norm of a .  (This i s the norm i n the sense that algebraists use 
the word. It should not be confused with the modulus of a complex number. ) 
It is clear that the norm is multipl icative: 

N (a{J) = N (a )  N ({J ) . 

• The units of Z[i ] are the invertible Gaussian integers (that is, those 
Gaussian integers E: such that there exists e' satisfying E:E:' = 1 ) . There are 
four units 1 , - 1 ,  i and -i .  They are characterized by the condition 

N (E)  = 1 .  

• We say that a and f3 are associates if there exists a unit E: such that 
a =  E: {3. Thus, the associates of a =  x + iy are the four complex numbers 

a = x + iy ,  ia = -y + ix ,  -a = -x - iy ,  -ia = y - ix 

obtained by successive rotations of a about 0 through angle !n .  
• Final ly, one says that w =f. 0 i s irreducible i f i t is not a unit and i f i t cannot 
be written as a product of two nontrivial factors. That is, if 

(w = a{J) ==} (a or f3 is a unit) . 

9. The Complex Numbers
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9.1.1. Euclidean division 

Theorem 9. 1.1.  Let a and f3 =j::. 0 be Gaussian integers. There exists at least 
one pair (X , p) of Gaussian integers satisfying the conditions: 

a =  f3x  + p and N (p )  < N (f3 ) . 
Proof Among the points on the plane with integer coordinates, let x be as 

X = X + iy I 
· ­

I I  
] 

close as possible to the complex number aj {3 , so that: 

l x - aff3 1 ::: 4J2. 
Clearing the denominator and removing the square, we obtain 

N(a - xf3) .::: 4 N (f3 ) .  
It fol lows that p = a - xf3 satisfies the condition N (p) < N(f3 ) .  

Remarks 

0 

• The pair (X ,  p) is not unique. Each Gaussian integer x sufficiently close 
to aj f3 gives a solution . There up to four possible values for x when the real 
and imaginary parts of a/ f3 are of the form n + 4 . 

• The existence of Euclidean division allows us to carry over to Z[i ] the the­
ory of the GCD, Bezout's theorem, the algorithms of Eucl id and Blankinship, 
the existence and uniquenesss of the decomposition into irreducible factors. 
The same proofs hold with ordinary integers replaced by Gaussian integers. 
Algebraists express this by saying that the Gaussian integers are a Euclidean 
ring, hence factorial. 

9. 1.2. lrreducibles 

Recall (see Chapters 2 and 8) that every prime number of the form 4n + I , and 
no integer of the form 4n + 3, is a sum of two squares . Moreover, if p is an odd 
prime, the equation x2 + I = 0 has a root in Zp if and only if p = 1 (mod 4) 
and has no root if p = 3 (mod 4) . 

Theorem 9.1.2. A Gaussian integer is irreducible if and only if one of its 
associates belongs to the following list: 
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(i ) 1 + i ;  

( i i ) a + bi ,  where a2 + b2 is a prime of the form 4n + 1 ;  

( i i i ) p, where p is a prime number of the form 4n + 3. 
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Proof We begin by showing that the three l i sts in the statement are made up 
of irreducibles. 

• Gaussian integers of type (i) or (ii) are irreducible. To see this, it suffices 
to prove the impl ication: 

N(w) a prime number in Z ==} w irreducible in Z[i ] .  

In effect, w = af3 implies that N(w) = N(a )N (f3 ) .  If N (w) i s a prime number, 
then N(a)  = I  or N(f3)  = 1 ;  that is, a =  E or f3 = E .  

• The Gaussian integers of type (iii) are irreducible. Let p = 4n  + 3 be 
a prime number in Z. If p were not irreducible in Z[i ] , then p = af3 with 
N(a) > 1 and N(fJ) > I .  Taking norms gives p2 = N (a )N (f3 ) .  Since p i s 
prime, we must have p = N (a)  = N (f3 ) .  But this is impossible since N (a)  
i s a sum of two squares and p = 3 (mod 4) .  

Now we show that an associate of an irreducible w = x + iy belongs to one 
of the lists (i ) , (i i ) or (i i i ) . 

• If N(w) i s prime, we necessari ly have N (w) = 2 with w of type (i) or 
N(w) = 1 (mod 4) since N(w) i s a sum of two squares, which proves that w 
is of form (i i ) . 

• If N(w) is not a prime number, we wri te N (w) = p 1  • • • Pk with Pi primes 
and k :=:: 2. Since w is irreducible, w divides one of the pi ; that is Pi = aw. 
Taking norms gives 

Pi = N (a)N (w) ==} N (w) = pf and N (a) = 1 

which proves that w and Pi are associates. The cases Pi = 2 and Pi = 1 (mod 4) 
are ruled out because Pi is not irreducible. Thus Pi = 3 (mod 4) and w belongs 
to the list (i i i ) . o 

Remarks 

• This theorem shows that it is very important to distinguish between the 
prime numbers in Z and the irreducible Gaussian integers since a prime number 
is not necessari ly an irreducible Gaussian integer. 

• We insist on the following. By definit ion, the units E = ± I  and E = ±i 
are not irreducible ! 

• Irreducibles of type (i i ) are ±2 ± i and ± 1 ± 2i since 5 = 22 + 1 2 . Another 
easi ly remembered example is 5 + 42i because 1 789 = 52 + 422 is a prime 
number of the form 4n + 1 . 
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• Irreducibles of type (i i i ) are 3 ,  7, I I , 1 9 , 23 , 3 1 ,  etc . 
• The norm of an irreducible belongs to a very particular class of integers : 

it is either a prime number or a square of a prime number. This remark wil l 
be very useful in what fol lows. 
Corollary 9.1.1. Let p be a prime number of the form 4n + I and (a , b) E 7!} 
a particular solution of the equation p = x2 + l. Then all solutions of this 
equation are (±a , ±b) and (±b , ±a ) .  

Proof We write p = (a + ib ) (a - ib )  = (x + iy) (x - iy) . Since a ±  ib  and 
x ± iy are irreducibles of type (i i ) , the uniqueness of the decomposition of p 
into irreducible factors implies x + iy = t: (a + i b) or x + iy = t: (a - ib ) .  D 

Choice of representatives for irreducibles 

In the decomposition into irreducible factors, we can replace w by one of its 
associates and write, for example, 

a =  w1 w2w3 = (-w 1 ) ( iw2 ) (- iw3 ) .  

I s there a reasonable way to choose a representative from among the four 
associates w , iw , -w , - iw  of w to normal ize decompositions into irreducible 
factors? 
Since the i k w can be obtained from w by successive rotations through angle 

� n centered at the origin, a natural first thought is to choose the irreducibles 
in the first quadrant as representatives. This is not a good idea, however. To 
see why, consider the decomposition of 5 into irreducible factors : 

5 = (2 + i ) (2 - i ) .  (9. 1 ) 

To get 2 - i into the first quadrant, we must rotate by �Jr ;  that is, multiply 
by i .  The decomposition is then 

5 = -i (2 + i ) ( l  + 2i ) . (9 .2) 

The decomposition (9 .2) is much less natural than (9 . 1 )  because it is not at 
all evident at first glance that -i (2 + i ) ( l  + 2i ) is a real number. 
For this reason , we adopt the fol lowing conventions : 
• The irreducibles of type (i ) are represented by I + i .  
• The irreducibles of type (ii ) or (i i i ) are represented by irreducibles w = 

x + i y situated in the part of the half-plane x � 0 between the two quadrant 
bisectors ; that is, by those that satisfy the condition 0 < I Y I < x .  

Let p = a 2 +b2 b e the unique decomposition of the prime number p = 4n+ I 
satisfying the condition 0 < b < a . The Gaussian integers a + ib  and a - ib  are 
not associates because they make an angle < �JT with the origin . It fol lows 
from this remark that the eight solutions of the equation p = x2 + l are 
associates of a ±  ib .  
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Here are some decompositions into irreducible factors : 

1 05 = 3 (2 + i ) (2 - i )7 ,  

1 789 = (42 + 5i ) (42 - 5i ) ,  

1 + 57i = i ( l  + i ) (2 - i ) 3 (3 + 2i ) , 

1 + 58i = i (2 + i ) (23 - 1 2i ) ,  

1 + 59i = ( 1  + i ) (30 + 29i ) ,  

1 + 60i = i (3 - 2i ) ( l 4  + 9i ) , 

7 +  l Si = ( 1  + i ) ( l l  + 4i ) ,  

1 5  + 45i = ( 1  + i ) 3 (2 + i ) 2 (2 - i ) ,  

3 1  + 63i = ( 1  + i ) (2 + i ) (4 + i ) (5 - 2i ) ,  

1 0 1  + 47i = ( 1  + i ) (2 - i ) (4 - i ) (8 + 3i ) .  

A n  algorithm for decomposition into irreducible factors 
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If we try to recognize a person whom we know only by his or her shadow 
on a wal l , the results wil l be uncertain . On the contrary, if we know that we 
have to choose between Laurel and Hardy, it wil l be easy ! By the shadow 1 

of an irreducible Gaussian integer w, we mean the unique prime number that 
divides the norm of w. 

• If the shadow of w is 2, we know that w is an assotiate of 1 + i .  
• If the shadow of w i s equal to p = I mod 4 and if (a , b )  i s the unique 
solution of the equation p = a2 + b2 such that a > b > 0, we know that w is 
an associate of a + bi or of a - bi . 

• If the shadow of w is equal to p = 3 mod 4, then w is an associate of p .  

Consider now a Gaussian integer a = a + b i  with norm greater than I . 
Let a = t:w 1 • • • wn be its decomposition in irreducible factors, the wi being 
situated between the two quadrant bisectors (this explains the presence of the 
unit c ) . Consider the norm of a :  

We know that the shadows of the wi are the prime divisors of the norm of a 
and that each prime divisor of N (a) is a shadow of an wi . We can sketch an 
algorithm as follows: 

• decompose N(a)  into prime factors ; 
• reconstruct the irreducible divisors of a from their shadows. 

1 This i s  not at al l c lassical terminology. 
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This sketch is not entirely satisfactory because it requires that one store the 
prime factors of N (a) in advance. We are going to work more dynamical ly 
(by "surfing" once more on the wave of calculations) and recycle the algorithm 
for decomposition into prime factors in Chapter 4. 

Example 

Decompose a0 = 3 + 2 1 i  i n to irreducible factors . 
• The norm of a0 is 450. Since this is divisible by 2 , we know that a0 i s 

divisible by w1 = 1 + i , an irreducible of type (i ) : 

a0 = 3 + 2 1 i  = ( l + i )a 1 • 

• The norm of a 1 = a0jw1 = 1 2  + 9i is 225 . Since this is divisible by 3 ,  
we know that a 1  i s divisible by w2 = 3 , an irreducible of type (i i i ) : 

3 + 2 1 i  = ( l + i ) (3)a2 • 

• The norm of a2 = a 1 jw2 = 4 + 3i is 25 . Since this is divisible by 5, 
we know that a2 i s divisible either by 2 + i or 2 - i ,  the only irreducibles 
of type (i i ) of norm 5 situated between the quadrant bisectors . One try shows 
that a2 i s divisible by w3 = 2 - i :  

3 + 2 1 i  = ( l + i ) (3 ) (2 - i )a3 . 

• The norm of a3 = az!w3 = 1 + 2i is 5 , which shows that a3 is divisible 
by 2 + i or 2 - i .  Computation shows that a3/ (2 + i )  does not belong to Z[i ] .  
We conclude that a3 i s necessary divis ible by w4 = 2 - i : 

3 + 2 1 i  = ( l + i ) (3 ) (2 - i ) 2 i .  

Here, then , i s our algorithm 

a0 = a Gaussian integer of norm > 1 , 

I p 1 = smal lest divisor > I of N(a0) ,  
w 1 = irreducible divisor of a0 with shadow p 1 , 
a 1 = ao!w 1 , 

I Pn = smallest divisor > 1 of N (an _ 1 ) ,  
Wn = irreducible divisor o f an- I  with shadow Pn , 
an = an- 1 /Wn , 
stop when an is unit . 
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The translation into code is immediate : 

a := given Gaussian integer of norm > 

repeat 
p := LD(norm(a ) )  ; 
w :=  irreducible divisor of a with shadow p ; 
a :=  ajw ; 

until norm(a) = 1 

9.1.3. The program 

We are going to use a record to store a Gaussian integer. 

type Gaussian_integer = record re , im : integer end ; 
var a : Gaussian_integer ; 

Consequently, a.re and a. im denote the real and imaginary parts of a .  

The body of the program 
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Our program asks repeatedly for Gaussian integers and does not stop until we 
offer it a Gaussian integer equal to zero or a unit . 

begin 
message ; 
finish : =false ; 
repeat 

I writeln ; choose(a) ; 
if norm( a) > I then factor( a )  else finish :=  true 

until finish 
end . 

The procedure choose and the function norm 

These are the "mindless" parts of the program that one types in directly without 
preliminary reflection. 

procedure choose (var a : Gaussian_integer) ; 
begin 

I write (' real part = ' ) ; readln (a . re) ; 
write (' imaginary part = ' ) ; readln (a . im) ; 

end ; 

function norm(fJ : Gaussian_integer) : integer ; 
begin 
I norm := {J . re * {J . re + {J . im * {J . im 
end ; 
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The procedure factor 

This procedure implements the algorithm that we have developed . To check the 
calculations, we accumulate in the variable prod the product of the irreducible 
factors and units . When the factorization terminates this variable must be equal 
to the initial value of a .  

procedure factor( a : Gaussian_integer) ; 
var p : integer ; w ,  prod : Gaussian_integer ; 
begin 
prod.re := I ; prod. im := 0 ; {prod = I }  
repeat 
p := LD(norm(a ) )  ; {p is the shadow of wJ 
reconstrucLirreducible_divisor(w , p, a )  ; 
display(w) ; 
mulLGaussian_integer(prod, w , prod) ; {prod : =  w * prod} 
divide_Gaussian_integer(a , a ,  w) ; {a : =  ajw) 

unti l  norm(a) = 1 ; 
display(a ) ; 
mulLGaussian_integer(prod, a, prod) ; 
write (' verification = ' ) ; display(prod) 

end ; 

The procedure reconstruct_irreducible _divisor 

{now a is a unit} 
{prod := a * prod} 
{one must recover a }  

This procedure reconstructs the irreduc ible divisor w from its shadow p .  
• The cases p = 2 and p = 3 mod 4 are trivial . 
• When p = N(w) = 1 mod 4, we decompose p as a sum of two squares 

p = x2 + y2 , with 0 < y < x so that w = x + iy or w = x - iy. To know if a 
is divisible by w = x + iy , we see if the complex number 

(a + bi ) (x - iy) 
w w w  

ax + by + i (bx - ay) 
p 

is a Gaussian integer. If not, we know that w = x - iy is the desired divisor. 
To simpl ify the tests, we note from the identity 

y (ax + by) + x (bx - ay) = b (x2 + /) = bp 

that ax + by are bx - ay are simultaneously div isible or not divis ible by p .  

procedure reconstrucLirreducible_divisor 
(var w : Gaussian_integer ; p : integer ; 

a : Gaussian_integer) ; 
var x, y : integer ; 
begin 
I case p mod 4 of 
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1 :  begin 
decompose_sum_squares(p , x, y) ; 
w . re : =  x ; 
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if (a . re * x + a . im * y) mod p = 0 then w . im : =  y else w . im : =  -y ; 
end ; 
2 : begin w . re : =  1 ; w . im : =  1 end ; 
3 : begin w . re : =  p ; w . im : =  0 end ; 

end {case } 
end ; 

The procedure decompose_sum_squares 

Since p is a prime number of the form 4n + 1 , we seek the unique solution 
to the equation p = x2 + y2 satisfying the condition 0 < y < x. We use brute 
force (two more sophisticated algorithms are written in Chapter 8) .  

x := I ;  
repeat 

I X := X +  I ; y : =  0 ; 
repeat y : =  y + I until (y :::: x) or (x2 + l = p) 

unti l  x2 + l = p 

But using brute force does not mean that we have to abandon our intel l i ­
gence: we can useful ly amuse ourselves by speeding up the code using the 
auxi l iary variables square_x, square_y and ll = p - x2 . 

procedure decompose_sum_squares(p : integer ; var x, y : integer) ; 
var square_x, square_y, ll : integer ; 
begin 
x := I ; square_x := 1 ; 
repeat 
square_x := square_x + x + x + 1 x : =  x + 1 
ll : =  p - square_x ; 
y : =  0 ; square_y : =  0 ; 
repeat 

I square_y := square_y + y + y + I y : =  y + 1 
until (y :::: x) or (square_y = ll} ; 

until square_y = ll 
end ; 

The procedure display 

Notice the effort directed at presentation. 
procedure display(w : Gaussian_integer) ; 
begin 
I write( ' ( ' )  ; 
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if w . re =I= 0 then write (w . re : 1 , ' ' ) ; 
if w . im = 1 then write ('+ i ') else 
if w . im = - 1  then write ('- i ') else 
if w . im > 0 then write ('+ ' , w . im : 1 , ' i ' ) else 
if w . im < 0 then write ('- ' , -w . im : 1 ,  ' i ' ) ;  
write (' ) ' ) 

end ; 

The procedures mult_Gaussian_integer and divide_Gaussian_integer 

procedure mulLGaussian_integer(var y : Gaussian_integer ;  
a ,  f3 : Gaussian_integer) ; 

begin { returns y = a . f3 }  

I y . �e : .=:._ a . r� * {J . re - a. im * {J . i� ; 
y . tm .- a . tm * {J . re + a . re * {J . tm 

end ; 

procedure divide_Gaussian_integer(var y : Gaussian_integer ;  
a , f3 : Gaussian_integer) ; 

var N : integer ; 
begin { returns y = a/{3 } 
N :=  norm(f3) ; 
y . re :=  (a . re * {J . re + a . im * {J . im) div N ;  
y . im :=  (a . im * {J . re - a . re * {J . im) div N 

end ; 

Exercise 1 

Implement Eucl id 's and Blankinship's algorithms in Z[i ] .  (Recal l that this is 
possible because Z[i ] , l ike Z, i s a principal domain . ) 

9.2. Bases of Numeration in the Gaussian Integers 

Is it possible to generalize the numeration system for ordinary integers with 
respect to a given base b > 1 to the Gaussian integers? What conditions should 
f3 = a + bi satisfy in order to define a base of numeration? How should one 
choose the digits relative to this base? 

9.2.1. The modulo beta map 

Suppose that f3 = a + bi has norm > 1 .  Given � E Z[i ] , we have seen that 
there exists a pair (X , p) satisfying the conditions 

� = f3X + p ,  N (p )  < N ({J ) .  (9. 3 )  
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Because (X , p )  is not necessari ly unique, one cannot speak of a map � r+ 
� mod f3 in Z [ i ] without taking precautions. If we reflect a moment, however, 
we real ize that this phenomenon is not new: we know at least two maps 
"modulo b" in Z, depending on whether we consider remainders between 0 
and b - I or centered remainders . 
Definition 9.2.1. We say that two Gaussian integers ifJ and 1{f are congruent 
modulo f3 if ifJ - 1{f is divisible by {3. We say that a set I: of Gaussian integers 
in an exact system of representatives modulo f3 if for each integer �, there 
exists a unique pair (X ,  p )  E Z [ i ]  x I: such that � = f3 x + p. 

Any time that we have such a system, each Gaussian integer is congruent 
mod f3 to an element of I: and only one such. We obtain a map "mod {3" :  
Z [i ] � I: which associates to each � E Z [i ] the unique p E I: to which it is 
congruent. Therefore, once we have a system 2:, we have a map "mod {3" . 
The absence of uniqueness actually did us a favor by requiring us to deepen 
the question. (One often thinks that it is the absence of a unique remainder 
upon division which forbids speaking of the map "modulo" . ) 

Example 

Choose f3 = 2 + i .  Eucl idean division (9 . 3 )  shows that � is always congruent 
to a Gaussian integer p of norm N (p)  < N ({3) = 5 .  The open disk x 2 + y2 < 5 
contains the numbers : 

±2i , ± I ± i ,  ±i , 0, ± 1 , ±2 .  

Knowing that 2 + i = 1 - 2i = - 1  + 2i  = -2 - i = 0 (mod 2 + i ) ,  we see 
that among the preceding integers, we only have the congruences: 

2i = - 1  - i = 1 ,  - 1  + i = - i  = 2 , 

-2i = 1 + i = - 1 , 1 - i = i = -2 .  

As a result, I: = {0 , 1 ,  1 ± i , 2 }  i s an exact system of representatives mod {3 .  

9.2.2. How to find an  exact system of representatives 

Eucl idean division (9. 3 )  already shows that an exact system of representatives 
I: i s finite. We specify the cardinal ity of such sets. 
Lemma 9.2. 1. Let ifJ : Z2 � Z2 be a group homomorphism. If ifJ is injective, 
then Z2 / ip(£:2 ) is a finite group of cardinality I det ifJ 1 .  

Proof Let A be the matrix of ifJ in the canonical basis . One knows (see the 
Smith reduction, Exercise 2, Chap. 1 1 ) that there exist unimodular matrices E 
and F such that E A F = diag (d1 , d2 ) .  In other words, Z2 /ifJ(£:2 ) is isomorphic 
to Zjd1 Z tB Z/d2Z, which shows that its cardinality is d1 d2 • Since det £ = ± 1  
and det F = ± I , we have det ip = det A = ±d1 d2 • 
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Corollary 9.2. 1. An exact system of representatives I: modulo f3 = a +  ib is 
a finite set of cardinality N ({3) = a2 + b2 . 

Proof It suffices to apply the lemma to the injective linear map ifJ : � � {3� 
whose matrix in the canonical basis is A = (� -;) . 

Remark 

There is no reason to expect that a set I: of cardinal ity N ({3} = a2 + b2 

should be an exact system of representatives, because nothing forbids two 
elements of I: from being congruent modulo {3. We should be wary of doubtful 
general izations : for example, the interval [0, N ({3) - I D C N is not in general 
an exact system. In effect, if we choose f3 = 2 + 2i , then x + i y = x' + i y' 
mod f3 implies that x = x ' and y =  y' mod 2: as a result, I + i  is not congruent 
to any element of 2: .  

Proposition 9.2. 1. For an interval I: = [0, N ({3 } - I D to be an exact system 
of representatives of classes modulo f3 = a + bi ,  it is necessary and sufficient 
that GCD(a , b) = I .  

Proof The counter-example we gave for f3 = 2 + 2i general izes and shows 
that if GCD(a , b) > I , there exist Gaussian integers which are not congruent 
to any element of 2: .  
Now suppose that a and b are relatively prime: let a =  x + i y  be arbitrary 

and try to find x = u + i v such that a - f3 x = p E I: .  The condition 
lm(p) = y - (a v +bu)  = 0 implies that u = u0 +ka and v = v0-kb with k E Z 
arbitrary and (u0 , v0 ) a particular solution (which exists since GCD(a , b) = I ) . 
Consequently, Re(p) = x - (au - bv )  = x - (au0 - bv0 ) - k (a 2 + b2 } , which 
shows that there exists a p, and only one such, in 2: .  o 

9.2.3. Numeration system in base beta 

We return to our ini tial problem. Given a Gaussian integer � E Z[i ] , do there 
exist "digi ts" c; such that one has a unique expression 

� = co + c J f3 + · · · + cnf311 ? (9.4) 

What digits should we choose? In what follows we shal l see that it is natural 
to take the digits to be ordinary integers : 

C; E [0 , N ({J ) - I D . (9 .5 ) 

Theorem 9.2. 1 (I. Katai and SzabO, 1975). With the convention (9 .5} , a Gaussian 
integer f3 = a  + bi is a base of numeration if and only if it satisfies the con­
ditions 

a < 0 and b = ± I .  
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Proof Suppose first that f3 i s a base of numeration and write I + i i n this 
base: 

I + i = Co + C J {3 + · · · + C11{311 • (9 .6) 

This expression contains valuable information. In effect, because the imaginary 
part of c 1 f3 + · · · + c11{311 is a multiple of b, we have b = ± I .  
We cannot have a = 0, because f3 = ±i cannot be a system of numeration 
(uniqueness in (9.6) would not hold) . 
We show that we cannot have a > 0. We know that the interval I: = 

[0, N({J} - I D is an exact system of residues modulo {3,  and this allows us 
to talk of the map " mod {3" :  Z[i ] --+ 2:. We express the Gaussian integer 
� = I - 7J = ( I - a) + i b in the base f3 :  

� = co + c i f3 + · · · + cnf311 , O :S c; < N ({J} . 

Multiplying this equal i ty by I - f3 gives 

( I  - fJ)� = Co + (c ! - co )fJ + · · · + (en - Cn - 1 ){311 - C11 {311+ 1 , 

and we conclude that ( I  - {J }� = c0 modulo {3 .  
On the other hand, 

( I - {3)� = ( I - {3) ( 1 - fJ )  = N ( I - {3) = ( I - a )2 + b2 . 

The condition a > 0 implies that 0 ::= ( I  - a )2 + b2 < N ({J } from which it 
fol lows that ( I  - {J}� belongs to I:. Since I: i s an exact system of represen­
tatives, the congruence ( I  - {3)� = c0 i s an equali ty ( I  - {J}� = c0 , which we 
can again write as: 

(C J - Co}fJ + · · · + (C11 - C11 - J )f311 - C11{3
n+ l = 0. 

Upon dividing by {3 , we find that c0 = c 1 mod {3. Since c0 and c 1 are two digits, 
this implies that c0 = c 1 . Beginning again , we obtain c0 = c 1 = · · · = en and 
finally C11 = 0. That is, f3 = I ,  which is impossible. D 

The converse wil l be establ ished in the next section. 

9.2.4. An algorithm for expression in base beta 

Lemma 9.2.2. Let f3 = - N  + i ,  with N :=:: I ,  be such that I: =  [0, N2D is an 
exact system modulo {3. Set � = x + iy. The remainder c E I: upon division 
of � by f3 is given by the formula: 

c = (x + Ny) mod ( I + N2 ) .  (9 .7 ) 

Proof Separating real and imaginary parts in � = ( f3 + c, we obtain y = 
x' - Ny' and x = - Nx' - y' + c. Therefore x + Ny = - ( I + N2 )y '  + c. o 
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We wil l use this lemma to calculate the digits of � with respect to the base f3 
in the usual way: 

• to begin , we determine the smal lest weight digit c0 by dividing �0 = � 
by f3 (so �o = � � {3 + co ) ; 

• we then determine c 1 by dividing � 1 by f3 (let � 1 = �2{3 + c 1 ) , etc . 

Using sequences, our algorithm is : 
£ : =  0 ; xo :=  x ; Yo := y ; {�o = xu + iy0 } 
repeat { we suppose �0 =f. OJ 
Ct := (xe + Nye ) mod ( I  + N2 ) ; 
�t+ l :=  (�e - cu )/{3 {�t+ l = Xt+ l + iyt+ d 
£ : =  £ + 1 

unti l  �e = 0 

Be careful ! - here, we use the mathematician 's quotient and remainder (that 
is , a = bq + r with 0 ::; r < b) .  

Examples 

To save space we write � � x instead of � = xf3 + c. 
I )  Choose f3 = - 1  + i ,  i. e. N = I . If we begin with � = - I ,  successive 
div isions by f3 give: 

1 I I . 0 . I . I I __I_,_ 0 .  - -----+ + l -----+ - l  -----+ l -----+ � 

Thus - 1  = 1 1 1 0 I in the base f3 = - I  + i .  

2 )  Choose f3 = -2 + i ,  i. e. N = 2 .  Successive divisions of � = 4 + 6i by f3 
give: 

4 6 . I 3 ' 4 I 2 '  
0 • 3 I . 3 I I 0 + l -----+ - l -----+ + l -----+ -l -----+ + l -----+ -----+ . 

Thus 4 + 6i = 1 3304 1 in base f3 = -2 + i .  

3 )  Choose f3 = -3 + i ,  i. e. N = 3 .  Divisions of � = -59 + 72i b y f3 give: 
-59 + 72i � 27 - 1 5i � -9 + 2i � 5 + i  � I � 0. 

Thus -59 + 72i = 1 8727 i n base f3 = -3 + i .  

Proposition 9.2.2. The algorithm for expression in base f3 is correct. 

Proof If the algorithm terminates, it is clear that the c, are the sequence of 
digits of � in base {3 .  Thus, we only need to show that the algori thm terminates. 
Consider the sequence of norms N(�, ) = 1 �, 1 2 : 
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• when N = I and � = - I ,  the sequence is I ,  2, I ,  I ,  I ;  
• when N = I  and � =  3 - i ,  the sequence is 1 0 ,  5 ,  5 , 2 ,  I ,  2 ,  I ,  I ,  I ;  
• when N = 2 and � =  -3 + i ,  the sequence is 1 0 , 1 0 , 2 ,  2 ,  I ;  
• when N = 2 and � =  4 + 6i , the sequence is 52 , 9, 5 ,  I ,  2, I 
• when N = 3 and � =  3 + 5 i ,  the sequence is 34, 5 ,  5 ,  I .  
This behavior puts us on our way. 
• If N(�r )  = l�r l 2 is strictly decreasing the algorithm terminates 
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• If N(�r )  = l�r l 2 is not a strictly decreasing sequence, consider the smal l ­
es t r such that NC�r+ J ) 2: N(�r ) ;  that is , the first index at which the sequence 
"rebounds" . To simplify, put �r = x + iy, �r+ l = u + i v  and Cr = c. Passing 
to norms, �r = �r+ l f3 + Cr gives: 

x2 + y2 = (Nu + v - c)2 + (Nv - u )2 
= (Nu + v ) 2 + (Nv - u ) 2 - 2c (Nu + v )  + c2 
= (N2 + l ) (u2 + v2 ) - 2c(Nu + v )  + c2 . 

Since u2 + v2 2: x2 + y2 , we have 

u2 + v2 2: ( I  + N2 ) (u2 + v2 ) - 2c(Nu + v) + c2 , 

which can be written, after simplification and division by N2 : 

u2 + v2 - 2c (� + �) + � = (u - .!:__) 2 + (v - !:._ ) 2 - (!:._ ) 2 < 0. 
N N2 N2 N N2 N2 -

In other words, u + vi belongs to the closed disk with radius c I N2 centered 
at (ciN , ciN2 ) .  Knowing that 0 _::: c _::: N2 , we get 0 _::: u _::: ciN + ciN2 and 
0 _::: v _::: 2c I N2 , which give: 

(9.8) 

We are going to show that the algorithm terminates after a finite number 
of steps when u and v satisfy sati sfy (9. 8) .  Let u ' , v ' be the new integers 
produced by the algorithm from u and v (that is u + i v = (u ' + i v ' )f3 + c' 
where c' is the new digit) , so that: 

V
' = - [ u + Nv ] 

I +  N2 ' u ' = v + Nv' . 

If u + v N _::: N2 , we have v' = 0 and u' = v E [0, 2] ,  and the algorithm 
terminates because u' + i v ' is a digit if N 2: 2 .  The condition u + vN _::: N2 
is always satisfied when N 2: 4 because we can write: 

u + N v _::: (N + I )  + 2N _::: 4N _::: N2 . 

If N = I ,  2, 3 we have only a finite number of cases and the algorithm 
terminates for al l of them. D 
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Exercises 2 

I )  Write a Pascal program which displays a given Gaussian integer in base 
{3 = -N + i . 

2) If you have mastered graphical output, display the set of Gaussian inte­
gers on the screen that have less than k digits. 

9.3. Machin Formulas 

For many years2 , one calculated decimal places of n using formulas such as: 

4n = 4 Arctan (l) - Arctan (
2
�
9
) (John Machin, 1 706) , 

= Arctan (l) + Arctan (l) 
= 2 Arctan ( l) + Arctan ( �) 
= Arctan (l) + Arctan (l) + Arctan (�) 

(Hutton, 1 776), 

(Clausen , 1 847) , 

(Dase, 1 884 ) . 

In 1 974 for example, several mil lion decimal places of n were calculated using 
the fol lowing formula (due to Gauss) 

�n = 12 Arctan (� ) + 8 Arctan (� ) - 5 Arctan (-1- ) , 4 1 8 57 239 
and checked using Stormer 's formula ( 1 896) : ln = 6 Arctan ( �) + 2 Arctan ( 

5
1
7
) + Arctan ( 2�9 ) . 

If x > 0, then 

Arctg (}) = ln - Arctan (x ) = 2 Arctan ( ! ) - Arctan (x ) , 
which allows us to rewrite the preceding formulas in a more natural way as 
fol lows: 

Arctan (3 ) = 3 Arctan ( ! ) - Arctan(2) 

Arctan (7) = Arctan ( ! ) + 2 Arctan(2) 
Arctan (8) = 5 Arctan ( ! ) - 2 Arctan(2) - Arctan (5) 

Arctan (239) = -5 Arctan ( ! )  + 4 Arctan (5) 

= 17 Arctan ( I )  - 6 Arctan (8) - 2 Arctan (57) 

(Hutton ) , 

(Clausen) , 

(Dase) , 
(Machin) , 

(StOrmer) . 

2 Nowadays,  the search for decimals of n uses another strategy based on the Brent­
Salamin formula and its offspring which converge vertiginous ly  fast. 
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Definition 9.3.1. A Machin formula is an equality of the form 

Arctan (n) = c 1 Arctan ( l ) + c2 Arctan (2) + · · · + cn - l Arctan (n - 1 ) (9.9) 

where the ci are integers. An integer n is said to be decomposble if a formula 
of type (9.9) holds for Arctan (n ) . 

A Machin formula has an interesting geometric interpretation. Since Arctan (n ) 
is the argument of I +in , formula (9. 1 9) simply says that the complex numbers 

I +  in and n = ( l  + i ) ' ' ( l  + 2i ) " · . · ( l  + (n - l ) i ) ' " - ' 

have the same argument, or what is the same thing, that ( 1 + i n ) /  n i s a real 
number. 
Although Gauss had investigated Machin formulas, it wasn ' t until the middle 
of the XX-th centurl that the situation was completely cleared up. 
Theorem 9.3.1 (]. Todd, 1949). An integer n is decomposable (i. e. gives rise 
to a Machin formula) if and only if it satisfies the following condition: 

(T) { every prime divisor of 1 +n2 is also a divisor of 
an integer of the form I + d2 with I < d < n .  

Thus, the first decomposable integers are 3, 7, 8, 1 3 , 1 8 , 2 1 , 30, . . .  and the 
corresponding Machin formulas are: 

Arctan (3) = 3 Arctan ( ! ) - Arctan (2) , 
Arctan (7) = - Arctan ( I ) + 2 Arctan (2) , 
Arctan (8) = 5 Arctan ( ! ) - Arctan (2) - Arctan (5 ) , 
Arctan ( l 3 ) = 5 Arctan ( ! ) - Arctan (2) - Arctan (4) , 
Arctan ( l 7 ) = Arctan ( ! ) + 2 Arctan (2) - Arctan ( l 2) , 
Arctan ( l 8) = 3 Arctan ( l ) - 2 Arctan (2) + Arctan (5 ) , 
Arctan (2 1 ) = 2 Arctan ( l )  + Arctan (4) - Arctan (5 ) , 
Arctan(30) = 7 Arctan ( ! ) - Arctan (2) - Arctan (4) - Arctan (23 ) . 

Since criterion (T) is not very practical , we give an equivalent criterion 
which is easier to use. 

Theorem 9.3.2 (]. Todd, 1949). An integer n satisfies condition (T) if and 
only if all prime divisors p of I + n2 satisfy p :::: 2n . 

Proof Let p be a prime number that divides I + n2 and I + d2 • Since n and d 
are two solutions of the equation x 2 + 1 = 0 in Zp , there exists an integer 

1 John Todd, A Problem on Arctangent Relations, American Math . Monthly 56 ( 1 949), 
pp. 5 1 7-528.  
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k E Z such that d = ±n + kp . Now suppose that l d l  < n and 2n < p. Then 
l kp l  = ld =f n l  .:::: l d l  + l n l  < 2n < p implies k = 0; that is, d = ±n, which 
is absurd. Conversely, suppose that all odd prime divisors p of 1 + n2 are 
bounded by 2n . We divide n by p using centered remainders : 

n = r (mod p ) ,  l r l  < 4 P · 

Then p divides 1 + r2 • Since l r l  < 4 P .:::: n ,  condition (T) is satisfied. 

9.3.1. Uniqueness of a Machin formula 

Before explaining Todd's work, we ask whether a decomposable integer n can 
occur in several Machin formulas (9.9) The answer is yes as the fol lowing 
example shows: 

Arctan (342) = - Arctan ( I )  + 2 Arctan (2) - Arctan (5) 
+ Arctan (44) - Arctan ( l 29) 

= -3 Arctan ( l ) + 2 Arctan (2) - Arctan (5) 
+ Arctan (28) + Arctan (44) . 

Here the Machin formula Arctan ( 1 29) = 2 Arctan ( l )+Arctan (23 )-Arctan (28) 
allows one to pass from the first decomposition to the second. 
Hence, we must refine our question. If we have a Machin formula for an 
integer n, we can, as above, replace a decomposable integer m < n in the 
formula by an expression of the type (9.9) . If this substitution gives rise to 
new decomposable integers , we can do the same thing again . Each time, the 
decomposable integers that appear get smal ler so that after a finite number of 
steps, we obtain a Machin formula that only contains indecomposable integers. 
We now ask whether a decomposable integer can give rise to two different 
expressions of the form (9.9) which involve only indecomposable integers . 
This time, the answer is no. 

Proposition 9.3. 1 (E. Kern, 1987). If n > 2 is indecomposable, there does 
not exist a relation of the form 

n - 1 
Cn Arctan (n) + L c; Arctan (i ) = 0, C J , . . . , Cn E Z, Cn 2: 2 . 

i= l 
(9. 1 0) 

To understand where this result leads, suppose for a moment that it is true, 
and that we have two distinct Machin formulas 

Arctan (n ) = L Ca Arctan (na ) = L dfJ Arctan (mfJ ) , 
mtJ <n 
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with indecomposable n01 and m13 • Combin ing the two sums gives 

L ey Arctan (£ y )  = 0. 
fy <n 

Let Yo be the largest index for which Ey0 =f. 0. Since £y0 is indecomposable, 
we cannot have Ey0 = ± I .  Thus, we would get an equal i ty of the type (9. 1 0) 
which is impossible by the proposition . 

9.3.2. Proof of Proposition 9.3. 1 

The proof of the fol lowing result is easy. 

Lemma 9.3.1. Let a +  ib =f. 0, x + iy and u + i v  be any complex numbers. 
Then 

(u + i v ) (x + iy) 
t =  E IR. 

a +  ib 

==} u 2 (a 2 + b2 ) (x 2 + i) = (ax + by) 2 (u2 + v 2 ) .  

Proof We have at  = ux - vy  and b t  = u y  + vx . Therefore 

(ax + by) t  = u (x2 + i) .  

Taking norms of both sides of (a + ib) t  = ( u  + i v ) (x + iy) gives 

(a 2 + b2 ) t 2 = (u2 + v2 } (x2 + i) .  

A little algebra gives the conclusion. 

Let u and v be the real and imaginary parts of ( I  + in ) ' " : 

( I  + in ) '" = u + i v .  

(9. 1 1 ) 

D 

(9. 1 2) 

If u = 0, multiply Cn by 2 so that ( I + in )2c, = (0 + in ) ' " ) 2 = - v2 =f. 0. 
Now, we may suppose that u =f. 0, because if the result is true for en , i t also 
holds 2cn . 

Consider the complex number 

a +  bi 
--. = ( I +  i )' ' ( I + 2i ) ' 2  · · · ( I +  (n - l ) i )"' - ' , 
X + ty 

where a + bi col lects the factors in the product with positive exponents and 
x + yi those with negative exponents . Thus, 

(a + bi ) (x + yi ) = ( I + i ) l ' l l ( l  + 2i ) lc2 1 · · · ( 1  + (n - l ) i ) l c, _ J i . 
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Taking norms gives 

As we have already remarked, en Arctan (n) is the argument of ( I  + in) ' "  and 
n - 1 
I: c; Arctan (i ) is the argument of (a + ib) / (x + iy ) .  It results from (9. 1 0) that 
i = l  
the quotient of u + i v by ( a  + i b) /  ( x  + i y )  i s a real number. So, formula (9. 1 1 ) 
holds. Using (9. 1 2) and (9. 1 3 ) ,  we can rewrite (9. 1 1 ) as : 

u2 ( 1  + l 2 ) 1 ' 1 l ( l  + 22 ) 1 < ' 1  . . .  ( I + (n - l )2 ) 1 ' " - 1 l = (ax + by)2 ( 1  + n2 ) ' " . (9. l 4) 

By condition (T), there exists a prime p which divides I + n2 but none of 
the numbers I + d2 for d = I ,  . . .  n - I .  It also fol lows from (9. 1 4) that p 
divides u .  
Expanding ( I  + in) ' "  using the binomial formula gives 

and, if we use the congruence n2 = - I  mod p ,  we obtain 

u = I +  ( 2 ) + ( 4 ) + ( 6 ) + · · · = 2' " - 1 mod p . 
Cn Cn Cn 

Thus p = 2, which contradicts the Todd condition since p = 2 divides I + d2 
when d = I . 

9.3.3. The Todd condition is necessary 

Consider a Machin formula in which the n; satisfy I ::: n; < n :  

Arctan (n ) = en - !  Arctan (n 1 ) + Cn - 2 Arctan (n2 ) + · · · + c ,  Arctan (n , ) . 

Since the complex numbers I + in and ( I  + in 1 ) '  1 · · · ( I  + in , ) ' '  have the same 
argument, there exists a real number M > 0 such that: 

M ( l + in ) = ( I + in 1 ) ' " 1 · · · ( I + in , ) ' ' .  

Comparing real parts shows that M i s an integer. Passing to norms, we obtain 

M2 ( 1  + n2 ) = ( I +  n� ) l ' , - 1 1 ( 1  + n � ) l< " - ' 1 . . .  ( I + n� ) l , , l , 

which shows that condition (T) holds. 

9.3.4. The Todd condition is sufficient 

We say that a Gaussian integer <I> is n-adapted if there exists an inte­
ger M :=:: I such that M <I> is a product of Gaussian integers of the form I + i w 
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with l w l  < n. We also say that <t>< 1 1 , . . .  , <J>U l is an adapted factorisation 
of I + in if each <J><i l is n-adapted, that is if there exist integers M; :::-. 
and integers I we I < n such that 

M1 · · · M, ( l  + in ) = c: (M1 <t>< 1 1 )  · · · (M, <t><t ) ) = c: ( l  + i w 1 ) · · · ( I  + i wk ) · 
An adapted factorization is a precursor of a Machin formula. This is because 
( I + in )  and c: ( l  + i w 1 ) · · · ( I +  i wk ) have the same argument, so 

Arctan (n ) = k Arctan ( ) ) + Arctan (w 1 ) + · · · + Arctan (wk ) . 

A calculator (i. e .  numeric approximations) allows one to specify the right value 
of k E Z (which col lects t: and the factors 1 ± i ) . 

9.3.5. Kern 's algorithm 

To show that condition (T) is sufficient, Todd exhibits an adapted decompo­
sition of I + in .  We are going to use the same method, but we wil l prefer a 
very fast algori thm due to Eric Kern ( 1 986, unpubl ished), which rests on two 
simple ideas. 
First, let tJ = w 1 • • • wr be a decomposition into irreducible factors in Z[i ] .  
If the norm N(tJ) = N (w 1 ) • • • N(wr ) i s not divisible by any prime number 
q = 3 mod 4, we know that the N (w; ) are either p = 2, or prime num­
bers p = 1 mod 4. Hence, if we are given a factorization N (fl,)  = A B, there 
exist Gauss integers a,  f3 such that fJ = af3 , A =  N (a )  and B = N (f3 ) :  

N (tJ) = A B  ==} f1 = af3 , A =  N (a ) ,  B = N (f3 ) .  

This argument holds, i n particular, for Gaussian integers of the form 1 + in .  
I n effect, an odd prime number p which divides 1 + n2 i s necessari ly of the 
form p = I mod 4 since we know that the equation x2 + I = 0 has no roots 
in Zp when p = 3 mod 4. 
The next lemma is the second idea. 

Lemma 9.3.2. Let n > I an integer such that 1 + n2 is not a prime number; 
let <1>, <1>' Gaussian integers such as 

I +  in = <1> ·<1>' , I + n2 = N (<l> ) · N (<l>' ) ,  N (<l>) ,  N (<l>' ) > I .  

Now divide n by N ( <1>) using centered remainders: 

n = N (<l>)q + w ,  l w l  .::::: 4 N (<1>) .  

Then <1> divides I + i w and there exists <t>< 1 1 such that 

I +  i w  = <1> · <1>< 1 1 , N (<t>< 1 1 )  _::: 4 N (<1> ) .  

Proof Write I + n2 = dd' where d ,  d '  > I and lift this equal i ty to Z[i ] :  

I + in = <1> · <1>' , I +  n2 = N(<l>)  · N (<l>' ) ,  N (<l> ) ,  N (<l>' ) > I .  
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Now divide n by N ( <1>) using centered remainders; since 

1 + in =  i qN (<l>) + ( l  + iw )  

and since <1> divides both 1 + in and N (<l>) = <1> ·  <1>, we know that <1> divides 
1 + iw .  Thus, there exists <J>l i J such that 

1 + i w = <1><1>( 1 ) . 

Taking norms gives 
1 

N(<1>) · N (<J>l 1 l ) = 1 + w2 :S 1 + 4 N(<1>)2 . 

Dividing this inequal i ty by N (<l>) :=:: 2 gives N(<J>l 1 l )  :::; �N (<l>) .  

Description of Kern 's algorithm 

Let n > 1 be a decomposable integer and 

P 1 · · · Pr = 1 + n2 

D 

the decomposition of 1 + n2 into prime factors . Todd 's Theorem 9.3 .2 assures 
us that Pk ::: 2n . We wil l prove that lifting this equal i ty to Z[i ] ,  

1 + in =  <1> 1 · · · <1>, , 

gives an adapted factorization (and a Machin formula for the integer n) .  
Let <1> denote one of the factors <1> 1 , . . .  , <1>, . 
• If N (<l>) = 2, we know that <1> = c ( l  + i ) .  
• If N (<l>) > 2 i s an odd integer, we use the Lemma 9 .3 .2 :  dividing n by 

N ( <1>) gives rise to w 1 and <J>l 1 l such that 

1 + i w 1 = <J> .<J>l l l , N (<1>( 1 J ) :::; �N (<l>) . 

If N (<t>< 1 l )  > 1 ,  we know that 1 + w f = N (<1>) ·N (<t>< 1 l ) )  is not a prime number. 
Use the Lemma again and divide w 1 by N (<t>< 1 l ) ,  which gives rise to w2 and 
<t><2l such that 

1 + i w2 = <1>( 1 J . <J><2 l , N (<t><2 J ) :::; � N (<l>) ( l ) . 

As N(<1>( 1 J )  = ( l  + wf ) /N (<l>) ,  it is not necessary to find the explicit value 
of <t>< 1 l to deduce w2 from w 1 . Starting anew with w2 and N(<1>( 1 J )  we obtain 
a finite sequence of integers ! I +  i w 1 

I +  i w2 

1 + i wr 

<J> .<J>( I ) , 
<1>( 1 ) . <1>(2) , 

N (<J>( I l )  :S � N(<l>) ,  
N (<1>(2 l )  :::; � N(<l>) ( I J , 
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Solving these equations gives 

Therefore there exists an integer M :::: I such that 

(The exact value M = N ( l  + i w2 ) ·N( I + i w4) · · · is irrelevant . ) 

Kern's algorithm is as fol lows. 
• Start with 1 + n2 = p 1 • • • p1 • 
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• Initial ly, lisLfactors is empty. We collect factors 1 + i w associated to each 
prime divisor d using 

index :=  1 ; 
repeat 
I w := centered_rem(n, d) ; {n = dq + w, l w l .:S 4dJ 
if index mod 2 = 1 
then list_factors := add( 1 + wi, list_factors) 
else lisLfactors := add( l - wi, list_factors) ; 
index := index + 1 ; 
d : = ( 1  + w2 ) / d ; 
n := w 

until w = 0 

• The product of all factors 1 + i w associated to p 1 , • • •  , p1 gives a Machin 
formula for the integer n .  

Example 

Choose n = 1 1 36 ;  since I + n2 = 1 873 · 53 ·  1 3  and 1 873 _::: 2n , we know 
that n is decomposable and that there exists an adapted factorization 1 + in = 
<I> 1 873 ° <I> 53 ° <I> 1 3  ° 

• Apply Kern 's algorithm to the divi sor 1 873 :  

) ) 36 = 1 X 1 873 - 737 
-737 = -3 X 290 + 1 33 

1 33 = 2 X 6 1  + 1 1  
1 1 = 5 x 2 + 1  

1 + 7372 = 1 873 X 290 
1 + 1 332 = 290 X 6 1  
1 + 1 1 2 = 6 1 x 2 
1 + 1 2 = 2 x 1  

The centered remainders are w 1 = -737 ,  w2 = 1 33 ,  w3 = 1 1  and w4 = 1 .  The 
norms necessary to compute the wk are N(<f>( 1 ) ) = ( 1  + 7372 ) / 1 873 = 290, 
N(<f>(2l )  = ( 1  + 1 332 ) /6 1 = 2, N(<f>(3 l ) = ( 1  + 1 1 2 ) /6 1 = 290 and N (<f>(4l )  = 
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( I  + 1 2 ) /2 = 1 . Therefore, there exists an integer M' :::: I and a unit t:' such 
that 

M'<t> 1 m = t:' ( l + w 1 ) ( 1 - i w2 ) ( l  + iw3 ) ( 1 - i w4 ) 
= t:' ( l - 737i ) ( 1 - 1 33i ) ( l + I I i ) ( I - i ) 

• Kern's algorithm applied to the two other factors gives 

1 1 36 = 87 X 13 + 5 I + 52 = 1 3 X 2 
5 = 2 x 2 + 1  1 + 1 2 = 2 x l 

1 1 36 = 2 1 X 53 + 23 I + 232 = 53 X 1 0 
23 = 2 X 1 0 + 3 1 + 32 = 10 X I 

Thus we know that there are formulas 
M"<t>53 = t:" ( l + 23i ) ( 1 - 3i ) , M" :::: I ,  
M"'<t> 1 3 = t:'" ( l + 5i ) ( l  - i ) , M"' :::: 1 .  

• From M' M" M'" ( I + in ) = M'<t> 1 s73 · M"<t>sJ · M"'<t> 1 3 ,  we deduce that 
there exists an integer M :::: 1 and a unit E such that 

M( l + in ) = E ( l - i ) 2 ( 1 - 3i ) ( l + 5i ) ( l + l l i ) ( l  + 23i ) ( l - 1 33i ) ( l - 737i ) . 

We use this to get the fol lowing Machin formula where the coefficent of 
Arctan ( I )  col lects the unit E and the factors I ± i :  

Arctan ( l 1 36) = h Arctan ( ! )  - Arctan (3) + Arctan (5) + Arctan ( l l )  
+ Arctan (23) - Arctan ( l 33) - Arctan (737) . 

A calculator shows that h = 2. 

Remarks 

I )  Kern 's algorithm il luminates the condition p .::: 2n of Todd's Theo­
rem 9.3 .2 . As we have already remarked, the factors I + iw which appear 
sati sfy I w I .::: d. When d = p is odd, we have w < k p .::: n, which assures us 
that I + in is not among the col lected factors . 
2) We examine the behavior of Kern 's algorithm when n is not decompos­

able : say, for example, when n = 9. The factorization I + n2 = 2 x 41 gives 
<f>( l ) = 1 +i and 2<t>(2 l = ( 1 +9i ) ( l - i ) . We get 2 ( 1 +9i ) = ( l +i ) ( l +9i ) ( l - i ) 
and thi s equation is not a precursor of a Machin formula. 
3) The first remark also shows that it is not necessary to completely factor 
1 + n2 into primes. Any factorization which ensures that d .::: 2n (where the 
inequal ty is strict if d is even) wil l work. Take for example n = 1 1 36; we 
can content ourselves with the factorization I + n2 = 1 873 · 689 which l ifts 
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to Z[i ] as 1 + 1 1 36i = <1> 1 373 · <1>639 . Application of the algorithm to the factor 
d = 689 gives: 

1 1 36 = 2 ° 689 - 242 1 + 2422 = 689 ° 85 
-242 = -3 · 85 + 1 3 I + 1 32 = 85 · 2 
1 3 = 6 · 2 + I 

Thus there exists M :::: I and a unit c such that 

M <l>689 = c ( l  - 242i ) ( l - 1 3i ) ( l + i ) . 

The Machin formula associated to the factorization 1 + n2 = 689 · 1 873 i s 

Arctan ( 1 1 36) = k Arctan ( I )  + Arctan ( 1 1 )  - Arctan ( 1 3 ) 
- Arctan ( l 33 ) - Arctan (242) - Arctan (737 ) . 

Numerical approximations shows that k = 8 . 

9.3.6. How to get rid of the Arctangent function 

After a series of purely arithmetic calculations, it is frustrating to have to tum to 
numerical approximations to guess the precise value of the integer multiplying 
Arctan ( I ) , thereby abandoning the absolute precision of arithmetic. 

Z = a +  hi 

b 
e = Arctg - + n 

a 

Re z < 0 

b 
e = Arctg -

a 

Re z > 0 

To avoid this false note, we choose a determination of the argument of a 
complex number and monitor the variation of the argument in the course of 
the various multipl ications. Let 

Z = a + ib ,  ab =f- 0  

be a complex number not on the axes. Choose the argument e of Z to satisfy 
I 3 

- - n < e < - n .  
2 2 

(This unusual choice minimizes the number of cases we wil l have to handle. ) 
If we put 

if a >  0, 
if a < 0, 
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we find that the argument of Z is 

e (a + bi ) = Arctg (� ) + ( l - a+ )n . (9. 1 5 )  

Let w =f. 0 be  a real number. Put W = I + i w and 

Z' = Z W = a' + i b' = (a - bw)  + (b + a w) i .  

Lemma 9.3.3. If ab =f. 0 and a 'b' =f. 0 ,  then: 

b' b Arctgc , ) = Arctg (�) + Arctg (w)  + sgn (b) (a� - a+ )n . (9. 1 6) 

Proof The derivative of the function 

w E  lR � Arctg ( b + a w ) - Arctg (� ) - Arctg (w)  
a - bw a 

with respect to w is zero. Consequently, this function is constant on every 
interval on which it is differentiable ;  that is , on every interval which does not 
contain a/b. Upon letting w tend to ±oo, we see that this constant equals 

c = - { Arctg (� ) + Arctg (� ) } - sgn (w ) lrr = - l  { sgn (� ) + sgn (w)  }rr 

since 
Arctan (x ) + Arctan (x - 1 ) = sgn (x ) !rr , x =f. 0. 

But sgn (a/b) = sgn (a )  sgn (b) and 

a ' = a - bw ===> sgn (a ' ) = - sgn (b) sgn (w ) ,  

that i s ,  sgn (w )  = - sgn (a ' )  sgn (b ) .  Therefore 

c = - H sgn (a ) sgn (b) - sgn (a ' ) sgn (b) }rr 

= sgn (b) H sgn (a ' ) - sgn (a ) }rr 
= sgn (b) (a� - a+ )n . 

Corollary 9.3. 1. If ab =f. 0 and a' b' =f. 0, then: 

0 

e (Z' ) = e (Z)  + Arctg (w )  + ( 1 - sgn (b) ) (a+ - a� )n . (9. 1 7) 

Proof By definition 

1 ( b' ) 1 e (Z ) = Arctg 
a ' 

+ ( l - a+ )n . 
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Using (9.20) then (9.2 1 ) ,  we get 

1 ( b ) 1 I & (Z ) = Arctan -;; + Arctg (w)  + sgn (b) (a+ - a+ )n + ( 1 - a+ )n 
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= & (Z) - ( I - a+ )n + Arctg (w )  + sgn (b) (a+ - a� )n + ( 1 - a� )n 

= & (Z) + Arctg (w)  + (a+ - a� )n + sgn (b) (a� - a+ )n . 0 

9.3. 7. Examples 

1 )  Consider the adapted factorization where M � 1 

M ( l  + 1 1 36i ) = c ( l - i )2 ( 1  - 3i ) ( 1  + 5i ) ( 1 + 1 1 i )  
( I + 23i ) ( l - 1 33i ) ( 1 - 737i ) .  

As we have already remarked, the factor c ( l - i?  does not interest u s  because 
it only modifies the coefficient of Arctan ( I ) . We start then with 

z 1 = 1 - 3i 

which has argument Arctan (-3 ) ,  and we multiply i t repeatedly by 1 + i w  with 
w = 5 ,  I I , 23 , - 1 33 , -737, which gives the Gaussian numbers 

Zz , . . .  , Z6 = 353800( 1 1 36 - i ) .  

A s  the complex numbers Z2 , . . •  , Z5 all have imaginary part b > 0 ,  formula 
(9. 1 7 )  tel ls us that we do not need any correction and, since Z6 and 1 1 36 - i 
have the same argument, we find that 

Arg ( l 1 36 - i )  = Arctan (-3)  + Arctan (5 ) + Arctan ( l 1 )  
+ Arctan (23) + Arctan ( - 1 33) + Arctan ( -737) . 

To obtain 1 + 1 1 36i , we multiply 1 1 36 - i by i ,  which increases the argument 
by �n = 2 Arctan ( l ) :  

Arctan ( l l 36) = Arg( l + 1 1 36i ) 
= 2 Arctan ( l )  + Arctan (-3) + Arctan (5 ) + Arctan ( l 1 ) 

+ Arctan (23) + Arctan ( - 1 33 )  + Arctan ( -737) .  

2) Now consider the adapted factorization where M � 1 :  

M ( l  + 1 1 36i ) = 2( 1 + 1 1 i ) ( 1 - 1 3i ) ( l - 1 33i ) ( 1  - 242i ) ( l - 737i ) .  

We begin with 
Z 1 = 1 + 1 1 i  
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which has argument Arctan ( l 1 )  and we multiply it successively by I + i w 
with w = - 1 3 ,  - 1 33 ,  -242 , -737 :  

z2 = 2 (72 - i ) ,  z3 = 1 22 (- I - I 57i ) ,  

z4 = 1 0370( -447 + i ) ,  Z5 = 3007300( 1 + 1 1 36i ) .  

Thanks to formula (9. 1 7 ) ,  the corresponding arguments are : 

e2 = Arctan ( I I ) + Arctan ( - 1 3 ) ,  
e3 = Arctan ( !  I ) + Arctan (- 1 3 ) + Arctan (- 1 33 ) + 2rr, 
e4 = Arctan ( l 1 )  + Arctan (- 1 3 ) + Arctan (- 1 33) + Arctan (-242) + 2rr , 
e5 = Arctan ( l 1 )  + Arctan ( - 1 3 ) + Arctan ( - 1 33) + Arctan ( -242) 

+ Arctan (- 737) + 2rr . 

Since 2rr = 8 Arctan ( 1 ) ,  we have obtained the Machin formula: 

Arctan ( l 1 36) = Arg(Zs )  
= 8 Arctan ( l )  + Arctan ( l 1 )  + Arctan (- 1 3 ) 

+ Arctan ( - 1 33 )  + Arctan ( -242) + Arctan ( -737) .  

Exercise 3 

Transform this  theory into a program which calculates Machin formulas for 
decomposable integers n E [ 1 ,  1 00] . 

Remark 

The reader interested in an another approach to this subject might consult the 
book Mathematiques et lnformatique by J. Berstel ,  J . -E. Pin and M. Pocchiola, 
Me Graw-Hil l ( 1 99 1  ). 



10. 1 .  Definitions 

For a mathematician, a polynomial A with coefficients in a ring k is an infi­
nite sequence (a11 )nEN of elements which are al l zero after some point (which 
depends on the sequence) : 

Let k [X ]  be the set of such sequences (the appearance of X wil l  be justified 
a l i ttle later) One can give this set the structure of a ring by defining the 
operations of addition and multipl ication as fol lows: 

• for addition, let 

A + B = (ao + bo , . . .  , a, + bn , 0, . . . ) 

• for multipl ication C = A B ,  let the n-th element of C be: 

Cn = L apbq . 
p+q=ll 

The ring k can be identified with the constant polynomials using the bijec­
tion : 

ao ;::::: (ao ,  0, . . . ) .  
With this identification , we can, i n  particular, multiply a polynomial by a 
constant so that A (a0 ,  . . . , ad ,  0, . . .  ) = (A , 0, . . . ) (a0 ,  . . .  , ad , 0, . . .  ) is indeed 
the polynomial (Aa0 , . . .  , Aad , 0, . . .  ) .  If we now put 

X = (0, I ,  0, . . .  ) ,  
a straightforward induction shows that for every integer n :::_ 1 ,  

X" = (0, . . .  , 0 ,  I ,  0 ,  . . .  } ,  the I being i n  the n -th place. 

Then, every polynomial can be written uniquely in the form 
n 

A =  L a; X; 
i =O 

and one recovers the traditional presentation of a polynomial . 

10. Polynomials
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10.2. Degree of a Polynomial 

If k is an integral domain (the product of two elements is zero if and only if 
one of the factors is zero) then it turns out that k [X ]  i s  an integral domain .  

Let A be a nonzero polynomial . I t s  degree is , by definit ion, the largest 
index i such that ai =f. 0: 

deg (A )  = max { i ; ai =f. 0 } . 

For example the nonzero constant polynomial s have degree 0. 
This definition does not work if A is zero because the set of indexes i such 

that a; =f. 0 is empty. What degree can we attribute to the zero polynomial ? 
Several conventions are possible depending on what one wants to investigate. 
In general , one wants the formula 

deg (A x B) = deg A + deg B 

to continue to hold if A or B is zero (we suppose that k is an integral domain) .  

• First convention: one attributes degree - oo  to the zero polynomial . This 
somewhat surpris ing convention is best from the point of view of the preceding 
criterion because : 

deg (A x 0) = deg A - oo = - oo  = deg(O) . 
• Second convention : the zero polynomial is considered as a constant poly­

nomial of degree zero. With this choice, 

deg (A  x 0) = deg(O) = 0. 

So the formula deg (A x B) = deg A + deg B does not continue to hold ! It is 
necessary therefore to pay careful attention to the defini tion of degree that one 
uses. 

10.3. How to Store a Polynomial 

Recal l that we use basic Pascal without pointers . Thus we can only use arrays 
whose size is fixed once and for all at the moment of compi lation. Two natural 
solutions present themselves. 

• We can consider a polynomial as a vector of fixed dimension 

x2 + 2x + 3 ;::::: ( 3 ,  2, 1 ,  o, o, o, o, o, o, O) 

using an array A [O . .  deg_max] : 
const deg_max = 1 0 ; 
type poly = array[O . .  deg_max] of integer ; 
var A :  poly ; 

( 1  0. 1 )  
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We then store the polynomial A = X2 + 2X + 3 using the code: 

for i : =  0 to deg_max do A [i] : =  0 ; 
A [O] : =  3 ;  A [ 1 ]  : = 2 ;  A [2] : = 1 ; 
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The first statement - the preliminary clearing of the coefficients in  the array 
is v i tal . 

• We can consider a polynomial as a pair (degree, sequence of coefficients) : 

X2 + 2X + 3 ;:::::: degree = 2 and ( 3 ,  2, 1 ) . 

There is a subtlety here. We try to explain visual ly :  

2 { (3 ,  2, I ,  0, 0, 0, 0, 0, 0, 0) , 
X + 2X + 3 ;:::::: 

( 3 ,  2, 1 ,  ?, ?, ?, ?, ?, ?, ?) and deg = 2 .  

( 1 0.2) 

(The question marks signal undefined values; that is ,  memory contents which 
have not been in i tial ized and must be considered random. In other words, they 
are litter. ) 

Convention ( 1 0 .2) requires that we store the degree at the same time as 
the coefficients. For polynomials with integer coefficients, one way to do this ,  
inspired by the implementation of chains of characters, i s  for example:  

const deg_max = 1 0 ; deg = - 1  ; 
type poly = array[deg . .  deg_max] of integer ; 
var A :  poly ; 

The degree is thus A [deg] and the coefficients are A [O] ,  . . .  , A [deg_max] . 
For example, we store the polynomial A = X2 + 2X + 3 by typing: 

A [O] := 3 ;  A [ 1 ]  := 2 ;  A [2] := 1 ;  A [deg] : =  2. 

There is  no point specifying that A [i ]  = 0 for i > deg ( A )  since we have 
defined the degree of A .  

Convention ( 1 0.2) functions much less well when the coefficients are real . 
In effect, al though A [deg ]  is an integer, it is treated as a real number. In thi s  
case, i t  i s  better to  use a record: 

const deg_max = 1 0 ; 
type arr_coeff = array[O . .  deg_max] of real ; 
poly = record coeff : arr_coeff ; deg : integer end ; 
var A :  poly ; 

Now, the degree of A is A .deg and the coefficient of Xk is A .coef[k ] .  
Convention ( 1 0.2) i s  seductive and furnishes a priori faster programs.  But  

i t  i s  difficult to  implement. In effect, when one  calculates C = A + B ,  i t  i s  
necessary to be very, very carefu l :  
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• If deg ( A )  = deg ( B ) ,  and if we work with real coefficients, one can use 
the code 

for i := 0 to A.deg do C.coeff[i] := A .coeff[i] + B.coeff[i] 

After that, we absolutely must define the degree of C while examining the 
C.coeff[i ] for i :S deg ( A ) .  

• I f  deg ( A )  < deg ( B ) ,  i t  is  necessary t o  use the code 

C := B ;  
for i :=  0 to A .deg do C.coeff[i] :=  A .coeff[i] + C.coeff[i] 

We do not need to find the degree of C because i t  i s  equal to that of B .  

The product is  sti l l  more difficult to write correctly. 1 Try i t !  

10.4. The Conventions we Adopt 

• We store polynomials using convention ( 1 0. 1 ) . 
• We assign the zero polynomial degree 0. 

The degree function 

If the coefficients are integers, we can use the test A [i ]  =f. 0 without any 
precaution : 

function degree (A : poly) : integer ; 
var i : integer ; 
begin 
degree :=  0 ;  
for i :=  0 to deg_max do 

if A [i] =f. 0 then degree := i 
end ; 

The statement degree :=  0 in the preceding code is v i tal . If one omits it ,  
the zero polynomial does not have a degree ! 

We must modify this  code l ightly in the case that the coefficients are not 
integers because the test A [i ] =f. 0 is  not satisfactory over the real s :  

function degree(A : poly) : integer ; 
const E = 1 E - 8 ; 
var i : integer ; 
begin 
degree :=  0 ;  
for i :=  0 to deg_max do 

if abs(A [i ] )  > E then degree := i 
end ; 

----

1 Here is a good i l lustration of the proverb Above all, no tricks!! 
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The procedure annul 

This is  an indispensable procedure. If we forget to initial ize our polynomials ,  
they wil l  contain l i tter and their degree wi l l  not be correct. 

procedure annul(var A : poly) ; 
var i : integer ; 
begin 
I for i := 0 to deg_max do A [i] := 0 
end ; 

The add_poly and mu[Lpoly procedures 

To add and multiply two polynomials, it suffices to recopy the definitions of 
sum and product (we suppose that the coefficients are integers) :  

procedure add_poly(A , B :  poly ; var C :  poly) ; { returns C = A +  B}  
var i : integer ; 
begin 
I for i := 0 to deg_max do C[i] := A [i] + B[i] 
end ; 

procedure mult_poly(A , B :  poly ; var C :  poly) ; { returns C = A · B }  
var i ,  k ,  temp : integer ; 
begin 
if degree (A )  + degree(B) > deg_max 
then writeln (' error : degree too large' ) 
else begin 
annul(C} ; 
for i :=  0 to degree(A )  + degree(B) do begin 

I temp := 0 ; for k := 0 to i do temp := temp + A [k] * B[i - k] ; 
C[i] : = temp 

end 
end 

end ; 

For beginners 

Suppose that you know A is a polynomial and you want to translate A = 6 
into code. Beginners often write A :=  6, which el icits the error message type 
mismatch (i. e. the types are incompatible) .  The right code is :  

annul(A ) ; A [O] :=  6 ;  

It i s  easy to understand why the compiler is  perplexed: the objects "A" and 
"6" do not occupy the same place in memory. 
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We can profitably use this opportunity to reflect on the meaning of the inclu­
sion JR. c JR.[ X ] . When a mathematician says :  "/ identify the real number a with 
the constant polynomial (a , 0, 0, . . . )" ,  what i s  being said i s  that henceforth he 
or she will pretend that these two objects are equal , thereby allowing him or 
her to write A = 6 without blushing. This behavior wil l  not produce catastro­
phes because the canonical injection JR. � IR.[X] is a ring homomorphism. 
But physically, real numbers and constant polynomials are distinct objects, a 
distinction that is not lost on our computer because it is not able to "pretend". 

Comfortable display of polynomials 

Suppose that we want to display a polynomial in a v isual ly comfortable manner 
respecting the fol lowing constraints:  

• no more than five monomials are displayed on a line; 

• zero monomials are not displayed ; 

• ' 1 X' n ' is displayed as ' X ' n ' ;  
• ' - 1 X' n ' is  di spayed as ' - X ' n '  

To display only five monomials o n  a l ine, we have to count the number of 
monomials,  whence : 

num_monomials := 0 ;  
for i := deg_max downto 0 do begin 

if P[i] =f. 0 then begin 

write (P[i] , 'X' ' ,  i : 1 )  ; 
num_monomials : =  num_monomials + I  
if num_monomials mod 5 = 0 then writeln 

end 
end ; 

We now refine this code discussing whether P [i ]  is positive, zero, or neg­
ative. Pascal does not display the ' + '  sign before a positive number. The 
constants make the code easy to read. Final ly, several trials wi l l  show that one 
must not forget that a polynomial is  sometimes zero. 

procedure display_poly(P : poly) ; 
const plus = ' +  ' ; minus = ' - ' ; exponent = 'X ' ; 
var i, num_monomials : integer ; 
begin 
num_monomials := 0 ;  
for i := deg_max downto 0 do begin 
if P[i] =f. 0 then begin 
if P[i] > 1 then write(plus, P[i] : 1 )  else 
if P[i] = 1 then write(plus) else 
if P[i] = - 1  then write (minus) else 
if P[i] < - 1  then write (minus, -P[i] : I ) ; 
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write(exponent, i :  1 )  ; 
num_monomials : = num_monomials + 1 ; 
if num_monomials mod 5 = 0 then writeln 

end 
end ; 
if num_monomials = 0 then writeln ('O ' )  ; {case P = 0}  
i f  num_monomials mod 5 =1- 0 then writeln 

end ; 
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The last statement ensures the return to the correct l i ne after displaying a poly­
nomial . This  precaution allows us to ask that several polynomials be displayed. 

write (' P = ' )  ; display_poly(P) ; 
write ('Q = ' ) ; display_poly(Q) ; 
write (' R = ') ; display_poly(R) ; 

10.5. Euclidean Division 

Let A and B be two polynomials with coefficents in a field.  If B is not the zero 
pol ynomial , we know that there exi sts a unique pair ( Q , R )  of polynomials 
satisfying the conditions:  

A = B Q + R, deg R < deg B .  

We refresh our memory b y  dividing A = 2X 5  - X4 + 3X3 + 4X2 - X + 1 by 
B = X3 + 2X + 3 :  

2X5  - X4 + 3X3 + 4X2 - X + 1 X3 + 2X + 3 
-X4 - X3 - 2X2 - X + 1 2X2 

-X3 + 2X + 1 -X  
4X  + 4 - 1  

stop 

We see that three sequences appear: the remainders R; and partial quotients 
Q; in which monomials M; accumulate : 

Ro = A  
R 1 = Ro - BM1 
R2 = R 1 - BM2 

B 
Q l = Qo + M1 ( Qo = 0) 

Q2 = Q 1 + M2 

The calculation is finished when the degree of the partial remainder is smal ler 
than that of the divisor B .  The three dots represent a loop which must be 
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specified. S ince we do not know the number of steps in advance, we cannot use 
a 'for' loop (if we div ide X6 + X4 + X2 by X2 ' the div ision stops right away) .  
Thus,  we choose a ' whi le '  loop, because we should definitely do nothing when 
deg A < deg B. A succinct mathematical description of the division algorithm 
is then:  

Ro := A ; Q0 :=  0 ; 1 : =  0 ; 
while deg(R; ) :=:: deg(B) do begin 
« calculate the monomial M; » ; 
Qi+ l := Q; + M; ;  
R;+ l :=  R; - B · M; ; 
i :=  i + 1 

end 

Recal l that the monomial M; is  the quotient of the highest degree monomials 
of the polynomials R; and B .  Suppressing the t ime index i and specifying the 
monomial M; we have : 

R := A ;  Q :=  0 ;  
while deg(R) :=:: deg(B) do begin 
M := R[deg(R) ] / B[deg(B) ] XdeR ( R J -deg < Bl ; 
Q :=  Q + M ; 
R := R - B · M 

end ; 

Remark 

If A and B are coefficients in an integral domain (for example, Z), the quo­
tient Q and remainder R have coefficients in the field of fractions of the ring. 
But if the coefficient of the highest degree monomial of B i s  invertible (as 
in  the example on the preceding page) ,  the algorithm shows that Q and R 
have coefficients in the ring because no fractions are introduced during the 
calculations .  As a consequence, one remains in the integers (that is, one does 
not need recourse to fractions) when dividing by a monic polynomial . 

procedure unitary_division (A , B : poly ; var Q, R : poly) ; 
var i, coeff : integer ; monomial : poly ; 
begin { we suppose A ,  B, Q, R E Z[X] and B monic } 

if B[degree(B) ] =/=- 1 
then writeln (' error : polyomial is not unitary' ) 
else begin 
R := A ; annul(Q) ; 
while degree(R) :=:: degree(B) do begin 
annul(monomial) ; 
monomial[degree(R) - degree(B) ] :=  R[degree (R) ] ; 
Q[degree (R) - degree (B) ] :=  R[degree(R) ] ; { Q :=  Q + monomial} 
mult_poly(monomial, B, monomial) ; {monomial :=  B · monomial} 



I 0.6. Evaluation of Polynomials :  Homer's  Method 

I I sub_poly(R, monomial, R) 
end 

end 
end ; 

{R :=  R - monomial }  

26 1 

We remark that there is no point using the general procedure add_poly to add 
a monomial to the quotient Q .  

10.6. Evaluation of Polynomials: Horner's Method 

The problem of economical ly calculating the value of a polynomial was re­
solved in the seventeenth century by Newton during a time when calculations 
were done by hand and techniques for economizing on additions and multi­
pl ications were much appreciated. The technique, however, i s  called Homer 's  
method in  honor of W. G.  Homer who rediscovered and popularized it  in  1 8 1 9. 

To calculate the value at x of the polynomial 

A =  I + 2X + 3X2 - 4X3 - SX4 , 

we could type in our program: 

value := ) + 2 * X + 3 * X * X - 4 * X * X *  X - 5 * X * X *  X *  X ( 1 0. 3 )  

B u t  the situation gets more interesting if w e  want t o  calculate 

A = ao + a 1 x + · · · + anxn . 

We cannot type something l ike 

value := a [O] + b[ l ]  * X + · · · +  a [n] * X * · · ·  * X 

(which is ,  unfortunately, what some beginners do) because the compiler does 
not understand the three dots ' . . .  ' which represent a repetition ( i. e. a loop) .  
We can fix th is  by defining a Pascal function power(x , i ) which returns the 
value of xi and entering: 

value := 0 ;  
for i :=  0 to n do value :=  value + A [i] * power(x, i) 

This code is  very clumsy and is  a Penelope code : when we calculate x i , we 
forget that we calculated xi - I  an instant earl ier. 

Let us return to the calculation of v = I + 2x + 3x2 - 4x 3 - Sx4 . If we 
isolate the constant term we can treat x as a factor in what remains :  

v = I + x (2 + 3x - 4x2 - Sx3 ) .  

Carrying out this transformation repeatedly on the polynomials i n  parentheses, 
we finally get 

v = I  + x (2 + x (3 + x (-4 + x (-5 ) ) ) ) .  
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The parentheses that appear suggest a very natural sequence of calculations :  

v0 = - 5 , 

v 1 = -4 + x vo , 
V2 = 3 + X V J , 

V3 = 2 + X V2 , 
V4 = I +  X VJ ,  
value = V4 

This strategy presents considerable advantages:  

• formula ( I  0.3) requires 10 multipl ications and 4 additions; 

• i n  contrast, ( 1 0.4) uses only 4 multiplications and 4 additions ! 

( 1 0.4) 

More general ly, the value of the polynomial A = a0 + a 1 X + · · · + an Xn 
at x is the last term of ei ther of the two sequences 

Vo = an 
V 1 = an- I + X Vo 
V2 = an-2 + X V 1 

Vn = ao + X Vn- 1  

whose translations into code are 
value :=  an 
for i : = I to n do 

value := an-i + x · value 

Vn = an 
Vn - 1 = an- I + X  Vn 
Vn -2 = an-2 + X Vn - 1 

vo = ao + x v 1 

value :=  an 
for i : = n - I down to 0 do 

value := ai + x · value 

These two algorithms are cal led Horner s method. Experience shows that 
the one on the right (with the decreasing indices) is much more natural in 
practice. 

function value (A : poly ; x : integer) : integer ; 
var i, deg_A , temp : integer ; 
begin 
deg_A := degree(A )  ; 
temp :=  A [deg_A] ; 
for i :=  deg_A - I downto 0 do temp :=  A [i] + x * temp ; 
value := temp 

end ; 

10.7. Translation and Composition 

10. 7.1 .  Change of origin 

Let A (X )  = a0 + a 1 X + · · · + an Xn be a polynomial with coefficients in a ring 
and h an element of this  ring. Let: 
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How can one calculate the b; using the a; and h ?  
Suppose for example that we have A = I + 2X  + 3X2 - 4X3 + 7 X4 and 

h = I .  To calculate 

B(X)  = 1 + 2 (X + 1 )  + 3 (X  + 1 ) 2 - 4(X + 1 ) 3 + 7 (X + 1 )4 , 

it is necessary to resist the temptation to expand the terms (X + I )k because this 
strategy produces a very awkward code. Fol lowing the idea behind Homer 's  
method : 

B4 = 7 
B3 = -4 + (X +  1 ) 84 
B2 = 3 + (X +  I ) B3 

B 1 = 2 + (X +  1 ) 82 
B0 = 1 + (X + I ) B 1 
B = B0 

We have chosen decreasing indexes because they are more natural ! 
It is necessary to pay close attention to the change in context :  we are not 

calculating here with numbers but with polynomials; we begin with the con­
stant polynomial B4 = 7 ,  then we calculate the first degree polynomial B3 , 
etc . :  

B4 = 7 ,  
B3 = 3 + 7X ,  
B2 = 6 + l OX + 7 X2 , 
B 1 = s + 1 6X + 1 7  X2 + 7 x3 , 
Bo = 9 + 24X + 33X2 + 24X3 + 7X4 . 

The adaptation of Homer 's  method to calculate B(X)  = A (X + h ) i s :  

B := an ; 
for i := n - 1 downto 0 do B := a; +  (X + h) · B ( 1 0. 5 )  

We insist again :  B is  a polynomial that one modifies l i ttle b y  litt le, the op­
erations addition and multipl ication taking place in the ring of polynomials .  
To implement thi s  algorithm, there are two possibi l i ties. 

• Translate algorithm ( 1 0.6) directly which leads to the code : 

procedure translation (A : poly ; h : integer ; var B : poly) ; 
var i, deg : integer ; temp : poly ; { returns B(X) = A (X + h) }  
begin 

annul(B) ; deg := degree (A )  ; B[O] := A [deg] ; {B = A [deg] } 
for i := deg - 1 downto 0 do begin 
annul(temp) ; temp[O] := h ;  temp[ 1 ]  := 1 ; { temp = X +  h }  
mulLpoly(B, temp, B )  ; {B = temp · B }  
B[O] :=  B[O] + A [i] {B = B + a; }  

end 
end ; 
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• We dwel l  a l i ttle further on algorithm ( 1 0.6) arguing that it  i s  awkward 
to cal l a general procedure for multipl ication of polynomials in order to mul­
t ip ly B by X + h . If we put 

sU l (X )  - bU l + bU l X + · · · +  bu l xn 
- 0 I n ' 

the equal i ty sU l = ai + (X +  h ) BU+ I l gives 

b(i ) = b(i+ l ) + h b( i + l ) n n - 1  n ' 
b(i ) = b(i + l ) + h b( i + l ) n - 1  n -2 n - 1 ' 

b(i ) - b(i + l ) + h b(i + l ) I - 0 I ' 
b(i ) - . + h b(i + l ) o - a, o . 

( 1 0.6) 

If we agree to view the index i as representing t ime, we can consider s<i l 
as the state of the polynomial B at the instant i in a reverse count. If we use 
the formulas ( 1 0.6) in  the order bn , . . .  , b0 ,  we find that we can calculate the 
polynomial B on the spot which avoids using an array with two indexes: 

procedure translation (A : poly ; h : integer ; var B : poly) ; 
var i, k, deg : integer ; 
begin 
annul(B) ; deg := degree (A)  ; 
B [O] : =  A [deg] ; 
for i := deg - 1 downto 0 do begin 

I for k := deg downto 1 do B[k] := B[k - I ]  + h * B[k] ; 
B[O] : =  A [i] + h * B[O] 

end 
end ; 

This code is more compact and performs better than the preceding. However, 
it is total ly incomprehensible unless accompanied by a description of how it 
was constructed. Moreover, i t  i s  very delicate to implement and very fragi le (if 
one replaces the internal ' downto' loop with a 'to'  loop, the calculations are 
completely fal se) .  This is the price one pays for resorting to a programming 
trick. 

For beginners 

A mathematician seldom resists this sort of of pleasure and indulges in all sorts 
of shortcuts at the outset. Nevertheless, experience shows that this atti tude is  
a continual source of catastrophes and loss of t ime when one programs. One 
can never repeat enough : to program is first of all to choose security; tricks 
come later. First write a sol id,  "industrial" program which works; then one 
can fine tune i t  later by modifying certain  procedures. Reserve the intel lectual 
thri l l s  for this time. 
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10. 7.2. Composing polynomials 

Let A =  a0 + · · · + a11 X11 and B = b0 + · · · + bm Xm be two polynomials .  We 
want to calculate the polynomial C = B o A ,  that i s :  

C(X) = B (A (X) ) . 
Suppose that we have B = I + 2X + 3X2 - 5x3 so that: 

C (X)  = I + 2A + 3A 2 - 5A3 . 

This presentation suggests the fol lowing use of Horner 's  method: 

c3 = -5 ,  
C2 = 3 + A · C3 , 
C 1 = 2 + A ·  C2 , 
Co = I +  A ·  C 1 , 

where, once again,  the ' value ' Ci is not a number but a polynomial , which 
means that the calculations take place in the ring of polynomial s .  

procedure composition_poly(A , B : poly ; var C :  poly) ; 
var i :  integer ; { returns C = B o A }  
begin 
if degree(A)  * degree(B) > deg_max 
then writeln(' error : degree too high' ) 
else begin 
annul(C) ; C[O] : = B[degree(B) ] ; { C = B[n] } 
for i := degree(B) - I downto 0 do begin 

I mult_poly(C, A, C) ; { C  := C . B} 
C[O] := C[O] + B[i] { C := C + B[i] } 

end 
end 

end ; 

1 0.8. Cyclotomic Polynomials 

Let n 2: I be an integer and A = e2irr/n . The n-th cyclotomic polynomial is the 
polynomial : 

We then have 

<1>11 (X)  = n (X - Ak ) .  
I Sk SII 

GCO(k .n )= l 

<f>n (X}  = X<P(n ) + . . .  
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where rp i s  the Euler phi-function . We shal l show a l i ttle later that <Pn is 
a polynomial with integer coefficients, which is  not at al l evident from the 
defini tion.  While waiting, and to famil iarize ourselves with the these objects, 
we calculate the first few cyclotomic polynomials from the definition. 

• When n = 1 ,  we have A = 1 and k = 1 ,  which g ives:  

<P 1 (X ) = X - I . 

• When n = 2, only k = 1 works, so that A = eirr = - I and 

• When n = 3, we have A = e2irr/J = j and k = I , 2 which gives: 

<P3 (X ) = (X - j ) (X - /) = X2 + X + I . 

With patience and a lot of care, one can calculate more cyclotomic polynomi­
als .  Happily, there are better ways. 

10.8.1 .  First formula 

Suppose, for simplicity, that n = 1 2 . We have 

X l 2 _ 1 = n (X _ e2irrk/ 1 2 ) .  
l :sk :s l 2 

The GCD of k and of 1 2  is one of the numbers I , 2 ,  3 ,  4, 6, 1 2 . We parti­
tion [ 1 ,  1 2] as 

[ 1 ,  1 2] = II u /2 u /3 u /4 u h u /1 2 
by placing in /d the integers k which satisfy the condition GCD(k , 1 2) = d 
( in  other words, the le are the "level curves" of the function k r-+ GCD(n , k ) ) .  
We can  regroup the (X - Ak ) as: 

X l 2 _ 1 = n n (X _ e2irrk/ 1 2 ) .  
d l l 2 kE IJ 

If, for example, we examine the product associated to /4 ,  we recognize the 
cyclotomic polynomial 

<P3 (X ) = n = (X _ e2irr4/ 1 2 ) (X _ e2irr 8/ 1 2 ) = (X _ e2irr/3 ) (X _ e4irr/3 ) .  
k E /4 

The trick is simple: one musn ' t  touch the 2irr when simpl ifying exponents. 
By proceeding the same way with the other subproducts, we encounter other 
cyclotomic polynomials and wind up with the formula: 

X 1 2 - 1 = <P 1 (X )<P2 (X )<PJ (X )<P4 (X )<P6 (X )<P J 2 (X ) .  

The general ization i s  immediate and gives the following result .  
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Theorem 10.8.1 .  For all integers n :::: 1 ,  

xn - 1 = n <t>d (X ) .  ( 1 0.7 )  
d i n 

Corollary 10.8. 1. The cyclotomic polynomials have integer coefficients. 

Proof We prove this by strong induction on n .  First of al l ,  the result is true 
if n = I .  Suppose that we have shown that the <t>k have integral coefficients 
if k < n and let 1 = d1 < d2 < · · · dk < n be the divisors of n which are 
strictly smal ler than n .  It follows from ( 1 0.7) that: 

xn - 1 
<f>n (X )  = · 

<t> J, (X )<t> d, (X )  · · · <t> d, (X )  
( 1 0.8 )  

We conclude by  remarking that <t>n i s  the quotient of  two polynomials with 
integral coefficients and the denominator is monic. D 

Formula ( I  0 .8) is very valuable because it allows us to calculate <t>n very 
rapidly a l i ttle at a time. We begin with <1> 1 (X )  = X - 1 .  

• We now have without effort : 

X2 - 1 X2 - 1 
<f>2 (X)  = -- = -- = X +  1 ,  

<t> 1 (X )  X - 1 
X3 - 1 X3 - 1 

<t>, (X)  = -- = -- = X2 + X +  1 , . <1> 1 (X )  X - 1 
X4 - 1 X4 - 1 

<t>4 (X)  = 
<1> 1 (X )<t>z (X )  =

 
X2 - 1 

= X2 + 1 .  

• If p i s  a prime, the formula <t> 1 <t> P = X P - 1 gives:  

XP - 1 
<t>p (X)  = = xp- l + · · · + X +  1 .  

X - 1 

Putting Y = XP' - : one finds that YP = XP' and induction on £ gives:  

XP' - 1  XP' - 1  YP - 1  f - 1  <t>pr (X )  = = " = -- = <t>P (XP ) .  <t> I <t> p <t> P' • . • <t> p'- I X p - - 1 y - 1 

In a similar manner, if p does not div ide m,  one has: 

<t> (X) - <t>m (XP ) 
pm - _<f>_m_(X-) 
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If we want to calculate <1> 1 , <1>2 , <1>3 , • . •  , <t>N in this order, then e 1 0.8 )  sug­
gests the algori thm: 

<1> 1 := X - I ; 
for £ : =  2 to N do begin 
« calculate Prod :=  <t>d, <t>d, 
0 0 0 <t> d, » 

<t>e : = ext - I )/Prod 
end 

To find the divisors d; , we sweep the interval [ I , £  - I ] . We can limit the 
amplitude of the sweep by remarking that £ = dq and d < £ implies d .::: 4£ 
since q > I means q :::: 2. The calculation of Prod can be effected as fol lows: 

Prod :=  I ; 
for d : = I to £ div 2 do 

if £ mod d = 0 then Prod :=  Prod · <t>d 
Inserting thi s  code into the preceding algorithm gives:  

Exercise 1 

<1> 1 : = X - I ; 
for £ : =  2 to N do begin 
Prod :=  I ; 
for d : = I to £ div 2 do 

if £ mod d = 0 then Prod :=  Prod · <t>d ; 
<f>t := ext - I ) /Prod 

end 

Transform this algorithm into a Pascal program using the declaration : 

type poly = array[O . .  deg_max] of integer ; 
cyclotomic = array[O . .  deg_max] of poly ; 
var <t> : cyclotomic ; 

With this declaration, <t>[n]  is the n -th cyclotomic polynomial . 

10.8.2. Second formula 

We know that the coefficients of <t> P are equal to I when p i s  a prime number. 
If q is a prime distinct from p, one can prove that the coefficients of <t> pq are 
equal to 0 or ± I .  This property also holds for the cyclotomic polynomials of 
index less than I 05 ; in contrast, the coefficient of X7 in <t> 105 is equal to -2. 

It i s  a lso possible to  prove that there ex is t  cyclotomic polynomials with 
arbitrari ly large coefficients. The coefficients do not grow rapidly, however, 
since for n < 385 the coefficients of <t>n are al l  less than or equal to 2 in  
absolute value. 

If we want to inspect the results while calculating <1> 105 ,  for example, the 
formula e I 0 .8) is not so useful because it requires the calculation and storage 
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of <1> 1 , . . •  , <1> 104 . Happily, the Mrebius inversion formula in  multipl icative form 
tel l s  us that 

<l>n ( X )  = n c xd - l )�' <n ld l , 
d i n 

( 1 0.9) 

the product being taken over al l  d iv isors of n including the extremes I and n .  

This formula immediately suggests a n  algorithm:  

Exercise 2 

Num : =  I ; Den : =  I ; 
for d : = 1 to n do begin 

if n mod d = 0 then 
case 11 (n div d) of 

I + I : Num := (Xd - 1 )  · Num ; 
- I : Den : = (Xd - 1 )  · Den ; 

end {case } 
end ; 
<t>n : =  Num/ Den 

Implement this algorithm. 

• Beware, because the degree of the numerator or that of the denominator 
may exceed deg_max ! Do not omit the error message 'degree too high ' in the 
procedure for multipl ication. 

• Insert the calculation of the Euler function cp (see Chap. 8) i nto your pro­
gram. This  wi l l  at least allow you to inspect the degree of the displayed 
polynomial .  

10.9. Lagrange Interpolation 

Let n 2: I be an integer and consider n + I points on the plane with distinct 
abcissas. Does there exsist a polynomial whose graph passes through these 
points? 

� ' ' ' 
I I 1 I 
I I 1 I 

:ro 
) 

Theorem 10.9.1 .  Let k be a commutative field, x0 , x 1 , . . .  , Xn distinct elements 
of k and y0 , y1 , • . .  , Y11 any elements of k. There exists a polynomial A E k [X] ,  
and only one, satisfying the conditions: 

deg A :s n and A (x; ) = y; for i = O, . . .  , n . 
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This unique polynomial is  called the Lagrange interpolating polynomial 
associated to the data Xo , . . .  , Xn and Yo , . . .  , Yn · 
Proof Consider the polynomial 

W; (X )  = (X - Xo ) · · · (X - X; - ! } (X - X;+ ! ) · · ·  (X - Xn ) .  

I t  i s  zero at x0 , . . .  , X; _ 1 , X;+ 1 , • • •  , Xn and, i n  view of the absence of x; , does 
not take the value 0 at x; . Consequently, the polynomial 

� w (X)  
A (X )  = � y; -'-

i =O W; (X; )  
( 1 0. 1 0) 

is a solution. To prove un iqueness, suppose that A'  and A" are two solutions. 
Their difference A '- A" vanishes at the n +  I points x0 , . . . , Xn · Since the degree 
of the difference does not exceed n, it is necessari ly the zero polynomial . o 

Corollary 10.9. 1. Let w ( X )  = (X - x0) (X - x 1 ) · · · (X - Xn ) · If A is the 
Lagrange interpolating polynomial, all the solutions of the system P (x; ) = y; 
for i = 0, . . .  , n are given by the formula 

P = w · Q + A , Q E k [X ] .  

Proof Div ide P b y  w t o  get 

P = w · Q + R ,  deg R < deg w ,  

where the remainder satisfies the conditions R (x; ) = P (x; ) = y; . Since its 
degree is  less than or equal to n ,  we conclude that i t  i s  a Lagrange interpolating 
polynomial for A .  o 

Formula ( I  0. 1 0) is interesting. It tel l s  us,  for example, that the coefficients of 
the Lagrange interpolating polynomial are rational fractions, hence continuous 
functions in  the x; and y; . It also leads to a (very clumsy) algorithm. Return­
ing once again to the seventeenth century :  Newton, who calculated without the 
knowledge or technique of Lagrange interpolating polynomials,  used the fol­
lowing basis  (now cal led the Newton basis)  of the vector space of polynomials 
of degree _::: n :  

x<o) = I , 
x< I J = (X - xo) ,  
x<2 l = (X - Xo ) (X - X ! ) , 

x<n ) = (X - Xo ) (X - X ! ) . . .  (X - Xn - 1 ) .  

Notice the absence of the monomial X - Xn i n  this basis .  If we put 

A (X)  = ao + a 1 x< l l + a2X (2 ) + · · · + an x <n l , 
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the conditions A (x; ) = y; become: 

Yo = ao , 
Yi = ao + a i (x i  - xo } ,  
Y2 = a o  + a i (x2 - xo) + a2 (x2 - xoHx2 - x i ) ,  

Yn = ao + a i (Xn - Xo) + a2 (Xn - Xo ) (Xn - X i ) ,  
+ · · · + CXn (Xn - Xo ) · · · (Xn - Xn- i ) .  

The vector (a0 , . . .  , an )  i s  then the unique solution of the triangular Cramer 
system, which reproves the existence and un iqueness of the interpolating La­
grange polynomial . The solution of a triangular system is an exercise that we 
have already studied. Knowing that 

Ye - ao - ai (xe - Xo ) - · · · - ae- i (xe - Xo) · · · (xe - Xe-2 ) ae = 
(xe - xo) · · · (xe - Xe - i ) 

our first attempt at solv ing the system is :  

ao := Yo ; 
for e : =  I to n do 

« calculate ae using ( 1 0 . 1 1 ) » 

( 1 0 . 1 1 ) 

( 1 0. 1 2) 

When we try to program the numerator of formula ( 1 0. 1 1 ) we encounter a 
difficulty 

S :=  Ye - ao ; 
for k : =  1 to e - 1 do s : =  s - ak * ??? 

because we must find ourselves the coefficients of the system using the x; . 
If we delay addressing this  problem by naming it  

prod(€ , k)  = (xe - xo) · · · (xe - xk ) ,  

the solution of the system becomes very simple: 

ao := Yo ; 
for e : =  I to n do begin 

S := Ye - ao ; 
for k : =  I to e - I do S := S - ak * prod(€ , k - I )  ; 
ae := Sf prod(€ , e - 1 )  

end 

We only need to program the function prod, and thi s  is  mindless. 

( 1 0. 1 3 ) 

( 1 0. 1 4) 

This code is certainly correct, but it is a Penelope code because the calcu­
lation of prod(€ , k)  does not make use of that of prod(€ , k - 1 ) . However, we 
can "surf" on the wave of calculations using first order recurrences. Consider 
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again the numerator of ( 1 0. 1 1  ). To be certain to avoid stupidities, we first pass 
into trace mode using sequences :  

So = Ye - ao , P1 = Xe - Xo , 

sl = So - CX J PI ' p2 = PI (xe - X i ) ,  

Next we get rid of the time index : 

S :=  Ye - ao ; P :=  Xe - Xo ; 
for k :=  1 to £ - 1 do begin 

I S := S - ak * P ; 
P :=  (xe - xd * P 

end ; 
ae :=  S/P 

If we carry thi s  code into ( 1 0. 1 2) we obtain the following very nice algorithm: 

Exercise 3 

ao := Yo ; 
for £ :=  1 to n do begin 
S := Ye - ao ; P := Xe - Xo ; 
for k := 1 to £ - 1 do begin 
I S :=  S - ak * P ; P := (xe - xk ) * P 
end ; 
ae :=  S/P 

end ; 

( 1 0. 1 5 ) 

Transform algorithm ( I  0. 1 5 )  into a procedure (suppose that the data are real 
numbers) .  Then rewrite the procedure to work over Q supposing that the data 
are rational numbers . 

Remark 

The algorithm above is not the only one possible. If we put to simplfy 

and if we effect the di vision in ( 1  0. 1 1 ) right away we obtain :  

Ye 
JroJr J · · · Jre- 1 ao 

JroJr 1 · · · Jrr- 1 Jr 1 · · · Jre- 1 
a2 ---- - · · · - -- · 

Jr2 · · · Jrr- 1 7Tt- l 
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This presentation suggests that we use Horner 's  method, which leads to the 
introduction of the sequence: 

So = Yr . 

s 1 
Ye - ao So - ao 

= 
no no 

s2 = 
Ye - ao a 1 s l - a l 
7To7T J 7T J 7T J 

Ye - ao a 1 a2 s, = - -- - -

7To7T J 7T2 7T J 7T2 

Sr- I  - ae- 1 
Sr = = ar . 

7Tr 

7T2 

s2 - a2 
7T2 

We obtain the celebrated method of divided differences : 
ao : = Yo ; 
for £ : =  1 to n do begin 
S := yr ; 
for i : = 0 to £ - 1 do S : =  (S - a; ) / (xr - X; )  ; 
ae : =  S 

end 

The code i s  more compact. Nonetheless, i t  is slower and less prec ise because 
i t  contains many divisions which make i t  numerical ly unstable .  Note final ly 
that one can incorporate the statement a0 := y0 into the loop by beginning the 
loop at £ =  0. 

10. 1  0. Basis Change 

When we calculate the Lagrange interpolating polynomial a La Newton, we 
obtain coordinates with respect to the Newton basis .  However, we often need 
to know the coordinates in the canonical basis .  Suppose, then,  that we know 
the coefficients a; of the polynomial 

A (X)  = ao + a i X ( I ) + a2X(2 ) + · · · + a11 X <" l , 

and that we want to calculate the coordinates a; in the canonical basis  

Let us first consider the example: 

A (X) = 2 + 3 (X - 2) - 4(X - 2) (X - 3)  + 7 (X - 2) (X - 3 ) (X - 5 ) .  
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Homer 's  method allows us to view A (X)  as the last term of a reverse sequence 
where the calculations take place in the polynomial ring:  

A3 = 7 = 7 ,  
A 2 = -4 + (X - S )A 3 = -39 + 7X ,  
A I = 3 + (X - 3 )A2 = 1 20 - 60X + 7X2 , 
A0 = 2 + (X - 2) A 1 = -238 + 240X + 74X2 + 7X3 . 

More general ly, A (X )  is the last term of a reverse sequence 

An- I  = O'n- 1 + (X - Xn- 1 } An , 
An-2 = O'n-2 + (X - Xn-2 } An- l , 

Ao = ao + (X - xo)A I . 

If we view i as representing time, A;  becomes the state of the polynomial A 
at the instant i during a reverse count: 

A := O'n ; 
for i := n - 1 downto 0 do A := a; + (X - x; )A 

To translate this algorithm to Pascal , we can : 

• use the general procedures for manipulation of polynomials :  

procedure Newton_to_canonicaLbasis (a : poly ; x :  data ; var A : poly) ; 
var i, k : integer ; U : poly ; 
begin 
annul(A )  ; A [O] := a [n] ; {A :=  O'n } 
for i := n - 1 downto 0 do begin 

annul(U) ; U[ l ]  := 1 ; U[O] := -x[i] ; 

mult_poly(A ,  U, A)  ; 
A [O] :=  A [O] + a [ i] 

end 
end ; 

{ U  := X - x; } 
{A :=  U · A } 
{A :=  A + a; } 

• Pull the algorithm apart a bit more and amuse ourselves once again with 
sequences . If we put 

A; (X )  = ag l + a \ i l X + · · · + a�i l xn , 
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the equation Ai = ai + (X - xi ) Ai+ l gives 

a (i ) - (i + l ) - . ( i + l ) n - an - I  X, an 
(i ) ( i+ l ) ( i + l ) an - I  = an-2 - Xi an - I  ' 

( i ) ( i + l ) ( i + l ) a 1 = a0 - xi a 1 , 
( i ) ( t + l ) a0 = a, - x, a0 
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( 1 0 . 1 6) 

If we use ( 1 0. 1 6) to calculate an , . . .  , a0 in this order, we can do the calcu-
lations on site i. e. ' staying inside' the vector A = (a0 , . . .  , an ) :  

procedure Newton_to_canonicaLbasis (a : poly ; x : data ; var A : poly) ; 
var i, k : integer ; 
begin 
annul(A) ; A [O] := a [n] ; 
for i := n - 1 downto 0 do begin 

I for k := n downto I do A [k] := A [k - I ]  - x[i] * A [k] ; 
A [O] :=  a [i] - x[i] * A [O] 

end 
end ; 

The calculation of ( I 0. 1 6) from bottom to top provokes a catastrophe. Why? 

Exercise 4 

Find another algorithm for changing basis using the sequences 

10.11 .  Differentiation and Discrete Taylor Formulas 

To simplify the exposition, we suppose henceforth that the interpolation 
points xi are the integers 0, I ,  . . .  , n .  

We know that the Lagrange interpolating polynomial defined b y  the con­
ditions P (xi ) = Yi has degree :::; n .  The maximum degree is not necessari ly 
attained: if, for example, Yi = axi + b with a =f. 0, the degree is equal to I .  Is 
i t  possible to determine this  degree in advance? 

10.11.1. Discrete differentiation 

Consider the l inear map � : JRn+ 1 -+ JRn defined by 

� (yo , Y 1 , · · · , Yn ) = (Y I - Yo , Y2 - Y � > · · · , Yn - Yn- 1 ) .  
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We call it discrete differentiation. Since the dimension of a vector decreases 
by one after each differentiation, we can differentiate a vector at most n times : 

k Yk !1yk !12yk !13yk !14yk 
0 2 3 4 - 1 7  34 

5 7 - 1 3  1 7  
2 1 2  -6 4 
3 6 -2 
4 4 

If A is a polynomial and if we have y; = A (i )  for x 0, I ,  . . .  , n ,  the 
derivati ves of order greater than deg A are zero. 

k 
0 
I 
2 
3 
4 

Yk = A (k )  
3 
3 

1 7  
5 1  
I l l  

!1yk 1'12 Yk !13yk !14yk 
0 14  6 0 
1 4  20 6 
34 26 
60 

Discrete derivatives of the values of A (X)  = X3 + 4X2 - 5X + 3 

To explain this  phenomenon, define a discrete derivative !1 : IR[X] ---+ IR[X] 
on the polynomial ring by putting 

!1A (X)  = A (X + I ) - A (X ) .  

I f  w e  evaluate the polynomial !1A (X )  a t  the point x ,  w e  get: 

(!1A ) (x )  = A (x + I ) - A (x ) .  

Since (/1A ) (x ) i s  the discrete derivative of the vector ( A (x ) ,  A (x + I ) )  E IR2 , 
we see that that the number !1 k A (x ) can be interpreted in two ways: 

• We differentiate k times the polynomial A (X ) ,  then take the value at x of 
the result ing polynomial . 

• We differentiate k t imes the vector ( A (x ) , A (x + 1 ) ,  . . . , A (x + k ) )  of 
values of A (X )  at the points x ,  x + 1 ,  . . .  , x + k .  

The first interpretation shows that !1k (A )  = 0 since k > deg A .  

Knowing that the Newton basis associated to the integers 0, . . .  , n is  

x<OJ = I ,  x < I J = X, . . . , x <n- I J = X (X - I ) · · ·  X (n + 1 ) , 
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an immediate calculation shows that for k > 0, 

�x<k ) = (X + l ) <k ) - x<k ) 

= (X + 1 ) · · · (X + k - 1 ) [X + k - X J 
= k x <k - 1 ) . 

Theorem 10. 11.1. The following discrete Taylor formula holds for each poly­
nomial A E JR[X] :  

�A (O) �2 A (O) �n A (O) 
A (X )  = A (O) + -- x< l l + x <2 l + . . .  + x <" l . 

1 !  2 !  n !  
Proof Expand A i n  the Newton basis to get 

A (X) = ao + a 1 x < l l + a2X <2l + · · · + anx <n l . 

Then take the discrete derivative n times in succession : 

A (X)  = ao + a ! X < I l + a2X <2l + · · · + an x <n l , 
�A (X)  = a ! + 2 a2X ( I ) + . . . + n an x<n - l ) , 
�2 A (x )  = 2 a2 + 3 · 2 a3 X ( I )  + · · · + n (n - l )an x <n -2) , 

�n A (X)  = n !  an . 

Upon putting x< 1 l = X = 0 in these equations, we get k !  ak = �k A (O) . o 

Corollary 10.11.1 .  Let A =  a0+a 1 x < 1 l +a2X <2l + · · · +an x <n l be a polynomial 
with real coefficients. Then: 

• ak = �<k l A (O) /k ! ; 

• the degree of A =I- 0 is the largest exponent k such that � <k l A (0) -=f. 0 ; 

• the coefficients of A are integers if and only if a0 , . . .  , an are integers. 

Proof The first two assertions follow directly from the discrete Taylor formula. 
To establish the third, note that if a0 , . . .  , a11 are integers , then A clearly has 
integer coefficients. Conversely, suppose that A has integer coefficients and 
degree d :  

A = ao + · · · + ad Xd , ad =I- 0. 

We already know that a; = a; = 0 for i > d .  Comparing the monomials of d ,  
w e  obtain ad = ad E Z. We complete the proof b y  induction o n  degree. D 

We can now determine the degree of the Lagrange interpolating polynomial .  
Suppose that w e  are given x = (0, 1 ,  2 ,  3 ,  4 , 5 )  and y = (7 ,  4, 5 ,  1 0 ,  1 9 ,  32) . 
The polynomial determined by the coefficients A (x; ) = y; for i = 0, . . .  , 5 
has degree 2 because � 2 y =I- 0 and � 3 y = 0. 
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Remark 

We have the fol lowing pretty corol lary : 

If A E JR[X] ,  then A (Z) C Z if and only if the � (k ) A (O) are all integers. 

In effect, if A takes integer values on the integers, so does � A , and it fol lows 
by induction that the � (k ) A (0) are integers . Conversely, in the discrete Taylor 
formula, the x<k J I k ! are polynomials with integral values on the integers 
(their values are 0 or a binomial coefficient) .  

10.12. Newton-Girard Formulas 

Recal l that P (X 1 , . . . , Xn )  is a symmetric polynomial if, for every permutation 
s E 6n of the indices, 

P (Xs< I J • . . .  , Xs <n J ) = P (X 1 , . . . , Xn ) .  

The symmetric polynomials 

are called the elementary symmetric functions i n  the variables X 1 , • • •  , X n . 

Theorem 10. 12. 1. Let P (X 1 , • • •  , Xn )  be a symmetric polynomial with coeffi­
cients in a ring k and a1 , . . . , an the elementary symmetric functions of the Xi . 
There exists a polynomial Q (X 1 , • • •  , Xn )  with coefficients in the same ring k 
such that 

P (X 1 , . . . , Xn )  = Q (a1 , . . .  , an ) .  

We use this theorem, which i s  not difficult to prove. Note especial ly  that P 
and Q have coefficients in the same ring, so, for example, P E Z[X] implies 
Q E Z[X] . 

Theorem 10. 12.2 (Newton-Girard formulas). Consider the Newton sums 

Sk (X 1 , . . .  , Xn )  = X� + · · ·  X� ,  k ?:_ 0, 

which are manifestly symmetric in the Xi . 

• If 1 _::: k _::: n, 

sl - al = 0, 
s2 - sl al + 2a2 = 0, 
S3 - S2a1 + S1 a2 - 3a3 = 0, 
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• If k > n, put k = n + i with i > 0. Then 

Proof We are going to use formal series, that i s ,  series in which we are not 
concerned with convergence but only with algebraic operations on them. 

For simpl icity, suppose that n = 3 . Consider the fol lowing polynomial i n  
the indeterminates X 1 , X 2 , X 3 and T : 

We differentiate ip (T)  with respect to T in two ways. 

• First expand ( 1  0 . 1 7 ) , then differentiate to get :  

ip' (T)  = -a1 + 2a2 T - 3a3 T2 . 
• Differentiate ( 1 0. 1 7 ) directly to get: , { x 1 x2 x3 } 

ifJ (T) = - I - X 1 T 
+ 

1 - X2 T 
+ 1 - X3T  

ifJ (T ) .  

Since we have the identity 

we can rewrite ( 1 0. 1 9) as: 

ifJ' (T )  = - (X 1 + X� T  + Xi T2 + XiT3 + . .  · )ifJ (T) 
- (X2 + X�T  + Xj T2 + XiT3 + . .  · )ifJ (T )  
- (X3 + X�T  + Xj T2 + XjT3 + . . · )ifJ (T ) .  

Upon mul tiplying b y  T and regrouping vertical ly, w e  get: 

TifJ' (T ) + (S 1 T + S2 T2 + S3 T3 + · · · )ifJ (T )  = 0. 

Now replace ip' by ( 1 0. 1 8) and ifJ by the expansion in ( 1  0. 1 7 ) to get 

-a1 T + 2a2 T2 - 3a3 T3 

( 1 0. 1 7 ) 

( 1 0 . 1 8) 

( 1 0. 1 9) 

+(51 T + S2T2 + S3 T3 + · · · ) ( 1 - a1 T + a2 T2 - a3 T3 ) = 0. 

It remains only to note that the coeffic ients of the Tk are zero to obtain the 
desired formulas. o 
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10.13. Stable Polynomials 

Definition 10.13. 1. We say that a polynomial P with real coeficients is stable 
if all its zeroes belong to the half-plane Re z < 0. 

This definition is essential for an engineer. When we design a wing of a 
plane, a shock absorber on a car, or an electric circuit, we want to know how 
to be certain that their osci l lations decrease rapidly no matter what the ini tial 
conditions. In n ice cases, one can show that the osci l lations occur among the 
solutions of a differential equation with constant coefficients, say 

( 1 0.20) 

Let P (X )  = xn + a 1 xn- l + · · · + an- I  X +  an be the characteristic equation 
of the equation and ak + if3k its zeroes, so that the solutions of ( I 0.20) are of 
the form 

L Pk ( t )  e(a1 +if:J! l r  = L Pk (t ) [cos (f3k t )  + i s in (fJk t )  ]ea< � , 

where the Pk ( t )  are polynomial s .  If the characteristic equation is stable, that 
is, if al l ak are less than 0, we can be certain that all the solutions are damped 
sinusoids which die as t tends to +oo. 

An immediate consequence of  the defini tion of  stabi l ity is  the fol lowing. 

Proposition 10. 13. 1. If A and B are two polynomials with real coefficients, 
then 

A and B are stable {=::} A · B is stable . 

Recal l that a polynomial with real coefficients is a product of irreducible 
polynomials of first and second degree : 

• The polynomial X + a  is stable if and only if a > 0. 

• The irreducible polynomial X2 + a X +  b i s  stable if and only if both a 
and b are positive since the roots are � (-a ± i ..;=K )  with � = a2 - 4b < 0. 

If we combine these two remarks and the proposition, we see that 

• the coefficients of a stable polynomial with real coefficients are either al l 
posit ive, or all negative;  

• the values of a stable polynomial at x are never zero for x ::: 0 and have 
the same sign as the coefficients of the polynomial .  

Remark 

The condition 'al l  coefficients are posit ive' is not suffic ient for stabi l i ty. For 
example, x3 + x 2 + x + I is not stable because i is a root. 
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Is it possible to decide if a polynomial is stable without knowing the roots? 
The classical response to this celebrated problem uses Routh-Hurwitz deter­
minants. In what fol lows, we present another method and program. 

Theorem 10.13. 1 (Sh. Strelitz 2). Let A =  xn + a 1 xn- l + · · · + an be a poly­
nomial with real coefficients and roots a 1 , . . .  , an and let 

be a monic polynomial with real coefficients, degree m = � n (n - 1 ) , and roots 
a; + a1 for I .::: i < j .::: n. Then: 

A is stable {:=::=::} all coefficients of A and B are positive. 

Proof Suppose first that A is stable. S ince the zeros of A are in  the half-plane 
Re z < 0, we have Re (a; +a  1 )  < 0, which shows that B is  stable with posit ive 
coefficients because it is monic .  

Conversely, if A has positive coefficients, the real zeroes of A sati sfy the 
condition x < 0. Let a = x + iy be a non-real zero of A ,  so that y =f. 0. 
Since ii is  a zero of A different from a, we know that a + ii = 2 x is a real 
zero of B satisfying x < 0 since B has positive coefficients. o 

Examples 

• If A = X3 + aX2 + bX + c, the degree of B is  m = 3 and 

B = X3 + 2aX2 + (a2 + b)X  + (ab - c) . 

The polynomial A is therefore stable if and only if a ,  b , c > 0 and ab > c. 

• If A = X4 + aX3 + bX2 + eX +  d, the degree of B is m = 6 and with 
much patience, one finds that: 

B = X6 + 3aX5 + (3a 2 + 2b) X4 + (a3 + 4ab)X3+ (2a2b + b2 + ac - 4d)X2 
+ (a 2c + ab2 - 4ad)X  + (abc - a2d - c2 ) .  

More general ly, i f  we know how to express the coefficients of B using 
those of A without calculating the roots of A, we wil l  obtain a test that tel l s  
us whether or  not  A i s  stable. Let Sk be the Newton sums of the roots of  A :  

S k k k = a 1 + · · · + an . 

2 On the Routh-Hurwitz Problem, American Math . Month ly  84 ( 1 977), pp. 542-544. 
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Knowing that we have a; = ( - I ) ; a; (a 1 , • • •  , an ) ,  the Newton-Girard formulas 
for the polynomial A are, for k ::: n ,  

sl + a ! = 0 , 
Sz + S1 a 1 + 2az = 0, 

S3 + Sza 1 + S1 a2 + 3a3 = 0, 

Sn + Sn- l a l + · · · + S1 an- l + nan =  0,  

and,  when k = n + i exceeds n :  

Now consider the Newton sums Te of the roots of B :  

Te = L (a; + aj ) e . 
I ::;:: i < j:5;n 

For £ :S m , the Newton-Girard formulas of the polynomial B are : 

T1 + b 1 = 0, 

Tz + T1 b 1 + 2bz = 0,  

T3 + Tzb 1 + T1 b2 + 3b3 = 0, 

( 1 0.2 1 )  

( 1 0.22) 

( 1 0.23) 

The formulas ( 1 0.2 1 ) ,  ( 1 0.22) and ( 1 0.23)  are l inked by the following result .  

Proposition 10. 13.2. For all £ ::: 1 :  

I { t � i } Te = 2 - 2  Se + � Ce S; Se-i . 
i =O 

(Recall that 50 = n by definition. ) 

Proof If we expand the sum 

( e' Z ' + 0 0 0 + e' Zn ) 2 = e2r z ,  + 0 0 0 + e
2t zn + 2 L et (z , +z} )

, 

l si < j sn 

as a (formal ) series, we obtain :  

It suffices to  equate the coefficients of  t e . 

( 1 0.24) 

D 
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We can find the b j in  terms of the a; by using the scheme: 

(a; ) ( 1 0 2 1 ) and ( 1 0 22) 
( 1 0.25)  

If the a; are integers, th is  scheme shows that the b j are rational . Must  we 
use the rational type to program the calculation of the b j ? Happily, we have 
the fol lowing result . 

Lemma 10.13.1. The coeffcients bj are symmetric polynomials with integer 
coefficients in the variables a; . 

Proof We have bj = (- 1 ) j aj , where aj i s  the j -th elementary function in 
the m = tn (n - 1 )  variables a; +a j . Consequently, aj is  a symmetric polyno­
mial with integer coefficients in the n variables a 1 , • • •  , an ·  Thus, bj is also a 
polynomial with integer coefficients i n  the variables a; = ( - 1  / O"; (a h . . .  , an ) .  

D 

The declarations of the program 

Since we are not doing a polynomial operation (addition, multipl ication, or 
division),  we prefer to define a type coefficient. We wi l l  also need Newton 
sums. 

program stable_polynomial ; 
const deg_max = 1 0 ; 
type coeff = array[ 1 . . deg_max] of integer ; 
Newton_sum = array[O . .  deg_max] of integer ; 
var a ,  b : coeff ; S, T :  Newton_sum ; m, n : integer ; 

Attention : with degre_max = 1 0, we can only test polynomials A of degree 
_::: 5 since q = 1 0. The maximum degree here is that of B ,  not of A !  

The main body of the program 

This fol lows word for word the scheme ( 1 0.26) .  

begin 
message ; choose (a, n) ; 
m : =  (n * (n - I ) ) div 2 ;  
coeff_to_Newton_sum(a, S, n ,  m) ; 
change_Newton_sum(S, T, m) ; 
Newton_sum_to_coeff(T, b, m) ; 
display(b, m) 

end . 
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The procedure coeff_to_Newton_sum 

We want to implement ( 1 0.2 1 )  and ( 1 0.22) ;  that is ,  

for k : = I to n do « calcultate Sk using( I 0 .2 1 ) » ; 
for k : =  n + I to m do « calcultate Sk using( I 0 .22) » ; 

the second loop picking up the results of the first. Being a l i ttle more expl icit , 
we have : 

sl : =  -a l ; 
for k : =  2 to n do «Sk : =  - (Sk- l a l + · · · + S1 ak- l + kak ) » ; 
for k : =  n + I to m do «Sk : =  - (Sk- l a l + · · · + S1 ak- 1 ) » 

Translation into Pascal is now a formali ty. It is worth taking the opportunity 
to ini tialize S0 , an indispensable precaution because ( I 0.24 ) , which expresses 
the 0 in terms of the S; , explicit ly involves S0 . 

procedure coeff _to_Newton_sum(a : coeff ; var S : Newton_sum ; 

var i, k, temp : integer ; 
begin 
S[O] := n ; {do not forget ! }  
S[ l ]  : =  -a[ l ]  ; 
for k : = 2 to n do begin 
temp :=  0 ; 

n, m : integer) ; 

for i : =  I to k - I do temp : =  temp + S[k - i] * a[ i] ; 
S[k] : =  - (temp + k * a[k]) 

end ; 
for k : =  n + I to m do begin 
temp := 0 ;  
for i : =  I to k - I do temp : =  temp + S[k - i] * a[i] ; 
S[k] : =  -temp 

end 
end ; 

The procedure change_Newton_sum 

A first translation of the system ( I 0 .23) gives: 

for £ : = I to m do 
« Te : =  ! CSoSe + C!S 1 Se - 1  + C�SzSe-z + · · · + C�SeSo - leSe ) » 

We tum once more to the classical calculation of a sum which we tum into a 
loop : 

temp : =  SoSe ; 
for i : =  I to £ do temp : =  temp + C�S; Se-i ; 
Te : =  ! Ctemp - 2eSe ) 
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We could have written our procedure by programming the function (i , £ )  r-+ 
C� which could calculate any binomial coefficient .3  But th i s  would be sloppy 
because we do not need the complete Pascal triangle :  the l ine with the number £ 
suffices for our needs. 

Once again ,  we try to surf on the wave of the calculations by seeking a 
recurrence relation relating Ci and C� - I : 

i £ (£ - 1 ) · · · (£ - i + 1 ) H (£ - i + 1 ) 
C

e 
= = Ce , i :::: l .  

1 X 2 X · · · X (i - 1 )  X i i 

We benefit from the internal loop which increments i to insert this recurrence 
so as to determine the binomial coefficients as we go along : 

C : =  1 ; temp : =  SoSe ; 
for i : =  1 to £ do begin 

I C : = �· (£ - i + 1 ) / i ; {now, 
temp .- temp + CSiSt - i 

end ; 
Te : =  k <temp - 2eSe ) 

Simi larly, to avoid programming the function £ r-+ 2e , we introduce the 
recurrence 2e = 2 x 2e- ! in  the external loop that increments £ :  

p : =  1 ;  
for £ : =  1 to m do begin 

P : = 2P ;  {now, P = 2e J  
C : =  1 ; temp : =  SoSe ; 
for i : =  1 to £ do begin 

I C : = �· (£ - i + 1 ) /i ; { now, 
temp .- temp + CSiSe- i 

end ; 
Te : = k (temp - PSe ) 

end 

A l i ttle Pascal packaging where "/ " becomes as usual "div" and our proce­
dure is  ready ! 

procedure change_Newton_sum(S : Newton_sum ; 

var i, £ ,  C, P, temp : integer ; 
begin 

p := 1 ;  
for £ := 1 to m do begin 
1 c := 1 ;  

var T : Newton_sum ; m :  integer) ; 

' For beginners: in view of the l im its on integers in Pascal , the worst way to 
program this function would be to use the factorial function and the formula c; = £ ! / i ! ( £ - i ) ! .  Formula c; = £ (£ - I ) · · · (£ - i + 1 ) / i !  i s  better. 
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p := 2 *  p ;  
temp := S[O] * S[£] ; 
for i :=  1 to £ do begin 

I C := (C * (£ - i + 1 ) ) div i ;  {now, 
temp :=  temp + C * S[i] * S[£ - i] 

end ; 
T[£] :=  (temp - P * S[£ ] )  div 2 

end 
end ; 

The procedure Newton_sum_to_coeff 

1 0. Polynomials 

Writing this  procedure is entirely simi lar to the procedure coeff_to_Newton_sum. 

procedure Newton_sum_to_coeff(S : Newton_sum ; 

var i, £ , temp : integer ; 
begin 
b[ 1 ]  := -T[ 1 ] ; 
for £ : =  2 to m do begin 
temp := T[£ ]  ; 

var b : coeff ; m : integer) ; 

for i : = 1 to £ - 1 do temp := temp + T[£ - i] * b[i] ; 
b[£ ] := -temp div i 

end 
end ; 

10. 14. Factoring a Polynomial with Integral Coefficients 

Let P E Z[X]  be a nonconstant polynomial whose coefficients are integers. 
We want to find all  decompositions of P (if such exist) as a product of two 
nonconstant polynomials with integer coefficients. More precisely, we seek 
two polynomials A ,  B E Z[X]  satisfying the conditions: 

P = A B ,  deg A > 0 ,  deg B > 0.  

10.14. 1. Why integer (instead of rational) coefficients? 

If P is i rreducible in Z[X ] ,  there is no point seeking a factorization in Q[X] 
because the result is  the same. 

Theorem 10. 14. 1. If U, V are two polynomials with rational coefficients such 
that U V has integral oefficents, then there exists a rational number K =I= 0 
such K U and K - I  V both have integral coefficients. 
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To show this result, we introduce the fol lowing tool .  

Definition 10.14. 1. The content of a polynomial P E Z[X] ,  denoted cont( P ) , 
is the largest integer K 2: 1 such that K - I P also has integral coefficients. 

It fol lows immediately from the definition that the content is  the GCD of 
the coefficients of P and that that K - 1 P has content equal to 1 .  

Lemma 10.14. 1  (Gauss 's lemma for contents). If A and B are two polyno­
mials with integer coefficients, then cont (A  B) = cont ( A )  · cont (B ) .  

Proof Put C = AB .  I f  a and f3 are the contents of  A and B ,  respectively, the 
equation 

C = a{J (a - 1 A ) ({J - 1 B ) ,  

already shows that the content of C i s  a multiple of a{J . To finish , it suffices 
to show that the content of (a - 1 A ) ({J - 1 B) is  equal to 1 ,  which we reduce to 
proving the lemma in the case when the contents of A and B are equal to 1 .  

Put A = L a; X; , B = L b j X j and let p be any prime number. S ince 
the contents of A and B equal 1 ,  we have the right to talk of the smallest 
indexes i0 and }0 such that a; and bj are not divisible by p . Knowing that the 
coefficient Cio+jo of xio+jo in A B  can be writen 

C;0+jo = a;0bj0 + L:a; bj := a;0 bj0 mod p ,  
i +j=io+jo 
i < io or j < jo 

we see that c;0+jo is not divisible by p . Since p was arbitrary, the GCD of the 
coefficients of A B is equal to 1 .  D 

Proof of the theorem. Let U, V E Q[X] be such that U V E Z[X ] .  
• I f  U has integral coefficients and i f  K i s  its content, w e  can write U V = 

(K - 1 U ) (K V )  and cont(K - 1 U )  = 1 .  S ince we do not know if K V  has integer 
coefficients, introduce an integer £ 2: 1 such that £K V has integral coefficients. 
From £ U V = (K - 1 U ) (£K V )  and Gauss 's  lemma, we deduce: 

cont(£ U V )  = cont(K - 1 U )  · cont(£K V )  = cont(£K V ) .  

On the other hand, cont(£ U V ) = £ cont (U V )  since U V  has integral coeffi­
cients. Thus £ divides the content of £K V ,  i. e. K V has integral coefficients. 

• If U does not have integral coefficients, let K > 1 be the smallest integer 
such K U has integral coefficients. Then U V = (K U ) (K - I  V )  reduces us to the 
preceding case. D 
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10.14.2. Kronecker 's factorization algorithm 

Consider the polynomial 

P = 3 X4 + 1 5 X3 + 24X2 + 2 1 X  + 9 

and let vaLP denote the fol lowing vector in 24 : 

vaLP = ( C P (O} , . . .  , P (4} ) = (9,  72, 3 1 5 , 936, 2205 ) .  

Letting Div (a } denote the set of positive divisors of the integer a ,  we have: 

Div (9) = { 1 ,  3 ,  9 } ;  

Div (72) = { 1 , 2 , 3 , 4 , 6 , 8 , 9 ,  1 2 , 1 8 , 24, 36,  72 } ;  

Div (3 1 5 )  = { 1 , 3 , 5 , 7 , 9 ,  1 5 , 2 1 , 35 , 45 , 63 , 1 05 , 3 1 5 } ;  

Div (936) = { 1 , 2 , 3 , 4 , 6 , 8 , 9 , 1 2 , 1 3 ,  1 8 , 24, 26, 36, 39, 52 ,  

72 ,  78 ,  1 04,  1 1 7 ,  1 56,  234 , 3 1 2 , 468 ,  936 } ;  

Div (2205 ) = { 1 ,  3 ,  5 ,  7 ,  9 ,  1 5 ,  2 1 ,  3 5 ,  45 , 49 , 63 , 1 05 ,  1 47 , 245 , 

3 1 5 , 44 1 , 735 ,  2205 } .  

Consider the set: 

P = Div ( P (O) ) x · · · x Div ( P (4) ) 

= Div (9) x Div (72) x Div(3 1 5 )  x Div (936) x Div (2205 } ,  

This is  a large set, since Card P = 3 x 1 2  x 1 2  x 24 x 1 8  = 1 86 624. 

Suppose that P = A B is  a factorization of P. S ince 

the vectors 

P (x )  = A (x ) B (x )  for x = 0, . . .  , deg( P } ,  

vaLA = (A (O) , . . .  , A (deg ( P ) ) ) and vaLB = (B (O) , . . .  , B (deg ( P ) ) ) 

are two elements of P. 

With the notation specified, we can find all factorizations of P using the 
following method due to B . A .  Hausmann4 (cal led Kronecker 's algorithm) :  con­
sider al l the vectors (a0 , . . .  , an ) E P, calculate the bi = P (i )jai , construct 

4 B.A .  Hausmann ,  A new simplification of Kronecker 's method of factorization of 
polynomials, American Mathematical Month ly 47 ( 1 937),  pp. 574-576. 
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the Lagrange interpolating polynomials defined by the conditions A (i ) = a; 
and B (i )  = b; and verify that this is  a factorization. For example: { vaLA = ( 1 ,  2 ,  3 ,  4 ,  5 } ,  A (X )  = X +  1 ,  

vaLB = (9, 36,  1 05 , 234, 44 1 } ,  B ( X )  = 3 X3 + 1 2X2 + 1 2X + 9 ,  { vaLA = ( 1 ,  4 ,  7 ,  12 ,  2 1 ) ,  

vaLB = (9, 1 8 , 45 , 78 ,  1 05 ) ,  

A (X )  = � (X3 - 3 X2 + 1 1 X  + 3 ) ,  

B ( X )  = -2X 3 + 1 5 X2 - 4 X  + 9 .  

The first pair is  a factorization; the second isn ' t  for two reasons :  the coefficients 
of A are not integers and the degree of A B is  too high. This  last remark wi l l  
put us on the way. 

Theorem 10. 14.2. Let P, A ,  B be nonconstant polynomials with coefficients 
in Z satisfying the condition deg ( A )  + deg ( B )  ::::: deg ( P ) . Then, the following 
equivalence holds: 

P = A B  {::::::} P (x )  = A (x ) B (x )  for x = 0, . . .  , deg ( P ) .  

Proof The direction "=}" i s  trivial . For the converse , remark that deg ( P - A B )  
::::: deg ( P )  and ( P - A B ) (x )  = 0 for x = 0 ,  . . .  , deg ( P )  forces P - A B  = 0. 

0 

We can write the Kronecker algorithm very loosely as follows (put Pk = 
P (k ) ) :  

for (ao , a J o  . . .  , an ) : =  ( 1 ,  1 ,  . . .  , 1 )  to  (p0 , p 1 , • • •  , pn ) do begin 

Lagrange (A , ao , a 1 , . . .  , an ) ; 
(bo , b 1 , . . .  , bn ) : =  (po/ao , P 1 /a 1 , . . .  , Pn fan ) ; 
Lagrange(B, bo , b 1 ,  . . .  , bn ) ; 
if integer _coefficents(A ) and integer _coefficents(B) 

and (degree (A )  + degree(B) ::::: degree(P) ) 
then begin display(A ) ; display(B) end 

end 

A close analysis of this sketch raises the fol lowing questions :  

• The use of 'for' loop tacitly assumes that we know how to run l inearly 
over the set P = Div P(O) x · · · x Div P(n ) .  

• The definition of the b; i s  not at al l clear: i t  is  incorrect when p ;  i s  zero. 

• We made a rather daunting implicit hypothesis :  we only defined the set 
Div(p; )  when p; > 0 and we do not have the right to suppose that the values 
a; and b; of the factors A and B are positive. 
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10.14.3. Use of stable polynomials 

It P is a stable polynomial ,  then A and B are also stable ; moreover, since P = 
A B  = ( - A ) ( - B ) ,  we know that we can restrict our attention to polynomials 
with posit ive coefficients. 

Since the polynomial P that we wish to factor is  not necessari ly stable, we 
translate the coordinate axes horizontal ly and factor the polynomial Q (X)  = 

P (X + JL)  where JL is a strict upper bound on the modul i  of the roots of P :  

P (z )  = 0 =* l z l < JL .  

The polynomial Q i s  stable because Q (z ) = P (z +JL)  = 0 implies l z + JL I  < JL, 
whence : 

Re(z + JL)  .::: l z + JL I  < JL .  

If P (X )  = Pn Xn + · · · + P0 , w e  put: 

<P (t )  = I Pn l tn - ( I Pn- J i tn - l + " · + I Po l ) 

= I Pn I tn ( 1 _ I Pn- d _ . . .  _ I Po I ) 
. 

t tn 

Since the function t r+ 1 I tk is decreasing for t > 0, the rational function 
in parentheses varies from -oo to 1 as t grows from 0 to +oo. Thus, the 
function <P vanishes once and only once on R 
Lemma 10.14.2. If � > 0 is the unique real zero of the function <P (t ) ,  then 

P (z )  = 0 =* l z l .::: � · 

Proof In effect, bounding - Pn zn = Pn- l zn - l + · · · + Po , gives 

I Pn l · l z l n .::: I Pn_ J i z l n - l + · · · + I Po l , 

so that <P ( I z l ) .::: 0, whence l z l .::: � · 

The case P (X )  = <P(X )  shows that the result is best possible. 

D 

Translating these considerations into code is easy. Let P E Z[X]  be a 
polynomial of any degree n > 0. To determine the integral abscissa x0 > � 
that wi l l  become the new origin, we content ourselves with brute force. 

procedure stable_abscissa (P : poly ; var x0 : integer) ; 
var i : integer ; <P : poly ; 
begin 
<P[n] := abs(P[n] ) ; 
for i : =  n - 1 downto 0 do <P[ i] : =  -abs(P[ i ] )  ; 
xo : =  0 ;  
repeat x0 : =  x0 + 1 until value (<P, x0 ) > 0 

end ; 

In view of the above, it is clear that Q ( X )  = P ( X  + x0 ) is stable. 
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Remark 

The automatic search for x0 > � is not a universal panacea. When P (X )  = 
(X  + 1 )2 , this algori thm finds x0 = 3 al though x0 = 0 would do because P is  
already stable. The result is  annoying:  

• If x0 = 3 ,  we have Card(Div ( l 6) x Div ( 1 25 )  x Div (36) ) = 1 80. 

• If x0 = 0, we have Card (Div ( l )  x Div(4) x Div (9) = 9.  

Thus, the t ime for calculation grows when we replace P by Q ; more­
over, since the coefficients of Q are bigger that those of P ,  we cannot factor 
polynomials whose degree is too big. 

10.14.4. The program 

We now know enough to begin to write our program. The declaration of types 
does not present any difficul ty. 

const deg_max = 5 ; 
type poly = array[O . . deg_max] of integer ; 
values = array[O . .  deg_max] of integer ; 
var P, Q : poly ; vaLP, val_Q : values ; deg : integer ; 

We could do with a single type poly. For c larity of exposit ion, it is preferable 
not to confound values and coefficients. 

The main body of the program 

We begin by entering the polynomial P .  The procedure choose i s  also charged 
with eventual ly modifying the sign of P when the coefficient of the highest 
degree is  negative. This done, we find the new origin x0 = stable_abcissa and 
translate axes, which amounts to replacing P (X )  by P (X + x0) .  

begin 
message ; 
choose(deg_P, P) ; 
find_stable_abcissa (P, stable_abcissa) ; 
translate(P, stable_abcissa , P, deg_P) ; 
initialize (vaLP, vaLA , deg_P) ; 
repeat 

I decomposition_factor�(val_P, val_A , deg_P) ; 
next(val_P, val_A ,fimsh , deg_P) ; 

until finish 
end . 

Linearly traversing the set P (which is ,  recal l ,  the product of the sets 
Div ( P (x ) )  for x = 0, . . .  , n) i s  accomplished by repeated cal l s  of the pro­
cedure next which returns, according to the case, the next vector vaLA or the 
boolean finish which interrupts the "repeat" loop. 
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The procedure decomposition_factors 

We now show that the stable polynomials have also some qual ities. S ince A 
and B have coefficients > 0, the functions t r-+ A (t )  and t r-+ B(t )  are strictly 
increasing on IR+ . Consequently, the vectors vaLA and vaLB must satisfy the 
draconian conditions 

A (O) < A ( l )  < · · · < A (n )  and B(O) < B( l )  < · · · < B(n)  

if they are to  have a chance of  being among the values of  a divisor of  P .  Since 
Lagrange interpolations require rather lengthy calculations, we only launch 
them knowingly. For this ,  we ask the procedure reconstruct: 

• to inform us if A has integral coeffic ients via the boolean int_coeff_A ;  
• t o  determine the degree deg_A o f  A ,  which can b e  done, a s  w e  shal l see 

a l ittle later, without entirely calculating A .  

I f  the coordinates ak of A in the Newton basis consisting of the X(k l are 
integers, the procedure reconstruct returns those in A ;  otherwise, A contains 
indefinite values which have no meaning.  

procedure decomposition_factors(vaLP, vaLA : values ; deg_P : integer) ; 
var A ,  B : poly ; vaLB : values ; deg_A , deg_B : integer ; 
begin 

if increasing_seq(vaLA , deg_P) 
then begin 
division_values(val_P, val_A , val_B, deg_P) ; 
if increasing_seq(val_B, deg_P) 
then begin 
reconstruct( val_A , int_coeff _A , deg_A , A ,  deg_P) ; 
reconstruct( vaLE, int_coeff_B, deg_B, B, deg_P) ; 
if int_coeff _A and int_coeff _B and (deg_A + deg_B .::: deg_P) 
then begin 
return_canonical_basis (A , A ,  deg_A ) ; 
translate (A , -stable_abcissa , A ,  deg_A ) ; 
display(A) ; 
return_canonical_basis (B, B, deg_B) ; 
translate (B, -stable_abcissa , B, deg_B) ; 
display(B) ; 
verification (A , B) { compares AB and P} 

end 
end 

end 
end ; 

The names of the other procedures or functions speak for themselves. 
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The procedure next 

We use the algorithm detai led in Chapter 5 to l inearly traverse the set P = 
Div (P(O) ) x · · · x Div (P(n) ) in the lexicographic order. 

procedure next(vaLP : values ; var vaLA : values ; 
var finish : boolean ; deg_P : integer) ; 

var i, k : integer ; 
begin 
finish : = false ; 
k := - 1 ; 
for i :=  0 to deg_P do if vaLA [i] < vaLP[i] then k :=  i ; 
if k = - 1  then finish :=  true 
else begin 

I vaLA [k] := next_divisor(vaLP[k] , vaLA [k] ) ; 
for i :=  k + 1 to deg_P do vaLA [i] :=  1 

end 
end ; 

We ask that the function next_divisor send us the smallest d iv isor of vaLP [k ]  
which is  strictly larger than vaLA [k ] .  (When your program runs successful ly, 
you can accelerate things spectacularly by pre-calculating once and for all al l  
divisors of each P (k ) . )  

The procedure reconstruct 

When the data are integers, we have seen that the Lagrange interpolating 
polynomial has rational coefficients. But since the interpolating points are 
consecutive integers 0, . . .  , n where n = deg_P, we are going to use the 
discrete Taylor formula. Recall that if a0 , • . .  , an are the coordinates of A in  
the Newton basis { 1 ,  x( l > ,  . . .  , x <n l ) , we have: 

�k A (O) 
k ! 

( 1 0 .26) 

We are going to use this formula to calculate the ak because 

• the largest integer k such that � k A (0) =f. 0 is  the degree of A ; 
• the ak are obtained by div iding by k ! - if there were a nonzero remainder, 

then A would not be an element of Z[X] .  

Thus, we  can avoid introducing rational numbers in  our program, which 
simpl ifies writing a lot ! The procedure reconstruct 

• stores �k A (O) in A [k ] ;  
• deduces the degree of A from A [ k ]  = � k A (0) ; 
• tries to div ide A [k ]  by k !  to make ak = �k A (O)/ k !  If the remainder i s  

zero, the variable A [k ]  contains ak ; otherwise, the  procedure leaves A [k ]  alone 
and informs us via int_coeff_A that A does not have integral coefficients. 
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procedure reconstruct( vaLA : values ; var int_coeff _A : boolean ; 
var deg_A : integer ; var A : poly ; deg_P : integer) ; 

var i, k ,fact : integer ; 
begin 
annul(A ) ; A [O] := val_A [O] ; 
for k : =  I to deg_P do begin 
for i := 0 to deg_P - k do 
vaLA [i] := val_A [i + I ] - vaLA [i] ; 
A [k] :=  vaLA [O] 

end ; 
for i : =  0 to deg_max do if A [i] =f. 0 then deg_A :=  i ; 
int_coeff _A :=  true ; fact :=  I ; k :=  I ; 
while (k _::: deg_P) and int_coeff_A do begin 
fact := k *fact ; 
if A [k] mod fact = 0 then A [k] : =  A [k] div fact 
else int_coeff _A : = false ; 
k :=  k + 1 

end 
end ; 

Note the second internal loop: we translated a 'for' loop into a 'while'  loop 
in order to insert the boolean integer_coeff_A which interrupts the loop as soon 
as we know that A does not have integer coefficients. 

10.14.5. Last remarks 

In our days, the algorithms employed by formal computational software are 
of a total ly different nature (and are infinitely faster) . S ince these algorithms 
are very sophisticated, there is  no question of programming them here. 

We g ive, however, a gl impse of a more mature (and more difficult) algo­
rithm. The idea is  to reduce to factoring a polynomial with coefficients in a 
finite field.  

Let p be a prime number and let P r-+ P be the canonical map of Z[X]  
to  Zp [X ]  obtained by considering the coefficients of  P as  classes modulo p .  
S ince the canonical map Z[X]  r-+ Zp [X ]  i s  a ring homomorphism, every 

factorization P = A B  in  Z[X]  gives rise to a factorization P = A ii in  Zp [X ] .  

• I f  P is i rreducible in  Zp [X ] ,  there is  no  point  of  seeking a decomposition 
of P into factors in Z[X]  ; 

• By contrast, if P factors in Zp [X ] ,  one can try to factor P in other prime 

fields. If one finds a prime number q for which P is  i rreducible, we are reduced 
to the preceding case. Otherwise, one collects the information and tries to l ift 
the factorizations in different Zp [X ]  to Z[X]  using the Chinese Remainder 
Theorem. If this is  impossible one knows that P i s  irreducible in Z[X] .  
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Since the Chinese Remainder Theorem finds an infinity of solutions, one 
bounds the coefficients of A and B using the coefficients of P to choose a 
good couple (A , B ) .  

This method al so works with polynomials in several indeterminates. 
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In studying vector spaces, one shows that: 

(i) every vector subspace V of IR.n has a fini te number of generators (one 
says that V is  of finite type) ;  

( i i )  every vector subspace V of IR.n has a basis and two bases always have 
the same cardinality (whence the notion of dimension) ; 

( i i i )  if e 1 , • • •  , en generate a vector subspace V, one can always extract a basis 
of V from this set; 

(iv) every l inearly independent subset of IR.n can be completed to a basis  of IR.n . 

We are going to examine what becomes of these results and the algorithms 
associated to them, when we replace Rn by zn . For example, a subgroup of Z2 

other than {0 }  or Z2 resembles one of the fol lowing two subgroups: 

0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 
0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 
0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 

0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 
0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 

Fig. 11.1 .  Subgroup x - 2y = 0 Subgroup x - 2y = 0 (mod 4) 

Definition 11. 1.1. We say that X J , . . .  , Xr generate the subgroup M of zn if 
every x E M is of the form x = a 1 x 1  + · · · + arXn where all a; belong to Z. 

Definition 11. 1.2. We say that the vectors X J , . . .  , Xr E zn are Z-linearly in­
dependent if a 1 x 1 + · · · + arXr = 0 implies that a 1 = · · · = ar = 0 each time 
the a; belong to Z. 

11.  Matrices
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Proposition 11. 1. 1. There is an equivalence: 

Z-linearly independent � Q-linearly independent. 

Proof Let x 1 , • • •  , Xr be Z-l inearly independent vectors and suppose that 
a 1 x 1 + · · · + arXr = 0 with a; E Q. For appropriately chosen large N > 1 ,  
the l inear combination ( N  a 1 )x 1 + · · · + ( N  ar )xr = 0 has integral coefficients. 
Thus N a; = 0, which shows that the x; are Q-I inearly independent. The con­
verse i s  clear. o 

This result is important because we can henceforth talk of linear indepen­
dence without having to specify whether we are talking about it with respect 
to Z or to Q. 

Definition 11. 1.3. We say that t: 1 , • • •  , t:r E M form a basis of the additive 
subgroup M of zn if they both generate M and are linearly independent. 

Remarks 

1 )  A basis C J , . . . , Cr of a subgroup M of zn is also a vector space basis  of 
the subspace VectQ ( M )  = Qc: 1 + · · · + <!Jc:r c Qn generated by M. Thus, two 
bases of M necessari ly have the same cardinality. Hence, we have a notion 
of dimension (with respect to Z or Q) once we succeed in establ ishing the 
existence of bases. 

2) It is  time for a counterexample: the results ( i i i )  and (iv) do not hold 
for subgroups of zn . To convince ourselves of this ,  consider the subgroup M 
of Z2 generated by the vectors 

8 1 = (2 ,  0) , 82 = (0, 3 ) ,  6'3 = (5 ,  5 ) .  

I t  i s  easy to see that M = Z2 and Vec!:Q (M)  = Q2 . These three vectors are not 
l inearly independent because dimiQI Q2 = 2; any two are a basis of Vect!Qi (M) ,  
but do  not generate M .  

Definition 11. 1.4. We say that a matrix is unimodular if it has integral coej� 
ficients and if its inverse also has integer coefficients. 

Proposition 11.1.2. Let A be a square matrix with integer coefficients. Then: 

A is unimodular � det A = ± 1 .  

Proof If A - I  has integer coefficients, then both det A and det (A - I ) are inte­
gers, and det A · det (A  - I ) = 1 implies det A = ± 1 .  Conversely, if det A = ± 1 ,  
the classical formula A - I = ( I /  det A )  1 Adj ( A )  shows that the inverse of A 
has integer coefficients. 0 
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Definition 11. 1.5. The unimodular matrices form a group, denoted Gl (n , Z), 
under matrix multiplication. 

Definition 11. 1.6. A matrix is said to be an elementary matrix if it is unimod­
ular and one of the following three types: 

• Ei, J  ().. ) = I + ).. £i . J with i =I- j ; its inverse is Ei . J (-A) .  

• Di = diag ( l ,  . . . , - I ,  . . .  , 1 )  which is  its own inverse. 

• T;,J = the matrix obtained by interchanging the i -th and j -th rows of the 
identity matrix; this matrix is also its own inverse. 

Manipulation of matrices 

Let M be a matrix with integer coefficients and rows L 1 , • • •  , L P . A row 
operation on M consists of doing one of the fol lowing operations :  

Matrix Operation New matrix 

M Li :=  Li + )..L J  M' = Ei . J ().. ) M  

M Li :=  - Li M' = Di M 

M Li ;::::: LJ  M' = T;, 1 M 

We wi l l  see a l i ttle later that one does not need to memorize these matrices ; it is  
necessary only to note that performing row operations on a matrix M amounts 
to multiplying M on the left (that is, premultiplying M) by an elementary 
matrix .  

Transposing the preceding equal ities shows that column operations on M 
amount to multiplying on the right (or postmultiplying) by an elementary ma­
trix :  

Matrix Operation New matrix 

M K1 :=  K1 + ).. Ki M' = M Ei , J ().. ) 

M Ki := - Ki M' = M Di 

M Ki ;:::: K1 M' = M T;, J 

For beginners 

• It suffices to know that elementary matrices exist .  

• A mnemonic device to remember the above is the R-C rule : replace the 
dash by the matrix M: to perform a row operation on M ;  one multiplies 
before by an elementary matrix ;  to perform a column operation on M, one 
multiplies after. 
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• Here are two classical errors to avoid. The first is  to multiply a l ine (or 
column) by a rational number: the only multiplication allowed i s  changing the 
sign of a row (or column) .  (S ince we are working exclusively with integers, we 
only have the right to multiply by the units of Z, that is, by ± 1- otherwise, 
the inverse transformation would not be definited by a matrix with integer 
coefficients . )  The second error consists of replac ing the row L; (resp. the 
column K; )  by the combination a L; + bL1 (resp. a K; + b K1 ) ,  which is not 
al lowed when a =I- ± I .  

11. 1. 1. The bordered matrix trick 

When one wants to know explicitly the row and column operations used, one 
uses a method that we already encountered in Chapter 8 when studying the 
Blankinship algorithm. 

• Suppose that we want to perform row operations on M. Let 

c· M = (M , l ) = 
m2

:
. 1 · · · 

m l . l  . . . 

m 1 . ,. 
m2 . 1' 

mr, \· 

I 0 f ) 0 

0 0 

be the matrix obtained from M by bordering it horizontal ly with the iden­
tity !flatrix with the same number of rows as M. To perform row operations 
on M amounts to multiplying i t  on the left by (unknown) elementary matri­
ces £ 1 ,  • • •  , Ek : 

If we put E = Ek · · · E 1 ,  we obtain EM = (EM ,  E) : the matrices E; being 
multipl ied together without knowing each separately ! 

• In a similar way, if we perform column operations on the bordered matrix 

m l . l  m 1 . 1 

Ni = ( 7 )  = mr. l mr, ii  
I 0 

0 

the operations £ 1 ,  • • •  , Ek ( in  this order) automatical ly give: 
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11.1.2. Generators of a subgroup 

Theorem 11. 1.1. Every subgroup M of zn is of finite type; that is, it is a set 
of linear combinations with integer coefficients of a finite number of vectors 
in M. 

Proof When n = I ,  the result is  wel l-known: every subgroup of Z is  of the 
form dZ, hence generated by an element d of M. Now, suppose that the result 
i s  true for an integer n :::_ I and let M c zn + 1 

be a nonzero subgroup. 

If M is contained in Z" x { 0 } ,  the result holds (by the induction hypothesis) .  
Otherwise, consider the projection rp : M � Z:  

I{J (X I , . . .  , Xn+ l ) = Xn + l · 

Since rp (M)  is a nonzero subgroup of Z, we have rp ( M )  = dZ with d > 0 and 
there exists at least one vector E E M such that rp (c )  = d. For x E M, one can 
write rp (x ) = k (x)d ,  so x - kt: E ker rp .  But, by induction the additive subgroup 
ker rp = M n (Zn X {0 } ) is  generated by E 1 , . . . , Er E M, which shows that x is 
a l inear combination with integer coefficients of the vectors c, c 1 , • . .  , Er . D 

Theorem 11. 1.2. The vectors C l ' . . •  ' En are a basis of zn if and only if the 
matrix of these vectors in the canonical basis is a unimodular matrix. 

Proof First suppose that c 1 , • • •  , En are a basis .  Let e 1 , • • •  , en be the canonical 
basis of zn and put 

Consider the matrix E = (c 1 ,  • • •  , En ) with columns c 1 , • • •  , E11 as well as the 
column matrices x = ' (x 1 , • • •  , Xn ) and € = ' (� 1 , • • •  , �n ) ,  so that we have the 
change of basis formula x = E € .  

To say that C l ' . . .  ' En i s  a basis of zn means that € = £- 1 X has integral 
coordinates each t ime that x does. Upon choosing x = e 1 (the first vector of 
the canonical basis) ,  we obtain the vector with integer coordinates € = £ - 1 e 1 , 
which shows that the first column of £ - 1 has integer coefficients, etc . 

Conversely, the columns of a unimodular matrix are a basis  of zn since the 
coordinate changes are made over the integers . D 

ll.1.3. The Blankinship algorithm 

We consider how to adapt the method of Gaussian e l imination and pivoting to 
the integers. We have already encountered this  algorithm in the dimension two 
case in Chapter 8; its general ization is  immediate . Let a 1 , • • •  , an be integers 
which are not all zero. Suppose that we want to calculate simultaneously the 
GCD of the ai and a particular solution u 1 , • • •  , un of the Bezout equation : 
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We again content ourselves with presenting the generalization by example. 
Suppose that n = 3 and a 1 = 9, a2 = 5 et a3 = 7 .  Begin by bordering the 
vector ' (9 ,  5 ,  7) by the identity matrix ,  obtaining a matrix M0 on which we 
wil l  perform row operations .  The operations (see Table 1 1 . 1 )  are driven by the 
first column to which we apply the Eucl idean algorithm. 

The ( 1 ,  1 )  entry of the matrix M4 contains the desired GCD; across from 
it (on the first row) we find the solution of the Bezout equation. Thus, we 
obtain GCD(9, 5 ,  7)  = 1 ,  which is not surprising since, for example, 9 and 5 
are relatively prime. One checks directly that (0, 3 ,  -2) is a solution of the 
Bezout equation :  0 · 9 + 3 · 5 - 2 · 7 = 1 .  

Old matrix Operation New matrix 

Mo � (� 1 0 D L 1  : =  L 1 - L2 
M, � G 1 

0 1 0 
0 0 L3 : =  L3 - L2 0 

M, � ( � 1 - 1  � ) L 1 : =  L 1 - 2L3 
M, � G 1 

0 1 0 

[2) 0 - 1  L2 : =  L2 - 2L3 0 

M, � (� 1 1 -2 ) M, � G 1 
0 3 -2  L3 := L3 - 2L2 0 
0 - 1  1 0 

M, � G 1 1 -2 ) M, � G 0 
0 3 -2  L I t=-L2 1 
0 - 7  5 0 

Table 11. 1. The Blankinship algorithm in practice 

Here is a very informal description of the algorithm: 

M := (a , f) ; {a  =I- 0 is the column containing the a; } 
repeat 

« seek k such that l ak I = min{a;  ; a; =I- OJ ; 
if k =I- 1 then « exchange lines L 1 and Lk » ; 
if a 1 < 0 then L 1 := -L1  ; 
for k : = 2 to n do 

- 1  
1 

- 1  

1 
3 

- 1  

1 
3 

-7 

3 
1 

-7 

if ak =I- 0 then Lk := Lk - (ak div a 1 )L 1  {pivoting} 
until a2 = · · · = an = 0 

� ) 
-2 ) -2 

1 

-2 ) -2 
5 

-2 ) -2 
5 
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11.1.4. Hermite matrices 

A matrix with integer coefficients is said to be m row echelon form if i t  
resembles a staircase with steps of height 1 :  ( . . .  l a i , J , 

A =  . .  . . . .  
• • • • • 0 

0 0 .  0 • •  

The dots represent coefficients which are zero; in contrast, the "comers" of 
the steps are not zero: 

::: } J < h < h < . ' . . 

Remarks 

• The steps are of height equal to 1 and their width is :::: 1 .  

• The nonzero rows are l inearly independent. 

• A row-echelon matrix is a triangular matrix in which the comers of the 
steps are not necessari ly on the diagonal ; they are above the diagonal as soon 
as a step of width :::: 2 occurs . 

0 
0 
0 
0 0 0 0 0 0 

5 0 1 4  

3 8 
5 0 2 

0 0 0 0 0 

If the matrix 'A is in row echelon form, we say that A is in column echelon 
form. Here are three examples: 

0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 

0 
0 
0 
0 

For such matrices, the steps are of width 1 and height :::: 1 .  The columns 
which are not zero are l inearly independent. 

In what fol lows, we say that a matrix is  a Hermite matrix if it i s  in  row 
echelon or column echelon form. 

Theorem 11. 1.3 (Hermite). Let A be any matrix with integer coefficients. 
There exist unimodular matrices E and F such that E A is in row echelon 
form and A F is in echelon form. (These are not, in general, unique. ) 
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Proof We restrict ourselves to the case of rows. The key to the proof is  
the repeated appl ication of B lankinship's algorithm to the columns of A. In 
applying thi s  algorithm to the first column of A ,  we know how to explicitly 
construct a unimodular matrix E 1 such that : 

E1 A  = ( � �, ) , d1 = GCD(a � , � , . . . , ap . J ) .  

• I f  d1 =f. 0 ,  we apply B lankinship's algori thm to the first column of the 
matrix A' , which shows the existence of a unimodular matrix £2 such that: 

d2 = GCD(a;, 2 , . . .  , a� . 2 ) .  

• If d1 = 0 ,  we apply Blankinship 's  algorithm to the first column of the 

matrix ( �� ) , which establ ishes the existence of a unimodular matrix £2 such 

that: 

d2 = GCD(a ; , 2 , • • •  , a� .2 ) . 

It suffices to "clean out" the columns of the original matrix to obtain the 
desired result .  o 

Remark 

When we want to obtain explicitly and automatically the unimodular matrix E 
such that E A is in row echelon form, it suffices to border A by the unit  matrix 
and carry out the row operations on the bordered matrix M = (A , 1 ) .  The 
techn ique for columns is analogous. 

Example 

Put the fol lowing matrix in  row echelon form. 

-8 

A = ( 6 4 -8  
9 3 -8  - 1 6  
3 - 3  - 7  

- 3  - 1  3 : : ) 7 - 1 

Clean out the first column of M0 = (A , / ) :  

Mo = ( 3 4 -8 

� _: =: 
-8 1 2  

- 1 6  1 8  
- 7  5 

7 - 1  

I 0 0 

0 I 0 

0 0 I 
0 0 0 

L 1  :=  L 1 - 2L3 

L2 :=  L2 - 3L3 

L4 :=  L4 + L_, 
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We tidy up in the second column 

to get 

0 0 1 5 3 

( 3 1 - 3 -7 5  

M -I - o m -2 6 2 
0 0 0 0 4 

0 2 -2 6 2 

( 3 1 - 3 -7 5  

M -z -
0 0  1 5 3  

0 0 0 0 4 

0 0 � )  0 1 - 3  

1 0 -2 
0 0 

0 0 I 0 ) 
1 0 -2 0 

. 
0 1 - 3  0 

0 0 1 1 

Lz <=C L3 

If we put M2 = (H, E), we can check that det E = ± 1  and H = E A .  

Exercise 1 

305 

Show that any unimodular matrix E i s  a product of elementary matrices. (Do 
this by performing row operations on E to obtain the identity. ) 

Exercise 2: Smith reduction (Solution at end of chapter) 

Let A be a p x n matrix with integer coefficients. Show that there always 
exist two unimodular matrices P and Q, of dimensions p x p and n x n , such 
that S = P A Q is a diagonal matrix of the form 

0 � ) and d1 ,  . . .  , dr > 0 .  

� 0 

To show this result ,  al ternate row and column operations. To show that the 
algorithm terminates, consider the ( 1 ,  1 )  entry after each operation. 

Once the diagonal form is  obtained, continue performing the operations so 
that di divides di + 1 • In this case, one says that S is the Smith reduced form 
of A .  One can show this reduced form is unique; but P and Q are not unique 
(multiply S on the left and on the right by diag ( l ,  . . .  1 ,  - 1 ,  1 . . .  , 1 ) ) . 

11. 1.5. The program Hermite 

Let A be a p x n matrix with integer coefficients. We want to construct a 
unimodular matrix E such that H = E A is a Hermite matrix in row echelon 
form. 
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The main part of the program 

One encounters the three classical phases :  entering the data, treatment of the 
data and output of results. The verification of the correctness of the program 
is a formality: it suffices to check that the matrix E A - H is zero. 

begin 

choose (A , row, col) ; 
H := A ; 
Hermite (H, E, row, col) ; 
display(£, row, col) ; display(H, row, col) ; 
verification (A , E, H, row, col) 

end . 

The procedure Hermite 

We require the function zero_col(A , e ,  row, k)  to tel l  us if a subcolumn of 
the a;, k  for e :s i :s row is zero. 

• If the subcolumn is not zero, we "clean it out" using Blankinship's algo­
ri thm; th is  done, we go to the fol lowing column by incrementing e (in other 
words, we go down a step) ;  

• If  the subcolumn is  zero, we go to the next  column without modifying e 

because we are on a step of width > 1 .  

procedure Hermite (var A ,  E :  matrix ; row, col : integer) ; 

var k, e : integer ; 
begin 

unit(£, row) ; e := 1 ; 
for k :=  1 to col do 
if not zero_col(A , e, row, k) then begin 

I Blankinship (A ,  E, e, row, k,  col) ; 
e : =  e + 1 

end 

end ; 

The procedure Blankinship 

This procedure "cleans" the k-th column out of the elements between rows e 

and row; the subcolumn is cleaned out when A [ i ,  k ]  = 0 for i = e + 1 ,  . . .  , row; 
that is ,  when zero_col(A , e + 1 ,  row, k)  becomes true. 

To clean out the subcolumn, we undertake the fol lowing actions: 

• We begin by locating a pivot, that is ,  a nonzero element with smal lest 
possible absolute value. 
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• We bring the pivot to the head of the column (that is, to the row e ) if it 
is  on a lower row. 

• We change the sign of the pivot if it is negative so that we do not have 
negative pivots. 

• We "erode" the coefficients below the pivot by adding suitable multiples 
of the pivot to them. 

Of course, each row operation on A i s  fai thful ly reproduced without delay 
on the rows of E.  

procedure Blankinship (var A ,  E :  matrix ; e ,  row,  k, col : integer) ; 
var p , j, coeff, pivot : integer ; 
begin 

while not zere_col(A , e + 1 ,  row, k) do begin 
p := row_pivot(A , e, row, k) ; 
if p > e then begin 

I swap_row(A ,  e, p,  col) ; 
swap_row(E, e ,  p, row) 

end 
end ; 
if A [ € ,  k] < 0 then begin 

I change_sign_row(A ,  e, col) ; 
change_sign_row(E, e ,  col) ; 

end ; 
pivot :=  A [e ,  k] ; 
for j :=  e + 1 to row do begin 
coeff := A [j,  k] div pivot ; 
if coeff =f. 0 then begin 

I add_row(A ,� , e ,  -coeff, col) ; 
add_row(E, J ,  e ,  -coeff, row) 

end 
end 

end ; 

Note that the extreme case where the subcolumn contains only a single pivot 
in a row of index > e is treated correctly. 

The function zero_col 

This function is triv ial modulo a subtle trap that some avoid without knowing 
it :  the code of Blankinship functions correctly only if zero_col (A , e + 1 ,  row, k) 
answers that an empty subcolumn (i. e. when e + 1 > row) i s  declared zero. 
If we do not take this  precaution , we can get get into an infin ite loop because 
an empty column can only make an empty column . 
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function zero_col(A : matrix ; £ , row, k : integer) : boolean ; 
var i : integer ; 
begin 

zero_col := true { to correctly treat the case £ + 1 > row} 
for i :=  £ + 1 to row do 

if A [i ,  k] =f. 0 then zero_col : = false 
end ; 

The function row _pivot 

Here again ,  we must avoid the trap of believ ing that we can choose the 
head a0 of the subcolumn as the first pivot-candidate (this is correct only 
if ae , k  =f. 0) .  This i s  why we run through the subcolumn twice. 1 

function row_pivot(A : matrix ; £ , row, k : integer) : integer ; 
var i, place : integer ; 
begin 

for i := £ to row do if A [i ,  k] =f. 0 then place := i ; 
for i : = £ to row do 

if (abs(A [i ,  k] ) < abs(A [ place , k] ) )  and (A [i ,  k] =f. 0) 
then place := i ; 

row_pivot := place 
end ; 

The other functions and procedures do not harbor any difficulties. 

Exercise 3 

Write a program that takes a matrix in echelon form and "scrambles" it up using 
elementary operations chosen at random. Then apply the procedure Hermite to 
the result .  Is the form of the staircase the same? Are the comers of the steps 
the same? 

Exercise 4: Inversion of a matrix with real coefficients 

The pivoting strategy is far simpler when one works over a field since we 
can clean out a subcolumn in a single pass (speaking informal ly, we can 
immediately "ki l l"  the coefficients instead of "eroding" them). 

1 Yes, thi s  i s  heavy-handed; yes ,  we could do better and leave after a s ingle run 
through. Never forget, however, that the absolute priority of a programmer is secu­
rity. The code must be l impid. Heavy-handedness is not a fault; you can l i ven it up 
later, when everyth ing works wel l .  This industrial logic has nothing to do with the 
systematic search for tricks practiced in mathematics.  
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To invert a matrix with real coefficients, we can row reduce the matrix (A , / )  
by cleaning out columns to transform i t  to the matrix E ( A ,  / )  = ( / ,  A - 1 ) .  
Suppose that we are cleaning out the subcolumn k ,  and that u p  to this  moment 
the matrix A has become: 

EA - ( h- 1 * ) 
- 0 A '  

. 

We inspect the first column of A ' ,  that is ak . k , . . .  , an . k , seeking a nonzero 
pivot of largest absolute value for reasons of numerical stabi l i ty. 

• If the pivot exists (which amounts to saying that the first column of A '  
is  nonzero), we  bring the pivot to  (k , k )  by  exchanging rows. We then "ki l l"  
the a; . k  for i =I- k in a single pass using the l inear combination : 

We end by dividing the row k by the pivot to make it equal to l .  

• If the pivot doesn ' t  exist, we know that the first column of A '  is  zero, 
which means that A' is  not invertible. But then A is  not invertible because 
det( E A )  = det £ x det A = det h _ 1 x det A '  = det A '  = 0. 

procedure inverLmatrix(var A ,  inv_A : matrix ; dim : integer ; 
var invertible : boolean) ; 
var i, k, place_pivot : integer ; value_pivot, coeff : real ; 
begin 

k := 1 ; invertible := true ; 
while (k ::::: dim) and invertible do begin 
inspecLsub_column(A , k ,  dim, place_pivot, invertible) ; 
if invertible then begin 
exchange_rows(k, place_pivot, A) ; 
exchange_rows(k, place_pivot, invA)  ; 
value_pivot :=  A [k, k] ; 
for i : =  1 to dim do if i =I- k then begin 
coeff := A [i, k]jvalue_pivot ; 
combination_rows(i ,  k, -coeff, A)  ; 
combination_rows(i ,  k, -coeff, invA )  ; 

end 
divide_row(k, value_pivot, A) ; 
divide_row(k, value_pivot, invA )  

end ; 
k := k + 1 

end 

end ; 
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We remark that the principal loop is  a "for k := to dim" loop rewritten 
as a "whi le" loop so as to insert the interrupter invertible which interrupts the 
work of the procedure as soon as it is known that the matrix is not invertible. 

Exercise 5 

1 )  Suppose that A has coefficients in Q (resp. C, resp. Z P with p prime) .  
Write a program which calculates i t s  inverse . 

2) Modify the procedure inverLmatrix to calculate the determinant of the 
matrix A .  

Exercise 6 

Let k be a commutative field and A E Gl (n , k )  be an invertible matrix. There 
exists a lower triangular matrix L and an upper triangular matrix U such 
that L A U  = S, where S is a permutation matrix; that is, a matrix obtained 
from the identiy matrix by permuting rows. 

Proof The idea is to operate on the rows of A towards the bottom and on the 
columns of A towards the right, which means that the only operations allowed 
are (we denote the rows of the matrix by the letter A) :  

• Aj  :=  A j  + AA ;  and Kj :=  Kj + A K; with i < j and A E k whatever; 

• A; := AA;  and K; := A K; with A E k * .  

In particular, exchanging rows o r  columns is  forbidden. 

We start with the matrices Aa = A , La = In and U0 = In · 
• We go down the first column of Aa and stop at the first nonzero coefficient 

ae , 1 , which we call the pivot. We normalize the pivot by dividing the £-th rows 
of Aa and L0 by the pivot. We then clean out ( towards the bottom) the first 
column of A using l inear combinations of the form A j := A j + AAe  where 
j > £ .  As usual , each operation on the l ines of Aa is instantly reproduced 
on La.  

0 * * 0 * * 
* * * * 

0 * * 0 * * 
Aa J-----? 1 ae , 2 ae .n 1-----? 1 ae, 2 ae ,n 

at+ l , l  * * 0 * * 

* * 
an , I * * 0 * * 

• We then clean out the £ -th row of A0 using l inear combinations of the 
form Kj := Kj + A K 1  with j > 1 .  Of course, these operations are reproduced 
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right away on Uo . 

0 * * 0 * * 

* * * * 
0 * * 0 * * 
1 ae . 2  ae , n f------+ 1 0 0 
0 * * 0 * * 

* * * * 
0 * * 0 * * 

After this first wave of operations, the matrices Ao ,  La and U0 become 
A 1 , L 1 and U1 and we have A 1 = L 1 A0U1 . 

• We then handle the columns k = 2 ,  . . .  , n and the associated rows in a 
similar manner. (We remark that the second pivot exists because A 1 is invert­
ible and, by construction, i t  is  on a row of index =f. £ . )  

• When the algorithm terminates, the matrix An i s  the desired matrix S and 
we have S = Ln · · · L 1 A U1 · · · Un .  D 

Transform this  proof into a program which calculates L , U ,  S from A (as­
sume, for simpl icity, that the in itial matrix i s  invertible) .  What modifications 
need to be made to the program to have i t  stop when A i s  not invertible? 

Exercise 7: Reduction of quadratic Forms 

Let S be a symmetric matrix with real coefficients. Then there exists an invert­
ible matrix P such that 'P A P  is a diagonal matrix. 

Proof First suppose that the first column of A is not zero. 

• If a � , � =f. 0, we clean out the first column with operations towards the 
bottom, let L; := L; + ).L 1 with i > 1 ;  if we take the precaution of fol lowing 
each row operation by the column operation K; := K; + ). K 1 , the matrix A 
becomes 'P A P  with P being the product of the corresponding elementary 
matrices. 

• If a 1 , 1 = 0, we can be certain that there exists an a e .  1 =f. 0 since the 
first column is not zero. We then perform the operations L 1 : =  L 1 + Le and 
K 1 := K 1 + Ke on A which reduces us to the preceding case. 

When we have finished cleaning out the first row and column, or if the first 
and row and column are zero, we pass to the submatrix consisting of the a; , j  
for which 2 ::; i ,  j ::; n .  D 

Transform this  proof into a program which takes the upper part of A and 
completes i t  to a symmetric matrix . 2 

2 Never forget that the machine must serve humans; the user should only have to 
enter the min imum number of coefficients. 
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11. 1.6. The incomplete basis theorem 

Let E J , • • •  , Er be vectors in 'J'/ :  do there exist vectors Er+ 1 , • . •  , En such that 
(E 1 , . . .  , En ) is a basis  of 'J'/ ?  

Definition 11. 1. 7. A vector E =f. 0 of zn is said to be visible from the origin 
if there does not exist a rational number t E ]0 ,  1 [ such that t E has integer 
coordinates. (Think of trees in an orchard and look at Fig. 1 1 .2) 

0 • 0 • 0 0 0 • • 0 0 0 • 0 • 0 
• • • 0 • • • • • • • • 0 • • • 
0 • 0 • 0 • 0 • • 0 • 0 • 0 • 0 
• • 0 • • 0 • • • • 0 • • 0 • • 
0 • 0 • 0 • 0 • • 0 • 0 • 0 • 0 
• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 
0 • 0 • 0 • 0 • • 0 • 0 • 0 • 0 
• • 0 • • 0 • • • • 0 • • 0 • • 
0 • 0 • 0 • 0 • • 0 • 0 • 0 • 0 
• • • 0 • • • • • • • • 0 • • • 

Fig. 11.2. Visible points from the origin 

Lemma 11. 1 .1 .  A vector with integer coordinates E =f. 0 ts visible from the 
origin if and only if its coordinates are relatively prime. 

Proof Let d > 0 be the GCD of the coordinates of E .  
• I f  d > 1 ,  the vector d- 1 E has integer coordinates and hides E .  
• I f  d = 1 and if E were hidden b y  the vector E' = t E with 0 < t < 1 ,  then 

by considering a nonzero coordinate of E, we obtain t = pI q with 0 < p < q 
and GCD(p ,  q )  = 1 .  The equal ity qE' = pE and Gauss's lemma shows that q 
div ides al l  coordinates of E ,  which is contrary to the hypothesis that d = I .  D 

Proposition 11.1.3. A vector E =f. 0 in zn can be a member of a basis of zn if 
and only if it is visible from the origin. 

Proof Let (E J ' . . .  ' En ) be a basis  of zn such that E J = E ;  we know that 
the matrix E = (E 1 , . . .  , En ) is unimodular. If we expand det E along the 
first column, we obtain a l inear combination with integer coefficients of the 
coordinates of E which is equal to ± I .  By Bezout 's theorem, the GCD of the 
coordinates of E is equal to I ,  and hence E is vis ible .  
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Conversely, if E is v isible, Blankinship 's  algorithm explicitly gives us a 
unimodular matrix E such that EE = e 1 •  The vector E = £- 1 e 1 then belongs 
to the basis of 71/ formed by the columns of £ - 1 • o 

We can also state the proposition as fol lows: a vector E =1- 0 is the first 
column of a unimodular matrix if and only if it is visible from the origin. 

The case of r vectors is more technical and cannot be interpreted so intu­
itively. A necessary condition to belong to a basis of zn i s  - of course - to 
be visible from the origin.  But this does not suffice. 

Theorem 11. 1.4. Let E l , . . .  , En with 1 :::: r :::: n, be nonzero vectors in zn and 
put M = (E 1 , . . .  , Er ) · Let E be a unimodular matrix such that EM is in row 
echelon form: 

* 

: ) . 

d; 

The vectors E l , . . .  , Er are part of a basis of zn if and only if the diagonal 
coefficients of T satisfy d; = ± 1 for i = 1 ,  . . .  , r .  

Pay attention to the statement :  the coefficients d; in question are not neces­
sarily the corners of the steps of the matrix EM in  echelon form; they are the 
diagonal coefficients of T .  

Proof Suppose that one knows how t o  complete E 1 , . . .  , E r  t o  a basis (E 1 , . . .  , En ) 
of zn , SO that the matrix P = (E I , . . .  , En ) = (M ,  Er+ 1 . . .  , En ) is unimodular. 
We can write : 

E P = (EM, EEr+ ! o · · · · EEn ) = ( �  ; ) . 

Taking the determinant, we obtain ± 1 = det (£  P)  = det T x det Q which first 
implies det T = d1 • • • d; = ± 1 and then d; = ± 1 since the coefficients are 
integers. 

Conversely, suppose that d; = ± 1 for i = 1 ,  . . .  , r. One round of pivoting 
towards the head of the rows of EM shows that there exists a unimodular 

matrix £' such that E' EM = ( � ) , whence : 

This formula says that the columns of M coincide with the r first columns of 
the unimodular matrix (£' £) - 1 • o 
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The incomplete basis algorithm 

Let C J ' . . .  E'r be vectors in  zn and put M = (E' J ' . . .  E'r ) . B lankinship 's  algorithm 
allows us to find a unimodular matrix E such that 

E M = ( � ) · 

The vectors C J ' . . .  E'r comprise the first r elements of a basis of zn if and only 
if the diagonal coefficients of T are ± 1 .  When this is  the case, a second round 
of operations towards the top allows one to make a unimodular matrix E' such 
that 

E' E M  = ( � ) . 

The desired basis is then the columns of A - I if A = E' E .  

To calculate the inverse of  A ,  we can perform row operations on  (A , / )  to 
bring it to the form ( / ,  A - I ) . But this process seems a l i ttle strange : we start 
with I on which we perform row operations to obtain A ,  then we perform 
more operations on A to recover I .  

Let us look a l i ttle more closely at what happens. Let E1 , E2 , • • .  , EN be 
elementary matrices which transform I into A :  

Then, 

A - 1 = I  El l . . .  E;: / ,  

so we see that we can calculate A - I  in parallel by suitable column operations 
on the matrix I .  

For this ,  we begin with the identity matrix I .  Each time that we perform 
a row operation on M,  we do a column operation on I using the fol lowing 
dictionary to translate between them: 

('D) 

Row operation (matrix EM)  Column operation (matrix M E- 1 ) 

L; := L; + ALj  Kj := Kj - A K; 

L; :=  - L; 
L ; ;:::::: L j  

K; := - K; 
Kj ;:::::: Kj .  

Notice the behavior of the indices and the change of sign i n  the first l ine. 

With this  specified, the incomplete basis algorithm goes as fol lows. Let 

M = (E J , . . .  Er ) and N = ln . 

We do (row) operations on M to obtain a matrix in row echelon form; in 
parallel , we perform column opeartions on N using our dictionary ('D). If, at 
some moment, we get a diagonal coefficient d; of M which is  not equal to ± 1 ,  
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we stop because we know that the given vectors can not be extended to a basis 
of zn . Otherwise, we continue our operations unti l  M is  transformed into the 
identity matrix .  At this point, the first r columns of N are the vectors with 
which we began and the last (n - r) columns, together with the first r, form 
a basis of zn . 

Example 1 

Consider the vector t: = ' (3 ,  4, 8 ) .  S ince it is a vector vis ible from the origin,  
we know that can be extended to a basis .  To complete the basis ,  we start with 
the matrices 

The choice of pivot leads to the operations 

Row operation (on M )  

L2 : =  L2 - L 1 

L3 : =  L3 - 2L I 

which gives the matrices: 

Column operation (on N )  

K 1 : =  K 1 + K2 

K 1 : =  K 1 + 2 K3 

( 1 0 0 ) N1 = 1 1 0 . 
2 0 1 

The new pivot hav ing been chosen , we perform the operations 

Row operation (on M )  

L 1 : =  L 1 - 3 L2 

L3 : =  L3 - 2L2 

and we wind up with the matrices : 

Column operation (on N )  

K2 : =  K2 + 3 K I 
K2 : =  K2 + 2 K3 

( I 3 0 ) 
N2 = 1 4 0 . 

2 8 1 

It remains only to interchange rows 1 ,  2 of M2 and columns 1 ,  2 of N2 to 
finally obtain :  ( 3 1 0 ) 

N3 = 4 1 0 . 
8 2 1 

The vector t: from the outset reappears in the first column of N3 as the theeory 
predicts. The completed basis  is formed by the three columns of N3 • 
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Example 2 

Now consider the vectors : 

£ 1 = 1 (3 , 2 ,  7 ,  9) , £2 = 1 (2 ,  5 ,  3 ,  6) . 

A first round of operations gives the matrices: ( 1 - 3 ) 
M �  � g , 

1 1 .  Matrices 

S ince d1 = d2 = 1 ,  we know that the vectors £ 1 are £2 part of a basis of Z4 • 
To extend them to a basis, we finish by doing row operations on M towards 
the top so as to "ki l l"  the coefficient -3 (and we perform the corresponding 
column operations on N). We get: 

N = 2 5 
7 3 

( 3 2 

9 6 

The desired basis  is formed by the columns of N .  

Exercise 8 

Transform this algorithm into a program. 

11.1. 7. Finding a basis of a subgroup 

6 0 ) 
6 0 
1 3  0 

. 

1 8  1 

Let M = (g J ' . . .  ' gN ) be the subgroup of zn with generators g l ' . . .  ' gN and 
consider the matrix whose columns are the generators : 

G = (g I ' . . .  ' g N ) .  

We perform column operations o n  G to obtain a matrix G' i n  column echelon 
form 

G' = G F, F E  Gl (n , Z) . 

Theorem 11. 1.5. With the preceding notation, the nonzero columns of G' are 
a basis for the subgroup M. 

Proof We already know that the nonzero columns g; , . . .  , g �  of G' are inde­
pendent. S ince F has integer coefficients, the gj are l inear combinations with 

integer coefficients of the g; . Conversely, since F- 1 also has integer coeffi­
cients, the g; are l inear combinations of the gj with integer coefficients. o 

Corollary 11. 1.1.  Every subgroup of zn has a basis, since every subgroup is 
of finite type. 
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Example 1 

We return to the subgroup M of 2:2 generated by the columns of the matrix ( 2 0 5 ) G =  
0 3 5 

. 

Performing column operations on the matrix G = (g 1 ,  g2 , g3 } , we obtain :  

G' = G F = ( 1 0 0 ) 
0 1 0 

Thus a basis of M is formed from the canonical basis of 2:2 , which is not 
surprising since M = £:2 . 

Example 2 

Consider the subgroup N of 2:3 generated by the columns of the matrix ( 3 5 2 0 ) 
G =  1 2 4 7 . 

4 -6 8 2 

By performing column operations on G ,  we obtain the matrices: 

0 0 0 ) 
1 0 0 , 

-38  4 0 
F =  ( �1 

- 3  
1 

-5  
3 
0 
0 

3 
- 1  
- 2  

Therefore, a basis  of N consi sts o f  the first three columns o f  G' : 

Verifying these calculations is easy. We have 

g; = 4g , - g2 - 3g3 + g4 , 

g; = -5g , + 3g2 , 
g; = 3g , - g2 - 2g3 + g4 . 

Conversely, knowing that 

we have 

5 
1 7  

1 60 
5 

-83 ) 
23 
67 

. 

-33  

g 1 = 3g; + l Og; + 96g; ,  

gz = 5g; + 1 1g; + 1 6og; , 

g3 = 2g; + l Og; + 97g; , 

g4 = og; + 7g; + 67g; . 
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Exercise 9 

Convert this algori thm to a program. But be careful because very large integers 
can easi ly appear in the intermediate calculations. 

11 .2. Linear Systems with Integral Coefficients 

Consider the general l inear system with p equations in n unknowns 

I a 
. .  
1 .
.
1 X 1  + · · · + a 1 . nXn =

_ 

b 1 , 
Ax = b ,  i. e. 

ap . 1 X 1  + · · · + ap,nXn - bp . 
( 1 1 . 1 )  

Suppose the a; , j and b; are integers and that we want to find integer solutions 
of this system; that is, all vectors X E zn satisfying the system. 

11.2. 1. Theoretical results 

We begin by recal l ing a result which i s  as indispensable as it is triv ial to prove. 

Lemma 11.2. 1. If x E zn is a particular solution of ( 1 1 . 1  ) , then all other 
solutions are of the form X = X + � . where � E zn is the general solution of 
the associated homogeneous system A� = 0. 

Students traditional ly learn to solve l inear systems by performing row opera­
tions because this does not change the value of the x; . But when one programs, 
i t  turns out to be preferable to perform column operations which do change 
the unknowns. The fol lowing result justifies this  practice. 

Proposition 11.2.1. Let F be any unimodular matrix and put B = A F. The 
map 

y 1----+ X = Fy 

is a bijection between solutions y E zn of the system By = b and solutions 
X E zn of the system Ax = b. 

Proof It fol lows from Ax = b that A Fy = b and conversely. Moreover, 
x = Fy and y = F -

1 x show that the coefficients of x are integers if and only 
if the coefficients of y are integers . D 

11.2.2. The case of a matrix in column echelon form 

Solving the system { 2x = b 1 , 
7x = bz , 
3x + 2y = b3 , 
x - 2y + Sz = b4 . 

( 1 1 .2) 
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i n  integers i s  especial ly  easy because we are dealing with a matrix i n  column 
echelon form. If we solve the equations successively, working first over the 
field of rational numbers, we obtain :  

I X = �b 1 = �b2 , 

y = 4 (b3 - �b J ) ,  

z = i (b4 - �b l + (b3 - �b l ) ) .  

( 1 1 . 3 )  

These calculations show that the system has a solution (x , y , z )  E Z3 i f  and 
only if the fol lowing conditions hold: 

• �b 1 and �b2 are equal integers ; 

• 4 (b3 - �b 1 ) is an integer; 

• i (b4 - �b 1 + (b3 - �b 1 ) )  i s  an integer. 

Since our goal is to program the solution of the system, we present the cal­
culations somewhat differently. To simpl ify, suppose that the second member 
is  the vector b = 1 (4, 14 ,  8, 1 5 )  so the solution is the x = 1 (2 ,  1 ,  3 ) .  

We write K1 , K2 , K3 the columns of the matrix of the system; below we 
write the identity matrix .  This done, we write the vector {30 = -b bounded 
below by the zero column (see Table 1 1 .2 ) .  We then try to make the vector 
{30 = -b zero by adding suitable integer mul tiples of the columns of the 
system: 

Note that these l inear combinations are unique because the K; are independent: 
the first l inear combination is  the only one capable of ki l l ing -b 1 , etc . 

<Y <Iem fJo= -b fJ I =fJo+2K,  fJ2=fJ 1 +K2 fJ,=fJ2 +3K, 
,.-"-., � ,_,._, ,_,._, ,_,._, 

2 0 0 

7 0 0 

3 2 0 

1 -2 5 

1 0 0 

0 1 0 

0 0 1 
'-v-" 
identity matri x 

-4 0 0 

- 1 4 0 0 

-8 -2 0 

- 1 5  - 1 3  - 1 5  

0 2 2 

0 0 1 

0 0 0 

Table 11.2. Practical resolution of the system ( 1 1 . 2) 

0 

0 

0 

0 

2 

1 

2 
"-.--' 
solution 
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• If we succeed in making {30 = -b vanish, it is clear that the corresponding 
l inear combinations of the columns of the identity matrix (below the horizontal 
l ine) are a particular solution of the system. 

• If we fai l ,  the system does not possess an integer solution because b does 
not belong to the subgroup generated by the columns of the sytem. 

11.2.3. General case 

Blankinship's algorithm allows us to explicitly compute a unimodular matrix 
F such that B = A F is in column echelon form. We then solve the system 

By = b .  ( 1 1 .4) 

Final ly, we return to the solutions of the original equation by the transformation 
x = Fy . But, as we wil l  see, this last step can be done automatically if we 
organize our calculations wel l .  

Consider for example the system defined by 

A = ( � i -� 1 ; ) , b = (_�5 ) . 1 - 1  2 0 - 1  

• To find B and F, we border A below by the identi ty matrix .  We then 
perform column operations on this large matrix until A is in column echelon 
form: ( 1 ) colum n operations ( � )

, B = A F, F E GJ (n , Z) . 

In our example, we find the fol lowing matrices F and B = A F . 

1 0 0 0 0 -5 0 0 0 

0 1 0 0 0 -4 -4 0 0 

1 - 3  1 0 0 5 1 0  -2  0 

I - 2  - 1  3 3 0 
5 -3 -5 

0 1 0 - 1  - 2  0 0 4 4 

F 0 0 1 -2  - 2  0 0 0 2 

0 0 1 - 1  - 2  0 0 0 2 

0 0 0 0 I 0 0 0 0 

• We write the vector {30 = -b to the right of B and the zero vector to the 
right of F . To thi s  big vector, we add appropriate multiples of the columns 
of B and of F , which gives the vectors {3 1 , {32 , {33 = 0. We find therefore: 
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1> a particular solution x of the initial system Ax = b which is the 
vector x = 1 ( -5 ,  4,  2, 2, 0) situated below fh ; 

1> a basis of the subgroup of solutions of the homogeneous system 
which is  formed by the vectors � 1 = 1 ( 4 ,  - 1 ,  -2 ,  - 1 ,  0) and �2 = 
1 (0, I ,  -2 ,  I ,  I )  situated below the zero columns of B .  

The solutions i n  integers of the system A x  = b are thus the vectors 

To explain this minor miracle, we let r denote the rank of A and write out 
the columns of our matrices: 

If the system By = b has a solution in integers, there exist integers y; satisfying 

( 1 1 . 5 )  

in other words, B y  = b has integer solutions i f  and only i f  i t  is  possible to 
zero out the vector {30 = -b by adding to it integer multiples of the columns 
B 1 , . . .  , Br . 

We now tum to the columns of F . The vector which appears under the last 
vector f3r is  y 1 F1 + · · · + Yr Fr .  where the y; satisfy (8 .5 ) .  This allows us to 
write 

which shows that the vector x = y 1 F1 + · · · + Yr Fr is  indeed a particular 
solution of the complete system Ax = b .  

Final ly, i t  is  clear that By = 0 is  equivalent to y =  1 (0 ,  . . .  0 ,  Ar+ l , . . .  , An ) .  
Returning to x = Fy ,  we find that the solutions of A x  = 0 are the vectors 

D 

11.2.4. Case of a single equation 

Suppose that we want to solve the equation: 

1 2 x 1 - 6 x2 + 9 x3 - 21 x4 = b. ( 1 1 .6) 

Since the matrix of the system has a single row, pivoting i s  very rapid: 

1 2  -6 9 -2 1 0 -6 3 3 

I 0 0 0 0 0 0 

0 1 0 0 f----+ 2 -4 

0 0 1 0 0 0 0 

0 0 0 0 0 0 
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B 

F 

Basi of the subgroup Ax = 0 
Particular olut ion of Ax = b 

Fig. 11.3. Algorithm for solving the system Ax = b in integers 

0 0 3 0 3 0 0 0 

0 0 0 0 0 1 0 

!---+ 2 3 -5 !---+ 3 2 -5 

0 2 1 - 1  1 2 0 - I  

0 0 0 I 0 0 0 

Thus, we have GCD ( I 2 , -6, 9, -2 1 )  3. In view of the simpl icity of the 
situation, it is pointless to border the matrix with the vector {30 = -b: the given 
equation has solutions in integers if and only if the condition b = 0 (mod 3)  
is satisfied. When this is the case, all the solutions are: 
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11 .3. Exponential of a Matrix: Putzer's Algorithm 

Let A be an n x n matrix with complex coefficients. One defines the exponential 
eA t in the classical way by the series 

( 1 1 .7 )  

This pretty formula wreaks much havoc because i t  i s  often presented to 
students who have not yet mastered ordinary series. 

Because of the Cayley-Hami l ton theorem, we know that - in a certain sense ­
series of matrices do not exist ! For there is an equation of the form An = p ( A ) ,  
where p i s  a polynomial of degree less than n ,  so that An , An+ I , etc . ,  are 
polynomials in A of degree not exceeding n .  If we replace these matrices 
in ( 1 1 .7)  by the corresponding polynomial s we find that the exponential of A 
is of the form 

eAt = ao (t ) /  + a , (t ) A  + · · · + CXn- l  (t ) An - l , 

where the a; are functions defined by series (these are the remnants of the 
ini tial series). The explicit determination of the a; i s  due Putzer. 3 We fix the 
fol lowing notation : 

• Let ).. 1 , • • •  , An denote the eigenvalues of A .  We do not make any restrictive 
hypotheses: the eigenvalues may be multiple, and we do not suppose that A 
is diagonal izab1e. 

• Put (notice the shift in the indices) :  

B1 = I , 
B2 = (A - A 1 / ) B1 , 
B3 = ( A - A2 / ) B2 , 

With this notation, we can write the Cayley-Hami l ton theorem as: 

( 1 1 . 8 )  

( 1 1 .9) 

3 E.J. Putzer, Avoiding the Jordan canonical form in the discussion of linear systems 
with constant coefficients, American Mathematical Monthly 73 ( 1 966) , pp. 2-7. This  
appeared over th irty years ago . . .  The diffusion of this algorithm into the teaching 
world has been very, very slow. 
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• Let y 1 , • • •  , Yn be the solutions of the fol lowing differential equations: 

y; = A J Y J , 
y� = A2Y2 + Y 1 ,  

Y 1 (0) = I ;  

Yo (O) = 0; 

Y� = AnYn + Yn - J , Yn (0) = 0.  

( 1 1 . 1 0) 

Here, there is no shift in indices ; on the contrary, the first equation keeps to 
itself (it does not have a second term and the initial condition is different from 
the others) .  

Theorem 11.3. 1  (Putzer, 1966). With the notation above, 

eA r = Y1 (t ) B 1 + Y2 (t ) B2 + · · · + Yn (t ) Bn . ( 1 1 . 1 1 ) 

Proof Let E ( t )  be the term on the right of ( 1 1 . 1 1  ) . It suffices to show that 
£ (0) = I  and E' (t ) = A E (t )  s ince these two conditions characterise the 
matrix ( 1 1 .7 ) .  It is clear that £ (0) = / , Diferentiating E gives: 

Use ( 1 1 . 1 0) and then ( 1 1 .7 )  to get: 

E' = A J Y I B I 
+A2Y2 B2 + Y 1 B2 

+A3y3 B3 + Y2 B3 

= A J Y I B I 

+An - I Yn - 1 Bn - 1 + Yn -2 Bn - l 
+AnYn Bn + Yn - I Bn 

+A2Y2 B2 + Y 1 (A - A J / ) B I 
+A3y3 B3 + Y2 (A - A2 1 ) B2 

+An - I Yn - I Bn - 1 + Yn -2 (A - An -2 / ) Bn -2 
+AnYn Bn + Yn - I (A - An - I I ) Bn - 1 

After s impl ifying, we are left with E' = Yl A B 1 + · · · + Yn - I A Bn - I + An Yn Bn ; 
that is ,  

E' = Y 1 A B 1 + · · · + Yn - 1 A Bn - 1 + Yn A Bn 

since ( I I .  9) is written An Bn = A Bn . 
0 
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Example 

If A is  a 3 x 3 matrix with a triple eigenvalue A., its exponential i s :  

eA r = eAr I + t e;.r (A - H ) + � tz eAI (A - H )z
. 

(Whether or not A is diagonal izable doesn ' t  matter. ) 

Remark 

Formula ( 1 1 . 1 1 ) is an algorithm in  a theoretical and academic sense only;  it i s  
poorly behaved numerical ly4 because i t  requires knowledge of the eigenvalues 
of the matrix .  (The main difficulty is  the precise calculation of these numbers . )  

Exercise 10 

Write a Pascal program which calculates the matrices B;  knowing the matrix A 
and i ts eigenvalues. The calculation can be done over Z, lR or C. 

Remarks 

1 )  You can try to calculate the eigenvalues of the matrix from its charac­
teristic polynomial (Chapter 5 ) ,  but you should not expect miracles because 
getting good precision in all c ircumstances is very del icate. 

2) To make a matrix with integer coefficients and integer eigenvalues, we 
begin with a triangular matrix with integer coefficients 

* 

0 

and complicate it using row and column operations of the form A � E A E- 1 • 
For translation, you can use the algorithm of the incomplete basis (§ 1 .6) as a 
dictionary. 

3) If you have become enchanted by integers, you might wonder if the 
preceeding method can manufacture all matrices A E M (n ,  Z) whose integers 
are eigenvalues. 

Theorem 11.3.2 (Leavitt and Whaples, 1948). Let A be an n x n matrix with 
integer coefficients. The eigenvalues of A are integers if and only if there exists 
a unimodular matrix E such that U = E - 1 A E  is an upper triangular matrix. 

4 C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of 
a matrix, SIAM Review, 20 ( 1 978),  pp. 80 1 -836. 
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Proof Let A be a matrix with integer coefficients and integer eigenvalues. 
Since the eigenvalues are rational , we already know how to find a matrix 
P E Gl (n , Q) such that U = P - I A P is upper triangular. We write A P = P U 
and multiply P by a suitable integer to ensure that this matrix has integer 
coefficients. 

By performing row operations on P in accord with B lankinship's algo­
rithm, we know that we wi l l  eventual ly find a unimodular matrix E such that 
U' = E P is upper triangular. We get 

( E A E - 1 ) E P  = E P U.  

The identity E A E - 1 = U ' U u' - 1 then shows that E A E - 1 is  upper triangular. 
On the other hand, E A E - I has integer coefficients since E is unimodular. 
The converse is  clear. o 

11 .4. Jordan Reduction 

Jordan 's theory always intimidates apprentice mathematicians and many others 
as wel l .  The origin of this malaise is easy to diagnose : needlessly abstract 
explanations culminating in deceptive exercises in which the transition matrix 
is not in general made explicit .  We are going to detai l here an elementary 
algorithm5 which : 

• proves the existence of the Jordan canonical form; 

• explicitly furnishes the Jordan canonical form as well as the transition 
matri x .  

Like the Putzer algori thm, th i s  algorithm is  of  academic interest only; i t  is  
not adapted to numerical calculation because i t  requires that one know in 
advance the eigenvalues of a matrix (which is ,  we recall again ,  the numerical ly 
difficult part ) .  

11.4.1 .  Review 

Let f : E ----+ E be an endomorphism of an n-dimensional vector space E over 
a field k which has all of its eigenvalues in k. Let A 1 , • • •  , Ar be the distinct 
eigenvalues of f ,  with multipl icities m 1 , • • •  , mr ,  so that m 1 + · · · + mp = n .  
The characteristic spaces of f are the vector subspaces of  £ :  

E; = ker(f - A ;  id)m , . 

We accept without proof the fol lowing elementary results (which are not at all 
difficult to prove) :  

5 U .  Pittelkow and H.-J .  Runckel , A short and constructive approach to the Jordan 
canonical form of a matrix, Serdica 7 ( 1 98 1 ) , pp. 348-359. Added in proof: for 
an even s impler algorithm, see also A. Bujosa, R. Criado, C. Vega, Jordan normal 

form via elementary transformations, SIAM Review, 40 ( 1 998),  pp. 947-956. 
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(i) E = £ 1 EB · · · EB EP ; 

( i i )  dim E; = m; ; 
( i i i )  E; is mapped to itself by f;  
( i v )  the map u ;  = f - A ; i d  : E ;  ----+ E; i s  nilpotent. 
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Thus, the characteristic subspace E; contains the eigenspace asociated with 
the eigenvalue A; . It results from (i)  that A is  not diagonalizable when some 
characteristic subspace strictly contains an eigenspace. 

The Pittelkow-Runckel algorithm finds a basis eli ) , . . .  , e�� of each charac­
teristic subspace E; . In this basis the matrix of the ni lpotent endomorphism u ;  
is :  

E:; = 0, 1 .  ( 1 1 . 1 2) 

0 

C I . h b . ( I ) ( I ) (p) (p) f E ( ( . ) )  h onsequent y, m t e asts e 1 , • • •  , em , , . . . , e 1 , • • •  , em r o see 1 , t e 
matrix of f is :  

( 1 1 . 1 3 ) 

11.4.2. Reduction of a nilpotent endomorphism 

Let u : E ----+ E be a ni lpotent endomorphism of a finite dimensional vector 
space. When x E E is not zero, we consider the i terates x <k ) = uk (x ) of x 
under u :  

x <O) =I= 0, x< 1 ) =I= 0, . . . , x <n =I= 0, x <£+ 1 ) = 0.  

Definition 11.4.1 .  The last exponent of a vector x =I= 0 is the greatest integer 
£ � 0 such that xm =I= 0. 

For example, £ = 0 if and only if x E ker u .  
These i terates are a natural tool in  Jordan theory: when x <f) , . . .  , x <O) are a 

basis (note the decreasing indices), the matrix of the endomorphism u in this 
basis is  a Jordan matrix ( 1 1 . 1 2) with E; = 1 .  

Definition 11.4.2. Let x 1 ,  • • • , Xr be nonzero vectors and £ 1 , • • • , £r  their last 
exponents. Put: 

" { ( f , ) (f, ) } £..J X I , . . .  , X, , 

We say the the system 2: of vectors is deployed over the system 2: .  
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Proposition 11.4.!.; The system 1: is linearly independent if and only if the 
deployed system 1: is linearly independent. 

Proof To avoid a deluge of indices which wil l  teach us noth ing, we content 
ourselves with a particular case: 

" _ { ( I ) ( 3 ) (2 ) (2 ) (0) } £..; - x I , x2 , x3 , x4 , Xs . 

Consider the fol lowing l inear combination of the vectors of 1: 
(0) ( I ) 0 = aox 1 + a 1 x 1 

+boxi0) + b 1 xi 1 ) + bzxf) + b3xi3 ) 

+coxj0) + c 1 xj 1 ) + c2xj2 ) 

+doxi0) + d1 xi 1 ) + d2x2) 

+eoxiO) 

and associate to it the array on the left below: 

( 3 ) 
(2 ) 
( I ) 
(0) 

a l 
ao 

-
b3 
bz Cz 
b l C J 

bo co 

dz 
dl 
do eo I 

(3 ) 
(2 ) 
( I ) 
(0) 

,--
f3 

y 
a 

8 

c I 

( 1 1 . 1 4) 

The condition that 1: be independent tel ls  us that each time that we have 
a l inear combination symbolized by the tableau on the right, the coefficients 
a,  {3, y, 8, c are necessari ly zero. 

However, if we apply u3 to the l inear combination ( I  1 . 1 4) ,  we move the 
coefficients towards the top in the left tableau: those that leave disappear and 
the "holes" which appear are fil led with zeroes. Thus, we obtain the right 
hand tableau with a = 0, f3 = b0 , y = 8 = c = 0, which rquires that 
b0 = 0. Applying u2 to ( 1 1 . 14 ) ,  we get a =  0, f3 = b 1 , y = c0 , 8 = d0 , 
c = 0, from whence b 1 = c0 = d0 = 0. If we apply u ,  we l ikewise obtain 
ao = b2 = c 1 = d 1 = 0. We are left with a = a 1 , f3 = b3 , y = c2 , 8 = d2 and 
c = e0 which are necessari ly zero. o 

Proposition 11.4.2. Let x 1 , . . .  , Xr and y be nonzero vectors whose last expo­
nents £ 1 , • • •  , Cr and £ satisfy £; :::: £ for i = 1 ,  . . .  , r and 

y (t )  = a 1 X � f J ) + · · · + ar - J X; e,_ , )  + arx;e, ) . 

If the vector 
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is not zero, its last exponent £' satisfies £'  < £. 

Proof In effect, y'<n i s  zero by construction. D 

11.4.3. The Pitttelkow-Runckel algorithm 

The Pitttelkow-Runckel algorithm finds a Jordan basis of a n i lpotent endomor­
phism. To do this, it manipulates the system I: in a loop (steps 2 to 4) until 
the system becomes l inearly independent. 

I )  Initialization: Choose nonzero vectors x 1 , . . .  , Xr such that the deployed 
system associated to 

I: = {x <t i l xU, > } I ' · · · ' r 

generates E (for want of b�ter, one can choose the x; to be generators of E 
since the deployed system I: contains the x; ) .  

2) Exit test of the loop: !! I: i s  l inearly independent, the algorithm teminates 
and the deployed system I: i s  the desired Jordan basis .  

3 )  Body of the loop: If I: i s  not independent, we can suppose, upon renum-
bering the vectors, tha £ 1  :::: £2 :::: • • • :::: £r . Thus, there exists an index 
k E [ 1 ,  r D such that: 

Set: 

X u, > + a x <t i l + · · · + a x < e, _ , ) - 0 k I I k - 1 k - 1 - · 

(0) + ( f , -f< ) + + ( f, _ , - f! ) y = xk a 1 x 1 · · · ak - l xk - l . 

If £k = 0 or if y is zero, remove the vector xie. >  from I: ;  otherwise, replace 
xi e. >  by ym , where £ is the last exponent of y. (In practice, remember that it 
is  the vector with the smal lest exponent that di sappears . )  

4) End of the loop: return to 2) .  

Example 

Consider the 5 x 5 ni lpotent matrix :  ( 12 

6 - 3  
3 1 6  

A =  3 5 
-6 - 1 3 

- 1  - 3  3 

c 6 4 
- 1  - 3  -2 

A' = � 0 0 
0 0 

- I  - 3  -2 

5 
9 
5 

- I I  
-2  

8 
-4 
0 
0 

-4 

-2 ) - 1  
- 1  ' 

2 
I 

�2 ) 0 ' 
0 
1 

u - 3  4 -2 
�

4 ) 1 2  5 1 5  
A 2 = 3 2 4 - I  

- 3  -9 -6 - 1 2 3 
I 3 - I  3 - I  

A' = ( � 0 0 0 � ) 0 0 0 
0 0 0 
0 0 0 
0 0 0 
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• The algorithm begins6 with the system: 

- 1  c � { ( 3 ) (3 ) ( 3 ) (3 ) (3 ) } 0 o = e l ' e2 ' e3 • e4 ' es = 
0 

- 1  

6 
-3  
0 
0 

-3 

4 8 
-2 -4 
0 0 
0 0 

-2 -4 

1 1 .  Matrices 

�
2 ) 

0 . 
0 
1 

• Since e�3 ) + e \3 ) = 0, we put x = e�0) + e \0) and replace e5 by x :  

c 6 4 8 � ) - 1  - 3  -2 -4 
� = { e(3 ) e (3 ) e (3 ) e ( 3 ) x (O) } = 0 0 0 0 I • 2 • 3 • 4 • 

0 0 0 0 
- 1  - 3  -2 -4 

• Since e2 ) = 4e \3 ) , put y = ei0) - 4e \0) and replace e4 by y: 

c 6 4 2 �) - 1  - 3  -2 - 1  
� = { e (3 ) e (3 ) e (3 ) y (2 ) x (O) } = 0 0 0 0 2 I • 2 ' 3 ' ' 

0 0 0 0 
- 1  -3  -2 - 1  

• Since ej3 ) = 2e \3 ) , put z = ej0) - 2e \0) and replace e3 by z :  

c 6 6 2 �) - 1  - 3  - 3  - 1  
� = { e (3 ) e (3 ) z (2 ) y (2 ) x (O) } = 0 0 0 0 3 I ' 2 ' ' ' 

0 0 0 0 
- 1  - 3  - 3  - 1  

• Since z (2 ) = ei3 ) , put t = z (O) - ei 1 ) and replace z by t :  

c 6 -4 2 J - 1  - 3  2 - 1  
� = { e (3 ) e (3 ) t ( l ) y (2 ) x (0) } = 0 0 0 0 4 I ' 2 ' ' ' 

0 0 0 0 
- 1  - 3  2 - 1  

• Since y (2 ) = e \3 ) , put u = i0) - e \ 1 ) and replace y by u :  

c 6 -4 -2 � ) - 1  - 3  2 1 
� = { e (3 ) e (3 ) t ( l ) u ( l ) x (0) } = 0 0 0 0 5 I ' 2 ' ' ' 

0 0 0 0 
- 1  - 3  2 1 

6 We del iberately  chose a redundant system to lengthen the algorithm.  But it is pos­
sible to do better by choosing the vectors so that I: generates lR5 . 
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• Since u < 1 > = -e\3 > , put v = u <0> + e \2 > and replace u by v :  

c 6 -4 -7 �) - 1  -3 2 3 
I: = { e <3 J e <3 > t < 1 > v <O> x <O> } = 0 0 0 0 6 I ' 2 ' ' ' 

0 0 0 0 
- 1  -3 2 2 

• Since -e\3 > + ef> + r < I J = 0, put w = t <0> - e \2 > + ei2> and replace t by w 

- 1  c I: = { e<3 > e <3 > w <O> v <O> x <O> } = 0 7 I ' 2 ' ' ' 
0 

- 1  

• S ince ei3 > + v <0> + x <0J = 0, e l iminate v :  

- 1  c I:s = { e \3 ) ' ei3 > ' w <OJ ' x <OJ } = � 
- 1  

• Since 2e\3 > + ei3 > + w <0> = 0, el iminate w :  

I: - { /3) e (3 ) x <OJ } -9 - I ' 2 ' - ( il - 1  

6 - 1 0  - 7  
-3  5 3 
0 0 0 
0 0 0 

-3 5 2 

6 - 1 0  � ) -3 5 
0 0 
0 0 

-3 5 

6 � ) -3 
0 
0 

-3 
• Since ei3 > = 3e\3 > , put p = ei0J - 3e\0J and replace e2 b y  p :  

2: 1 0 = { e\3 ) ' p<O> ' x <O> } = ( il - 1  

• Since e \3 > + p<0> + x <0> = 0, we eliminate p :  

� ) 
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• The last system is manifestly l inearly independent, and the desired Jordan 
base is the deployed system 

- 1  
( 2 

- (3 ) (2 ) ( I ) (0) (0) P = :E 1 1  = { e 1 , e 1 , e 1 , e 1 , x } = � 
and the Jordan reduction is :  

- 1  

� � � � ) 
0 0 1 0 
0 0 0 0 
0 0 0 0 

- I  
4 
I 

- 3  

2 
I 
1 

-2 
- 1  

0 � ) 
0 0 
0 0 
0 1 

One can check that p - I A P = J as wel l  (to avoid a painful calculation of the 
inverse of P ,  it is preferable to check that A P = P J ) .  

11.4.4. Justification of the Pittelkow-Runckel algorithm 

The algorithm does not loop indefinitely because the cardinal ity of :E decreases 
by at least once each time through the loop. _ 

Note that if the vector x belongs to the subspace Vect( :E ) ,  then all its iterates 
belong to this  subspace by definition of the deployed system. 

With the notation above: 
• if the vector y is zero or if £k = 0 (which means u (xd = 0), let :E ' be 

the new system obtained by removing xie! l from :E ;  
• if y i s  not zero, let :E '  be the system obtained by replacing the vector xied 

in :E by in . 
In each of the two cases, since xi0) belongs to the subspace Vect{ � ' ) , one de­

duces th�t Vect{ � ' )  = Vect (� } ,  which shows that the assertion "the deployed 
system :E generates E "  is an invariant of the loop. 

The algorithm �ops when :E becomes independel}t. It fol lows from Propo­
sition 1 1 .4. 1 that :E is also independent. But since :E never stops spannpg E,  
we consclude that it is a basis .  By virtue of the preceding remarks, :E is a 
Jordan basis . 
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11.4.5. A complete example 

Consider the 7 x 7 matrix 

4 14  2 4 7 3 0 
1 3 1 2 1 0 0 
0 4 1 2 2 0 - 1  

A =  - 1  -6 - 1  - 1  - 3  - 1  0 
- 1  2 - 1  -2  2 1 0 
-2  - 1 4 - 1  -4 -7 - 1  1 

I 2 1 0 1 1 2 

whose eigenvalues are A =  2 (with multiplicity 3 )  and f1 = 1 (with multiplic-
ity 4) .  

• Put B = A - 2/ ,  so that the characteristic subspace £2 associated to the 
eigenvalue )... = 2 is the kernel of B3 : 

2 1 4  2 4 7 3 0 
I I I 2 I 0 0 
0 4 - I  2 2 0 - 1  

B =  - I  -6 - I  - 3  -3  - I  0 
- I  2 - I  -2 0 I 0 
-2 - 1 4 - I  -4 -7 -3 1 

2 0 0 

I -2 2 2 - I  0 
0 9 - I  0 4 2 - I  

- I  - 1 0 0 -4 -5 - I  1 
B2 = 0 2 0 I I 0 0 

0 - 1 8  2 0 - 8  - 4  2 
0 8 -2 0 4 1 -2  
I 8 4 4 1 0 

0 8 -2  0 4 I -2 
0 - 1 7 3 0 - 8  - 3  3 
0 6 - I  2 3 0 - I  

B3 = 0 -2 0 - I  - 1  0 0 
0 34 -6 0 1 6  6 -6 
0 - 1 0 3 0 -5 - I  3 
0 -4 0 - 2  - 2  0 0 

We recall7 that B : £2 ----* £2 is n i lpotent and we seek a Jordan basis of thi s  
endomorphism. 

7 The same letter i s  used to denote a matri x and the assoc iated endomorphism in the 
canonical bas is .  
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Examining the powers of B shows that the vector e 1 belongs to £2 and that 
its last exponent is 2. Consequently the vectors ef) , e� 1 ) , e2 are independent 

because they form a deployment of the system 2:' = {e�2) } .  
This remark allows u s  to take a shortcut. Since £2 i s  of dimension 3 ,  the 

deployed system 
- ,  (2 ) ( I ) 2: = {e2 , e2 , e2 J 

is a basis of £2 . Now, we are perfectly within our rights to begin the algorithm 
with the system 2: ' .  But since this system is l inearly independent, the algorithm 
terminates immediately and tel l s  us that �' is desired Jordan basis. 

• Put C = A - I, so that the characteristic subspace E 1 associated to the 
eigenvalue f1 = I is the kernel of C4 : 

3 1 4  2 4 7 3 0 
0 0 
0 - 1  

1 2 I 2 I 
0 4 0 2 2 

c = - I -6 - I  -2 - 3  - 1  0 
- 1  2 - 1  -2 1 1 0 
-2  - 1 4 - 1  -4 -7 -2 1 

1 2 1 0 1 1 1 

6 26 6 
2 1 2  1 

- 1  - 2  - 1  
c2 = -2 - 1 0 -2 

-2 - 1 4 0 
-4 -20 -4 

3 1 2  3 

1 0  44 1 0  
3 1 4  3 

- 3  - 1 2 - 3  
c3 = - 3  - 1 4 - 3  

- 3  - 1 4 -3  
-6 -28  -6 

6 26 6 

1 5  66 1 5  
4 1 8  4 

-6 -26 -6 
c4 = -4 - 1 8  -4 

-4 - 1 8  -4 
- 8  -36 -8 
1 0  44 1 0  

1 0  1 3  6 I 
4 6 2 - 1  
0 - 1  - 1  - 1  

-4 -5  -2 0 
-4 -7 -2 2 
- 8  - 1 0 -4 0 

4 6 3 1 

1 8  22 1 0  1 
6 7 3 0 

-4 -6 -3  - 1  
-6 -7 -3  0 
-6 -7 -3  0 

- 1 2 - 1 4 -6 0 
1 0  1 3  6 1 

28 33 15  I 
8 9 4 0 

- 1 0 - 1 3  -6 - 1  
- 8  -9 -4 0 
- 8  -9 -4 0 

- 1 6 - 1 8 - 8  0 
1 8  22 1 0  1 
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A basis of this  subspace is  formed by the vectors 

!1 = e 1 - e3 , 
h = 2e3 - e4 - 2e7 , 
/3 = e3 - e6 , 
!4 = e2 - 2es , 

last exponent = 2 ,  
last exponent = 0,  
last exponent = 2 ,  
last exponent = 0. 

The first system examined by the algori thm is  

1:" _ { l2) iO) f(2) f (O) } _ 

o - 1 • 2 • 3 • 4 -

0 
1 
0 
0 

-2 
0 
0 

0 0 
0 - 1  
2 0 

- 1  0 
0 2 
0 0 

-2 0 

Since JJ0l = J/2J , we can already el iminate the vector JJ0l :  

1:" = { / (2 ) ! (0) ! (2) } I I ' 2 ' 3 • 
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0 
1 
0 
0 

-2 
0 
0 

Since !?J + /3(
2) = 0, we put fs = f/ 1 J + Jt l and we replace h by fs in 1:;' ,  

which gives the system 

1:" - { !(2) ! (0) ! (0) } -2 - 1 • 2 • S -

Since J/2 J = JtJJ , we can el iminate fs : 

0 
1 
0 
0 

-2 
0 
0 

1:� = { J/2J ' /2c
oJ } 

0 0 
0 1 
2 0 

- 1  0 
0 -2 
0 0 

-2 0 

Since 1:� is independent, the desired Jordan base is �� .  
� � 

By taking the union of the bases 1:'  of £2 and 1:� of £ � .  we define the 
transition matrix 

1 2 I 0 I I 0 
0 I 0 I 0 0 0 

- I  0 0 0 0 - I  2 
P =  0 - 1  0 0 0 0 - I  

0 - 1  0 -2 0 0 0 
0 -2 0 0 - I  0 0 
I I 0 0 0 0 -2 
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and the desired Jordan form is then :  

2 1 0 0 0 0 0 
0 2 1 0 0 0 0 
0 0 2 0 0 0 0 

J = p - 1 A P  = 0 0 0 1 1 0 0 
0 0 0 0 1 1 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

We check the validity of these calculations by verifying that P J = A P .  

11.4.6. Programming 

Everything depends on your level . 

• If you are a beginner, you can write a program to carry out the matrix 
operations. 

• If you are seasoned, you can introduce a procedure to solve the l inear 
system in the preceding program so as to make carrying out the algorithm 
more automatic. 

We recall once again that the Pittelkow-Ruckel algorithm is  not an algorithm 
for numerical calculation; i t  is  only a demystification of Jordan 's theory. Do 
not try to automate the entire program. Program instead some instructional 
software which reserves the thoughtful part (that is ,  the oversight of the cal­
culations and the decisions to take) for the user of the program; if the user 
remains passive, he or she will learn nothing and carry away the impression 
that the theory is  difficult .  

• In order to obtain matrices with a given Jordan form prescribed in advance, 
start with the prescribed form J and compl icate it with succesive elementary 
operations A �  E- 1 A E .  
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Certain mathematical objects are inherently fascinating. Consider, for example, 
the integers or differential equations. What can be more banal than the integers? 
Yet, what riches they hide ! Differential equations are genuine "black holes": 
with the seven characters x" + x = 0, we define the number n and all  of 
trigonometry ;  with one character more, the equation x" + x3 = 0 defines 
periodic functions on lR with distinct periods ! 

Recursion is another "black hole": several l i nes of code can lead to a pro­
cedure seemingly impossible to describe iteratively. It is al so a very fruitul 
programming discipl ine:  a recursive procedure contains its own proof. When 
necessary, standard techn iques of derecursifying 1 allow one to automatically 
transform a recursive code into an otherwise inaccessible i terative code. 

Despite these qual ities, recursion frequently inspires fear in  beginners. 

• It seems mysterious: what does the machine do? How can one understand 
and execute a code that refers only to itself, so that the least imprecision leads 
to a crash? 

• Beginners forget that recursion i s  simply reasoning by induction adapted 
to a computer, and requires only that one know some very simple techniques. 

12. 1.1. Two simple examples 

On can translate the definition of the function n !  that mathematicians use 
directly into Pascal : 

function fact(n : integer) : integer ; 
begin 
I if n _::: I then fact := 1 else fact := n * fact(n - 1 )  
end ; 

1 See D. Krob, Algorithmes et structures de donnees, El l ipses ( 1 989) .  Some individu­
als seek to i ntroduce recursion into every new problem, even if  it seems art ificial  at 
first; one can also explain formidable algorithmes in th is  manner. If th i s  manner of 
thought also fascinates you, I recommend the very original J .  Arsac, Foundations 
of programming, Academic Press ( 1 985)  

12. Recursion
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The first time that one sees code l ike this ,  one is  i s  incredulous. 2 
How can a machine - a set of condensers , interrupters and a clock - under­

stand this summit of the human spirit that is induction, th i s  stupefying means 
that we conceived to master the infinite? We shal l explain this  later at length. 
In the interim, we remark on some features of the syntax . 

• Consider the statement 

fact :=  n *fact(n - I )  

and note the fol lowing nuances:  

• The left of the assignment symbol is  concerned with the definition of the 
value of the function ; thus one finds only the name of the function ; 

• To the right of the assignment symbol ,  one finds an ari thmetic expression . 
An ari thmetic expression can contain one or more function cal ls ,  including 
calls to a function which is in the process of being defined: the compi ler 
sees nothing inconvenient here. Note that here the name of the function 
is  necessari ly fol lowed by its argument in parentheses. 

• The fol lowing test is  essential 

if n :::: I then . . .  

If you forget it ,  to find the value of fact(3 ) ,  your program wi l l  first try to 
calculate fact(2) , fact( ! ) , fact(O) , fact( - I )  , fact(-2) ,  etc . ,  and wi l l  crash when 
its memory is entirely fi l led by the incessant recursive cal ls .  

• The cal l  parameter n i s  passed by value, that is ,  "without var". In fact, if 
we put n in  "var", the compiler wi l l  not accept fact(n - I )  s ince (n - I )  i s  not 
the address of a variable in  memory.3 

A procedure can be recursive;  that is ,  it can call itself. If we l ike, although 
i t  is of no practical interest, we could calculate n !  using a procedure : 

procedure factorial(var y :  integer ; n :  integer) ; 
begin { returns n !  in y} 

if n :::: I then y := I 
else begin lfactorial(y, n - I ) ;  {y = (n - 1 ) ! }  
y : =  n * y {y = n ! }  

end 
end ; 

2 Examine your memories:  didn ' t  you feel the same uneasiness when you first en­
countered the defin ition of the factorial function in  mathematics? 

3 But you could put everyth ing back in  order by dec laring a local variable temp 
and replacing the fau lty code fact := n * fact(n - I )  by temp : =  n - I ; fact : =  
n *fact(temp) .  
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The body of the procedure contains the statements; now a cal l to a procedure 
which itself consists of the procedure which is in the process of being defined 
is a statement l ike any other!  This is the reason that this code is accepted. 

We can define the Fibonacci series as a function 

function Fib(n : integer) : integer ; 
begin 

I if n _:::: 1 then Fib := n {not Fib :=  1 ,  
else Fib :=  Fib(n - I ) + Fib (n - 2) 

end ; 

or as a procedure : 

because Fib (O) = 0}  

procedure Fibonacci (n : integer ; var u : integer) ; 
var y, z :  integer ; { returns Fn in u }  
begin 
if n _:::: 1 then u : = n 
else begin 
Fibonacci(n - 1 ,  y) ; {y = Fn- 1 } 
Fibonacci(n - 2 ,  z) ; {z = Fn-2 l 
u :=  y + z 

end 
end ; 

12.1.2. Mutual recursion 

Suppose that we want to write two procedures A and B each of which cal l s  the 
other, meaning that the code for A contains a call to B and that of B contains 
a cal l to A. How do we type this? Knowing that A contains one or more cal l s  
to  B,  we ought to  type the code for B before that of  A .  But the same rule 
requires that the code for A appear before that of B. We find ourselves in the 
computer science version of the classical chicken and egg paradox.4 

To resolve this di lemma, we use the statement "forward" which allows us 
to detach the declarative part of a procedure from the body of the procedure.  
So, we can write 

procedure A (var x, y : integer) ; forward ; 
procedure B(u : real ; var v : integer) ; forward ; 

Having made the declaration, you can type the fol lowing in the reserved 
parts of the procedures. 

procedure A{ (var x, y : integer) } ; 
{constants , types, local variables, etc. } 
begin 

4 Which appeared first? 
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I code which may eventually contain 
calls to B or to procedures calling B 

end ; 
procedure B{ (u : real ; var v : integer) } ; 
{ constants ,  types, local variables , etc. } 
begin 

I code which may eventually contain 
calls to A or to procedures calling A 

end ; 

1 2 .  Recursion 

• The code for A need not precede that of B. You could, if you wish, write 
the body of B before that of A .  

• Note the comments which allow one to keep i n  sight the parameters of both 
procedures. This  is a very useful techn ique when the heading of the procedure 
is several screens distant from the body ! (Some compi lers are tolerant and 
allow repetition of arguments . )  

• You can use the "forward" procedure with any procedure or function, 
even if there are no mutual cal l s :  some programmers, in  fact, systematical ly 
use forwards so as to never have to move code. 

We shal l see soon a magnificent example of mutual cal l s  (the time-waster) .  
In Chapter 1 3 , we  wi l l  encounter much more elaborate examples. 

12. 1.3. Arborescence of recursive calls 

To understand what a program does during a recursive cal l ,  we construct a tree 
which represents successive procedure cal l s .  Its root is the cal l ing procedure 
and its branches are the procedures called. For example Figure 1 2. 1  displays 
the tree diagramming the recursive cal l s  associated to the statement Fib(4) : to 
execute Fib (  4 ), the program first calculates Fib(3)  and Fib(2) before adding 
them. But call ing Fib (3)  and Fib(2) starts the calculation of Fib(2) ,  Fib ( I )  and 
Fib(O) . 

Precisely what these calculations are does not matter: the tree of recusive 
cal l s  and the route (computer scientists speak of a visit) allow us to understand 
the history of the calulations. 

12. 1.4. Induction and recursion 

What fol lows is the code for the aptly named procedure, mystery. What does it 
do? Do not cheat and look up the answer that fol lows ! Try to discover yourself 
(without turning to a computer or looking at Fig. 1 2 .3 )  what mystery(4) does. 

Also observe your own behavior: one of the goals of the exercise is to 
observe your own reactions. 
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Fig. 12.1. Recursive calls associated to the statement Fib (4) 

procedure mystery(n : integer) ; 
begin 

if n = 0 
then writeln(n : 3 )  
else begin write (n : 3 )  ; mystery(n - 1 )  ; writeln (n : 3 )  end 

end ; 

34 1 

When one poses this question to a beginner, one discovers that he or she 
will reason as fol lows : "Let 's  see, mystery(4) writes 4 then cal l s  mystery(3 ) ,  
which writes 3 ,  then cal l s  mystery(2) , etc ." Our beginner then guesses that the 
procedure begins by writing 4, 3, 2, 1 ,  0 on the screen. A careful beginner wi l l  
even specify that these numbers are written on a l ine because the statement 
write comes into play and not writeln . But then,  the intel lectual mechan ics 
screech to a halt .  

To understand the problem, we sketch the tree of recursive cal l s  (using the 
notation "m" for mystery, "w" for write and "wln" for writeln) .  

We find that the naive method of the beginner consists of plunging into the 
left half of the tree. Unhappi ly, th is  error is  easy to make : the human mind, 
unl ike a program, does not easi ly remember statements which remain in wait :  
the cl imb back to the root of the tree i s  difficult, even impossible ! Experience 
shows that simply reading the code will not suffice: most of the time, the tree 
is too compl icated to be sketched . . .  

What moral should we draw from this experience? One should refuse to 
plunge into a recursive call tree and replace this suicidal plunge with an 
induction hypothesis so as to never leave the code of the procedure. 

To imagine the induction hypothesis ,  i t  suffices to simulate (by hand ! )  the 
cal l s  mystery(O) , mystery( ! ) , mystery(2) and mystery(3) in this order. 

• The first cal l wri tes 0 on the screen and leaves the cursor on the fol lowing 
l ine. 
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_ _ m (4) �-

/· / I � . 
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Fig. 12.2. Traversing the tree of recursive calls in the case mystery(4) 

• Knowing this ,  it  is  not at al l  difficult  to convince oneself that the second 
call writes I ,  0 on the l ine, then a I on the fol lowing l ine, and leaves the cursor 
on the second l ine. 

• When we pass to mystery(2) , we must execute the statements write(2) ,  
mystery( 1 )  and writeln (2) , which writes 2 ,  I ,  0 on the first l ine, I on the second 
l ine,  2 on the third l i ne and leaves the cursor on the third l ine. 

We are now in known territory : induction. 

0 0 2 I 0 
I 
2 

3 2 I 0 

2 
3 

4 3 2 I 0 

I 
2 
3 
4 

Fig. 12.3. Solution: What the calls mystery(O),  mystery( I ) , mystery(2) ,  mystery(3) and 
mystery(4) do. The dot indicates the position of the cursor. 
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Exercise 1 

Try to discover without cheating - that is without using your computer -
what the fol lowing procedures do. 

procedure mystery 1 (n : integer) ; 
begin 
if n .::: 0 then writeln 
else begin 
write (n : 3 ) ; 
mystery2 (n - 1 )  ; 
writeln(n : 3 )  

end 
end ; 

Exercise 2 

Same question with the procedures:  

procedure mystery3 (n : integer) ; 
begin 
if n _::: O 
then writeln 
else begin 
write (n : 3) ; 
mystery3 (n - 1 )  ; 
mystery4 (n - 1 )  
writeln(n : 3 )  

end 
end ; 

12.2. The Ackermann function 

procedure mystery2 (n : integer) ; 
begin 

if n .::: 0 then writeln 
else begin 

I write (n : 3) ; 
mystery 1 (n) ; 

end 
end ; 

procedure mystery4 (n : integer) ; 
begin 
if n .::: 0 
then writeln (n : 3 )  
else begin 

I write (n : 3) ; 
mystery4 (n - 1 ) ; 

end 
end ; 

Another celebrated classic of recursion theory is the Ackermann function . Thi s  
is  a function or  two variables x ,  y E N and a parameter n E N which controls 
its complexity: 

• A (O, x , y) = x +  I ;  

I x if n = I , 
0 if n = 2, A (n , x , O) = 

2
1 if n = 3 ,  

i f  n :::0: 4 ;  

• A (n ,  x ,  y)  = A (n - I ,  A (n , x ,  y - 1 ) ,  x ) if n > 0 and y > 0. 
The translation into Pascal code follows the definition step by step and 

presents no difficulty. The interest of this  function l ies elsewhere :  i t  is  barely 
calculable in a sense that we will not try to make precise. 
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function Ackermann(n, x, y : integer) : integer ; 
begin 

if n = 0 then Ackermann := x + 1 else 
if y = 0 then 
case n of 
1 : Ackermann :=  x ; 
2 : Ackermann :=  0 ; 
3 : Ackermann :=  1 ; 
else Ackermann :=  2 

end { case } 

1 2 . Recursion 

else Ackermann := Ackermann(n - 1 ,  Ackermann(n , x, y - I ) , x) 
end ; 

If you program this function, expect surprises as your computer goes nuts 
very rapidly. 

Theorem 12.2. 1. The Ackermann function is defined on all of N3 and: 

A ( l , x , y) = x + y , A (2 , x , y)  = x · y , 

A (3 , x , y)  = xY ,  A (4, X , y} = 2( r ' ) . 

Proof Before showing that this function is defined on N3 (which is not at all 
evident), let us explicitly work out the cases n = 1 ,  2 ,  3, 4 .  

• A ( 1 ,  x ,  0) = x by definition . Thus, 

A ( 1 ,  x ,  I )  = A (0, A ( 1 ,  x, 0) , x) = (x + 1 )  + 0 = x + 1 ,  
A ( l , x , 2) = A (O, A ( l , x ,  1 ) , x )  = (x + 1 )  + 1 = x  + 2 , 
A ( l , x , 3 ) = A (O, A ( l , x , 2} , x )  = (x + 2) +  1 = x + 3 . 

Induction on y then shows that A ( 1 ,  x ,  y) = x + y .  
• A (2 ,  x ,  0 )  = 0 b y  definition . Thus, 

A (2 , x, 1 )  = A  ( I , A (2 , x, 0} , x) = A  ( I , 0, x) = x ,  
A (2 ,  x ,  2 )  = A  ( I , A (2 ,  x ,  1 } ,  x )  = A  ( I , x ,  x )  = 2x , 
A (2 ,  x ,  3 )  = A  ( I ,  A (2 ,  x ,  2 ) ,  x )  = A  ( I ,  2x , x )  = 3x . 

Induction on y then shows that A (2 ,  x ,  y) = x y .  

• A (3 ,  x ,  0 )  = 1 b y  defini tion . Thus :  

A (3 ,  x ,  1 )  = A (2 ,  A (3 ,  x ,  0) , x )  = A (2 ,  1 ,  x )  = x ,  
A (3 ,  x , 2) = A (2 ,  A (3 ,  x ,  1 } ,  x )  = A (2 ,  x ,  x )  = x · x ,  
A (3 ,  x ,  3 )  = A (2 ,  A (3 , x ,  2) , x )  = A (2 ,  x 2 , x )  = x · x · x .  

Induction on y then shows that A (3 ,  x ,  y )  = x ' .  
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• A ( 4,  x, 0) = 1 by definition. Thus :  

A (4 ,  x , 1 )  = A (3 ,  A (4 ,  x , 0) , x ) = A (3 , 2 ,  x )  = 2x , 
A (4, x ,  2) = A (3 ,  A (4, x ,  1 ) , x )  = A (3 ,  2x , x ) = (2x y  = 2x' , 
A (4, x , 3) = A (3 ,  A (4, x , 2) , x )  = A (3 ,  x2 , x )  = (2x' y = 2x ' . 

We end with an induction on y .  

345 

Now let us determine the domain of defin it ion: do the recursive cal l s  stop 
at each triple? We wi l l  prove this using transfinite induction (Chap. 2) on N3 
endowed with the lexicographic order. 

Let lDl be the domain of definition of the Ackermann function, that is the 
set of triples at which the recursive cal l s  stop . Choose a triple (N ,  X, Y) and 
suppose that A (n ,  x ,  y) i s  defined for al l triples (n , x , y) < (N ,  X, Y ) .  We 
want to prove that A (N ,  X ,  Y )  exists .  

• If N = 0 or f = 0, we know that A (N ,  X ,  Y )  exists because there is  
no recursive cal l .  In other words lDl already contains the triples (0, X ,  f )  and 
(N, X, 0) . 

• If N > 0 and f > 0, the induction hypothesis assures us that the number 
a =  A (N ,  X, y - 1 )  exists because (N ,  X, y - 1 )  < (N ,  X, f ) .  Since we also 
have (N - 1 ,  a, X) < (N ,  X, Y ) ,  the induction hypothesis now implies that 
A (N,  X, Y) = A (N - 1 ,  a, X) is defined . 

12.3. The Towers of Hanoi 

Consider a board on which three equidistant pegs, cal led A ,  B ,  C have been 
stood vertical ly. At the outset, n disks with decreasing radii are positioned on 
rod A so as to form a pyramid. We want to move disks from rod A towards C 
respecting the fol lowing rule :  one can take a disk from the top of a rod in 
order to put i t  on another rod subject to the condition that i t  does not cover a 
disk of smal ler radius ( in  other words, the disks must always form pyramids .  

This  problem appears difficult , but is  very simply solved when one reasons 
inductively. Let us call Hanoi(A , B, C ,  n )  the operation which consists of 
moving the n upper disks of A to C using B as an intermediate rod .  

• If n = 1 ,  i t  suffices to  move d isk  A to  C. 
• If  n > 1 ,  we can begin by moving the n - 1 upper disks of  A to  B (see 

Fig . 1 2 .4) using C as an intermediate peg .  We then move the largest disk of 
A to C, Next, we begin again and move the n - 1 top disks of peg B to C 
this time using A as an intermediate peg . 

The translation into a program is now chi ld's play. 
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(a) 

(b) 

(c) 

(d) 

Fig. 12.4. Tower of Hanoi: (a) initial situation, (b) after Hanoi( A. C. B.  n - I ), (c) after 
move(A , C) (d) after Hanoi( B ,  A ,  C. n - I )  

program to we rs_of _Hanoi ; 
var A ,  B, C : char ; n : integer ; 
procedure move (X, Y : char) ; 
begin 
I writeln ('move disk from peg ' , X, ' to peg ' , Y) 
end ; 
procedure Hanoi(A ,  B, C :  char ; n : integer) ; 
begin 

if n = I then move (A , C) 
else begin 
Hanoi(A ,  C, B, n - 1 ) ; 
move(A , C) ; 
Hanoi(B, A , C, n - 1 )  

end 
end ; 
begin 
write ('number of disks = ' ) ;  readln(n) ; 
A := 'A' ; B :=  'B' ; C :=  'C' ; { this is not a joke ! }  
Hanoi(A ,  B ,  C ,  n) 

end . 

If we sketch (Fig.  1 2.4) the tree of recursive calls for Hanoi(A , B ,  C ,  3) ,  we 
can foresee what the computer will do. But, as we have already mentioned, 
the l imits are quickly attained :  try, for instance, to completely sketch the tree 
of calls for Hanoi(A , B ,  C ,  5) ! 
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Never forget: i t  is an induction hypothesis which allows us to write the 
procedure .  The tree of recursive cal l s  simply allows us to understand the 
Pandora box that we have opened . . .  

H(A,B, C, 3 )  ,.. _ _ 

- - - - - - - - -� 
--� - - - - - - -

-� �----- - - - - - -H(A,C,B.2)  

/.- - - - -
- -
/ 

� 

m(A, C) / H(B

I
A C 2) �· \ 

.- - !>- - ,  

H(A,B, C, I )  m(A,B) H( C,A,B, l )  H(B,C,A , l )  m(B,C) H(A,B, C, l )  

I . - l>- - - - - I I _ . - - l>- - - . _  I 
m(A, C) m(C,B) m(B,A) m(A, C) 

· · - - - - - - -> - - - - - - - - - ·  - - - � - - - - - - - - -
- .,>- - - - - - - - - - - -> · - - ·  

Fig. 12.5. Tree of recursive calls of Hanoi(A , B ,  C ,  3)  

Exercise 3 

Sketch the tree of recursive cal l s  for Hanoi (A , B ,  C ,  4) . 

Exercise 4 

Our program is nevertheless frustrating because it indicates only how one 
needs to move the disks. Why not show the movements of the disks on the 
screen? To do this, we must know the state at each time of the system: that is 
the composition of each of the pyramids on each of the pegs A ,  B, C. Hence, 
the declaration : 

type peg = record 
name : char ; 
ht : integer ; 
ray : array[ 1 . . 1 0] of integer 

end ; 
var A ,  B, C : peg ; 

You initalize the towers with the code : 

with A do begin 
I name := 'A' ; ht := n ; for i := 1 to ht do ray[i] := i 
end ; 
with B do begin name : =  'B' ; ht :=  0 end ; 
with C do begin name : =  'C' ; ht :=  0 end ; 
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It is not necessary to modify the procedure Hanoi, other than the types. In 
contrast, it is necessary to entirely rewrite the procedure move which modifies 
the composition of the pegs (do not forget the "var" ! )  and animates the screen. 

12.4. Baguenaudier 

Bauguenaudier is a centuries old puzzle consisting of interlaced rings and a 
looped double rod which one wants to remove. By pul l ing the rod to the left 
and passing the rightmost ring into onto one side of the rod, one can free the 
ring on the right. 

Fig. 12.6. A baguenaudier 

More generally, on numbering the rings from right to left, one finds that to 
free (or interlace) the ring k ,  it suffices that the k - 2 first rings are free and 
that the (k - I ) -th is in place. This remark allows us to formalize this puzzle 
simply using a ruler with holes and n balls .  The holes are numbered from I 
to n .  One has to fil l  the n holes respecting the fol lowing rules (where to play 

means placing or removing a bal l ) :  

• the ruler is empty at  the outset; 

• a hole can contain only a single bal l ;  

• one can always play hole number I ;  
• one can always play the hole that fol lows the first fil led hole. 
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To better grasp the nuances of the game, we detai l the passage from the last 
row of the array on the left to the first row of the array on the right where 
each row has five holes (see below) .  At the bottom of the array on the left, 
the first occupied hole is hole 2. Thus, we either can play hole 1 (adding a 
bal l )  or hole 3 (removing a bal l ) ,  S ince playing hole 1 leads us backwards we 
remove a bal l from hole 3 .  

To summarize, we  alternately use the two rules since using the same ones 
twice in a row does nothing. 

• 0 0 0 0 0 0 • • 0 0 0 0 • 0 

• • 0 0 0 • 0 • • 0 0 0 0 • • 

0 • 0 0 0 • • • • 0 • 0 0 • • 

0 • • 0 0 0 • • • 0 • • 0 • • 

• • • 0 0 0 • 0 • 0 0 • 0 • • 

• 0 • 0 0 • • 0 • 0 0 • • • • 

0 0 • 0 0 • 0 0 • 0 • • • • • 

Fig. 12. 7. How to play baguenaudier with five holes 

When one plays baguenaudier with three, then four, then five holes, etc . ,  one 
discovers ( involuntary) strategies for fi l l ing or emptying the segment formed 
by holes 1 to p. We formulate an induction hypothesis by supposing that we 
know: 

• how to fill the segment consisting of the first p holes (supposed empty) ;  

• how to empty the segment consisting of the first p holes (supposed ful l ) .  

I f  p :::: 3 and if the segment of  holes 1 to  p is  empty (we make no assumptions 
about the other holes), we can fill our segment by: 

(i) fi l l ing the segment of holes 1 to p - 1 ;  
( i i )  emptying the segment of holes 1 to p - 2 ;  

( i i i )  playing hole p ;  
( iv)  fi l l ing the segment of holes 1 t o  p - l .  

To empty the same segment - supposed ful l  this time - we can : 

( i )  empty the segment of holes 1 to p - 2 ;  
( i i )  play hole p ;  

( i i i )  fi l l  the segment of holes 1 to p - 2 ;  
( iv)  empty the segment of  holes 1 to  p - l .  

The programming i s  immediate . This i s  a splendid example of mutual re­
cursion(where several procedures call one another) . 
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This example also shows that it is practical ly impossible to sketch the tree 
of recursive cal l s  once the situation is compl icated. We are forced to rely on 
induction. 

Declarations 

We represent the baguenaudier by an array of booleans. The constants empty 
and full make the program more readable and make it unnecessary to memorize 
conventions. 

const empty = true ; full : = false ; n = 5 ; 
type table = array[ l . .n] of boolean ; 
var baguenaudier : table ; 

The main body of the pogram is the simplest part. 

begin 
message ; 
for i :=  1 to n do baguenaudier[i] :=  empty ; 
fill_segment(n) 

end . 

The procedures .filLsegment and empty_segment 

These procedures faithul ly translate the strategy we have written.  S ince the 
procedures mutual ly call one another, we use the "forward" statement.  

procedure filLsegment(p : integer ; var baguenaudier : table) ; 
forward ; 
procedure empty_segment(p : integer ; var baguenaudier : table) ; 
forward ; 

We now write the bodies of the procedures. 

procedure filLsegment ; 
begin { the holes 1 to p are empty ; afterwards, one doesn't know} 
case p of 
1 : play_hole ( 1 ,  baguenaudier) ; 
2 :  begin 

I play_hole( 1 , baguenaudier) ; 
play_hole (2 ,  baguenaudier) ; 

end 
else {now, p :::: 3 }  
filLsegment(p - 1 ,  baguenaudier) ; 
empty_segment(p - 2, baguenaudier) ; 
play_hole (p, baguenaudier) ; 
filLsegment(p - 2 ,  baguenaudier) ; 
end { case } 

end ; 
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The separation of cases n = 1 ,  2 from the general case n ::: 3 is nei ther 
capricious nor happenstance ; rather i t  is  a consequence of attentively exam­
ining the strategy employed. S ince it needs a segment that contains at least 
three holes, we are obl iged to treat the cases with one or two holes separately. 

procedure empty_segment ; 
begin { the holes 1 to p are full ; afterwards, one doesn't know} 
case p of 
1 : play_hole( 1 ,  baguenaudier) ; 
2 :  begin 

I play_hole (2 ,  baguenaudier) ; 
play_hole ( 1 ,  baguenaudier) ; 

end 
else { now, p ::: 3 }  
empty_segment(p - 2 ,  baguenaudier) ; 
play_hole(p , baguenaudier) ; 
filLsegment(p - 2 ,  baguenaudier) ; 
empty_segment(p - 1 ,  baguenaudier) ; 

end { case } 
end ; 

Programming is straightforward : it remains to write the procedure play_hole 
(several l ines of code to modify and display the new baguenaudier) . 

12.5. The Hofstadter Function 

The Hofstadter function5 is defined as fol lows: 

G (n )  = 
{ 0 

n - G (G (n - 1 ) ) 
if n = 0, 
if n ::: 1 .  

Here are its first values; i t  i s  not at all c lear that this function i s  defined on al l 
of N !  

n 0 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  

G (n )  0 1 1 2 3 3 4 4 5 6 6 7 8 

This function has a surprising interpretation . Recall (Chap. 8) the Zeckendorf 
decomposition of an integer ::: 1 :  

n = F; , + F;2 + · · · + F;k ' i 1 » i2 » · · · » h » 0. 

Theorem 12.5. 1. With Zeckendorf decomposition as above, we have 

G (n )  = F; , - 1 + F;2 - ! + · · · + F;k - 1 · 

5 See Chapter 5 of the book Douglas R. Hofstadter, Godel, Escher, Bach: an eternal 
golden braid, Basic Books ( 1 979) .  
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Proof This theorem is proved rather simply by induction on n. Try i t !  

Proposition 12.5.1 .  The Hofstadter function is  defined on N. 
Proof Upon trying to reason by induction, we suppose that p = G (n - 1 )  
exists, so G (n ) = n - G ( p ) .  We then realize that we also need precise infor­
mation about G (p ) ,  we leads us to formulate a strong induction hypothesis :  { The function G is defined on the interval [0, n]  and 

1 _::: G (k)  _::: k - 1 for all k E [2, n] .  

The rest of  the proof is  left to  the reader. 

Exercise 5 

The values of the function G for n _::: 1 2  suggest that the function is increasing 
and does not grow very fast since G (n + 1 )  - G (n ) _::: l .  Is this true? What 
about the same conjecture with the inequal i ty G (n + 2) - G (n)  2: 1 which 
says that G cannot take the same value more than twice in  a row? 

12.6. How to Write a Recursive Code 

Suppose that we want to write a recursive procedure toto(x ,  n )  depending on 
two integer parameters x ,  n 2: 0. 

• We begin by examining the general case, trying to express toto(x , n )  with 
the aid of one or several cal l s  to toto . Suppose, in the first approximation , that 
our analysis gives us five statements 

A (x , n ) ;  
toto(x - 1 ,  n + 1 ) ;  

toto (x , n )  = B (x ,  n ) ;  
toto(x ,  n - 1 ) ;  
C (x , n )  

( 1 2. 1 )  

where A ,  B ,  C are three procedures that do not modify the values of x and n 
and which do not call toto (directly or indirectly) .  

• This  rough sketch shows us that we do not have the right to use ( 1 2 . 1 )  
when x - 1 < 0 or n - 1 < 0: we must treat the pairs (0, n ) ,  (x , 0) separately. 
We must assure ourselves that A ,  B ,  C function correctly. Suppose that A 
and C do not require anything, but that B(x ,  n )  does not function for n 2: 2, 
which now prevents us from using ( 1 2 . 1 ) with the pairs (x , 0) and (x , 1 ) .  

• We treat the exceptions separately. Suppose that: 

t> toto(x , 0) is  the procedure a (x ) if x > 0; 
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1> toto(x , 1 )  is the procedure f3 (x ) if x :::_ 0 ;  
1> toto(x , 2) i s  the procedure y (x ) if x :::_ 0; 
1> toto(O, n )  i s  the procedure 8 (n)  if n :::_ 0. 
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(We again suppose that the procedures a,  {3 ,  y ,  8 do not call toto either directly, 
or indirectly. ) 

• It suffices to assemble the pieces taking care to treat the pair (0, 0) which 
is  common to the pairs (0, n) and (x , 0) separately :  

procedure toto(x, n : integer) ; 
begin 
case n of 
0 :  if x > 0 then a (x) else 8 (0) ; 
1 : fJ (x) ; 
2 :  y (x) ; 
else {henceforth n :::_ 3 }  
i f  x = 0 then 8 (n) else begin 
A (x, n) ; toto(x - 1 ,  n + 1 ) ; 
B(x, n) ; toto(x, n - 1 ) ;  
C(x, n) 

end 
end { case } 

end ; 

As you can see, the appearance of stops in recursive cal ls  does not happen 
at random, as beginners very frequently think;  i t  results from a careful analysis 
of the impossible cases of the general case. 

Exercise 6 

Show that the recursive cal ls  of the procedure toto stop. (Use transfinite in­
duction . )  

12.6.1 .  Sorting by dichotomy 

We examine a more concrete case, We are required to sort6 a vector containing 
integers . If we start with 

u = (5 , 6 ,  1 ,  1 ,  1 , 5 , 5 , 2 , 3 , 9 , 7 , 8 , 8) 

the sorted vector i s :  

U ' = ( 1 ,  1 , 1 , 2 ,  3 ,  5 ,  5 ,  5 ,  6 , 7 ,  8 ,  8 ,  9) . 

6 Sorting algorithms are essential in management, which explains the considerable 
number of algorithms proposed. 
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We can sort this vector by dichotomy, which means that we cut the vector into 
two equal parts (up to a unit) :  

U1 = (5 ,  6 ,  1 ,  1 ,  1 ,  5 ) ,  u2 = ( 5 ,  2 ,  3 ,  9 ,  7 ,  8 ,  8 ) .  

We then sort the lower part U1 and the upper part U2 separately, which gives 
us the vectors : 

u; = ( 1 ,  1 ,  1 , 5 ,  5 ,  6) , u� = (2 ,  3 ,  5 ,  7 ,  8 ,  8 ,  9) . 

We now merge the vectors u; and U� to obtain the sorted vector U' . This 
operation is  very simple: we consider the first elements of u; and U� . Since 
1 < 2, we know that the first element of U is 1 ;  we strike out the first element 
of u; and we begin again .  

To obtain a recursive formulation, w e  suppose that w e  have a procedure 
sort (U ,  p ,  q )  capable of sorting the sub vector (UP ' . . . , Uq ) without modifying 
the other entries. To sort U, i t  suffices to type the statement sort( U,  1 ,  n ) .  

Now, a rough sketch of our algorithm is :  j m : =  (p  + q )  div2 ;  

sort (U ,  p ,  m ) ;  
sort(p ,  q ,  x )  = 

sort (U ,  m + 1 ,  q ) ;  
merge (U ,  p ,  m , q )  

{splitting the vector} 
{sorting the lower part} 
{sorting the upper part} 

Consider now the problem of stopping. To speak of the subvector UP ' . . .  , Uq 
implicit ly assumes that 1 ::: p ::: q ::: n .  As a result ,  the conditions p ::: m ::: q 
and m + 1 ::: q must hold in order to sort the lower and upper parts correctly. 

• These conditions do not hold when q = p ;  happily, there is nothing to do 
in this case . 

• When q - p = 1 ,  it would be stupid to use a dichotomy to exchange two 
coordinates.  

• When q - p :=:: 2,  the condition p < m < q is real ised. 

We now know enough to write out our sorting algorithm. 

procedure sort(var U : vector ; p ,  q : integer) ; 
var m :  integer ; {hypothesis 1 ::: p ::: q S n }  
begin 

if (q - p = 1 )  and (U[p] > U[q] ) 
then exchange( U, p, q) 
else if q - p > 1 then begin 

I m := (p + q) div 2 ; 
sort (U, p , m) ; sort (U, m +  1 , q) ;  merge( U, p , m, q) 

end 
end ; 
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Recal l that the test q - p > 1 i s  indispensable because i t  i s  especial ly 
essential to do nothing when p = q .  

You see that this was not too hard ! It suffices to be rigorous; that i s , to reflect 
a l i ttle and to ask ourselves (just as we would for mathematics) whether the 
objects we employ exist and if they satisfy the conditions necessary to function 
wel l .  

Exercise 7 

Finish the program by writing the procedures merge and exchange. 

Exercise 8: The Count is Good 

Instead of the clumsy approximation in Chapter 6, th i s  time we want to re­
al ly program the popular French TV game. Recal l the rules: one wants to 
calculate an integer which we call the goal drawn at random between 1 00 
and 999. For this ,  we are given six numbers chosen at random from among 
the numbers 1 ,  2 ,  3, 4 ,  5, 6, 7, 8, 9 ,  1 0 , 25 , 50, 75 and 1 00. The intermediate 
calculations happen in N* (no negative numbers or zero; divisions must have 
remainder zero) .  Final ly, one is  not obliged to use al l the numbers to reach 
the goal . 

Suppose that we want to "real ize" b with the integers a 1 , • • •  , ak : 
• if one of the a; is equal to b, we are done; 

• otherwise, and if k 2: 2, we suppress the numbers a; and a 1 in the l i st 
a � .  . . .  , ak and we add in one of the numbers a; + a1 , a; - a1 if a; > a1 , a1 - a; 
if a1 > a; , a; * a1 , a; /a1 if a1 divides a; or a1 ja; if a; divides a1 and a1 =I- a; 
(this avoids repeating the preceding case) .  

It is  of course necessary consider all possible pairs 1 � i < j � k. 
To display a solution, each ak i s  accompanied by the string soh which is  i ts  

"history" that is ,  the recipe to manufacture ak . 
• At the outset, soh is the result of converting the integer ak into a chain 

of characters. When one replaces, for example, ak by a; - a 1 , one must, at 
the same time, replace soh by the concatenation of the chain sol; , ' - ( ' , sol 1 
and ' ) ' . One does the same with the other operations . 

In this manner, the value of the chain soh , which involves only the opera­
tions between the a; at the outset, is  always equal to the current value of ak · 

We use constants to name the four operations 

const max = 6 ;  {first test your program with max = 4} 
addition = 1 ; substraction = 2 ; 
multiplication = 3 ; division = 4 ; 

type vector = array[ I . .max] of integer ; 
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string 1 00 = string[ 1 00] ; 
history = array[ l . .ma.x] of string i OO ; 

procedure realize(a : vector ; h : history ; nb : integer) ; 
var i ,j ,  k, op , temp, new_nb : integer ; 

new_a : vector ; new_h : history ; 
begin 

for i : = I to nb do 
if a[ i] = b then display(h[i] ) ; 

if nb > I then begin 
for i : = I to nb do 
for j : = I to nb do 
for op := addition to division do begin 
new_a := a ;  
new_h :=  h ;  
new_nb :=  nb - I ; 
case op of 
addition, multiplication : begin 

1 2 . Recursion 

I if i < j then combine(a , new_a, h, new_h, i , j ,  op , new_nb) ; 
{ commutative laws : test i < j avoids repetition } 

end ; 
substraction : begin 
if a[i] > a[j] 
then combine(a , new_a,  h ,  new_h, i ,j, op, new_nb) else 
if a [i] < a[j] 
then combine(a, new_a, h, new_h , j, i, op , new_nb) ; 

end ; 
division : begin 
if a[ i] mod a [j] = 0 
then combine(a, new_a, h ,  new_h,  i ,j ,  op , new_nb) else 

if (a[j] mod a[ i] = 0) and (a[j] =/= a[ i ] )  
{ test a [j] =/= a[i ]  avoids repetition } 

then combine(a , new_a,  h ,  new_h ,j ,  i, op , new_nb) 
end ; 

end ; { case } 
realize(new_a,  new_h, new_nb) { recursive call} 

end 
end 

end ; 

The procedure display tries not to write the same solution twice. 

The procedure combine i s  straightforward : let 

ind_min := min (i ,  j ) ;  ind_max :=  max ( i ,  j ) .  

We replace a;nd_min by a ;  op a j and we shift al l  ak for k :=:: ind_max to the left; 
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procedure combine (var a, new_a : vector ; var h, new_h : history ; 

var k, ind_min , ind_max : integer ; 
begin 

i ,j ,  op , new_nb : integer) ; 

if i < j then begin ind_min : =  i ; ind_max : =  j end 
else begin ind_min := j ; ind_max := i end ; 

case op of 
addition : begin { i  < j satisfied at the call } 

I new_a[ind_min] :=  a[ i] + a [j] ; 
new_h[ind_min] :=  parenthesize(h [i] , 1 +1 , h[j] )  ; 

end ; 
substraction : begin { one has i < j or j < i }  

I new_a[ind_min] :=  a[ i] - a[j] ; 
new_h[ind_min] : =  parenthesize (h[ i] , 1 - 1 , h[j] ) 

end ; 
multiplication : begin { i  < j satisfied at the call } 

I new_a[ ind_min] :=  a [i] * a [j] ; 
new_h[ind_min] :=  parenthesize (h[ i] , 1 *1 , h[j] )  ; 

end ; 
division : begin {one has i < j or j < i }  

I new_a[ind_min] :=  a [ i] d iv  a[j] ; 
new_h[ind_min] :=  parenthesize (h[i ] , 1/ 1 , h[j] )  

end ; 
end ; { case } 
for k :=  ind_max to new_nb do begin 

I new_a[k] := a[k + 1 ]  ; 
new_h[k] :=  h[k + 1 ]  ; 

end 
end ; 



For a beginner, the compi ler is a mysterious being, at once very inte l l igent 
("Incredible, i t  understands my program !")  and abysmally stupid ("How could 
it not accept an otherwise correct program that i s  missing a tiny semicolon !" ) .  
You should understand that a compiler is  on ly  one program among others . 
Its role is to faithfully translate the text submitted to it into another text com­
prehensible to the microprocessor: 

G:) ------> I Compiler 1 ------> 

� ----+ I Compiling by hand 

Fig. 13. 1. 

We are going to sketch answers to the fol lowing questions :  

• What does the compiler's translation look like? How does it handle pro­
cedure and function cal l s?  How does recursion function? 

• How does the compiler translate a program? 

13.1 .  Pseudocode 

In Chapter 6, we presented a model for how a procedure passes parameters . 
Given the declaration 

procedure toto(a : parameter) ; 

we supposed that the program created the variable x_toto each time it encoun­
tered the statement toto(x) and modified the code of the procedure by replacing 
the occurrences of a by x_toto suitably initialized. 

13. Elements of compiler theory
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This  very convenient model is not realistic for at least two reasons. 

• A program written in Fortran, Pascal or C cannot modify its own code. 

• A microprocessor can only carry out one addition or one multipl ication 
at a time. We have not explained what becomes of complicated statements 
such as y : = a *  x * x + b * x + c. 

When you want to understand the reactions of another individual , an ef­
fective techn ique is to ask yourself: "What would I do in his or her place?'' 
To understand what a compiler does, we are going to put ourselves in its place 
and translate our programs into a language called pseudocode. 

13. 1 .1 .  Description of pseudocode 

We return a last time to our unreal istic model and suppose that toto is recursive: 
the statement toto(x )  then results in the creation of the variable x_toto. But 
since toto cal l s  i tself, the statement toto(x_toto) results in turn in the creation 
of the variable x_toto_toto, etc . :  

x_toto r+ x_toto_toto r+ x_toto_toto_toto r+ x_toto_toto_toto_toto r+ · · · . 

Thus, we see the appearance of a stack structure beloved by computer scien­
tists. 

Our pseudocode will resemble - but be much simpler than - the statements 
emitted by a true compiler; i t  is  a a very rudimentary assembly language. We 
are are going to give orders to an imaginary microprocessor which only knows 
how to add,  subtract and multiply two integers. For this, the microprocessor 
runs  a stack. 

[ 0 l 
[ - I )  
[-2) 

Stack 

add 
sub 

mult 

push 

pop 
Program variables 

• The avai lable variables are a ,  b ,  . . . , z ;  all of integer type ; 

• The stack stores certain information and intermediate calculations. 

We do not translate programs which use complex objects such as arrays. 

Let stack[i] denote the plate that is  at height i in  the stack and let stack[top] 
denote the top of the stack. The plate stack [top - €] is noted [-e ) ;  one says 
that the integer e i s  the offset of the plate with respect to the top of the stack. 
Thus, the top of the stack is  denoted [0] , the plate below by [ - 1 ] ,  etc. 
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To start, one can consider a program as a long chain of characters . To 
faci l i tate the discussion we agree on the fol lowing terminology : 

• a constant is a chain of characters which represents an unsigned integer: 
1 999 is a constant ;  

• a variable is  one of the characters a, . . . , z ;  
• a stack reference i s  a chain of characters such as [0] , [ - 1 ] , etc . ; 

• a term is a chain of characters which is a constant, a variable or a stack 
reference: 1 5 1 5 ,  a, [0] , [-2]  are terms ; 

• a signed term is a term potentially preceded by a minus sign :  the chains 
1 5 1 5 ,  - 1 5 1 5 ,  a, -a, [0] , - [0] , [-3 ]  and - [-3]  are signed terms;  

Syntax Meaning 

read a grab the value of a 
write a write the value of a 
write . . .  write the chain of characters which 

follows "write " if it is of length > I 

a =  12  a :  1 2  
a = b  a := b 
a =  -b a := -b 

push ? top :=  top + 1 (stack indefinite value) 
push @a top := top + I ; stack[top] := @a (stack the address of a) 
push T top :=  top + 1 ; stack[top] :=  T 

(stack the value of the signed term T)  
pop top :=  top - I (remove once from stack) 
pop n top :=  top - n (unstack n 2: 1 times) 
pop a ,  pop @a a := stack[top] ; top :=  top - 1 
pop [ - i] stack[top - i] := stack[top ] ;  top :=  top - 1 
add stack[top - I ]  :=  stack[ top - 1 ]  EB stack[top] ; top :=  top - 1 
sub stack[ top - I ]  :=  stack[ top - 1 ]  8 stack[top] ; top :=  top - 1 
mult stack[top - 1 ]  := stack[ top - 1 ]  ® stack[top] ; top := top - 1 
end return control to the system 

Table 13. 1. A first set of pseudocode statements 
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The push statement 

This statement stacks a value or an address: "push x" stacks the value of the 
variable x ,  "push T" stacks the values of the signed term T and "push @x" 
stacks the address of x .  

Suppose that the top of the stack contains the number 1 2 . I s  this a value or 
an address? We suppose that our imaginary microprocessor knows ; when we 
program we wi l l  solve this l i ttle problem using a record. 

The pop statement 

This removes plates from the stack and is inflected in two ways: 

• When one does not need to keep the contents of the plates, one writes for 
example "pop 3" to remove three plates . The statements "pop" and "pop I "  
are equivalent. 

• When one wants to recover the top of the stack, one writes :  
1> "pop x"  to transfer the top of the stack into variable x before re­

moving it from the stack ( in Pascal this is written x :=  stack [top] ; 
top :=  top - I ) ; 

1> "pop [-2]" to transfer the top of the stack to the level top - 2 before 
removing i t  from the stack ( in  Pascal , this is  written stack [top-2] := 
stack [top ] ; top := top - 1 ) . 

The statement add 

The idea is the remove the two first plates, add their  contents, and place 
the result in the top of the stack. But,  since the stack can contain both val­
ues and addresses and since adding two addresses or a value and an address 
does not make sense, the statement "add" uses the operation El1 instead of the 
usual "+". This  modified addition first converts possible addresses to values. 
Consequently, 

• if the two plates contain values, El1 adds them without further ado ; 

• if one plate contains an address, El1 first replaces the address by the value 
of the corresponding variable before taking the sum (thus, 5 E!1 @b means add 5 
and the value of the variable b) .  

We specify :  the first operand i s  always the plate [ - 1 ] , the second i s  [0] . 
The interpretation of the symbols e and ® is s imi lar (see Fig. 1 3 . 1  ) .  

Examples 

1 )  To translate the statement x : = a +  (b - c) * x + 1 5  into pseudocode, 
we note (without touching the stack) that the final result must be put in the 
variable x ;  we then run through a +  (b - c) * X + 1 5  from left to right which 
leads us to stack a, b, c ,  x ,  1 5  and to perform the additions, subtractions and 
multip l ications at the appropriate time: 
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Fig. 13.2. Effect of "sub " on the top of a stack (the first operand is below). There are 
four possible configurations (here, a =  5 and b = 1) 

100 push a 105 mult 
10 1  push b 106 add 
102 push c 107 push 15  
103 sub 108 add 
104 push x 109 pop x 

When the translation of a + (b - c) * x + 1 5 is fin ished, we transfer the 
resul t  to the variable x using a "pop" (which empties the stack) .  To better 
understand the meaning of the pseudocode, we sketch the successive states of 
the stack when a = 1 ,  b = 1 0, c = 7 and x = 1 2 . 

rwl � 131 1
1
3
2
1 [361 fT5 ITJ � LiJ � 1 � [EJ li!_j �X 

1 00 1 0 1 102 103 1 04 1 05 1 06 107 1 08 1 09 

The final value is thus x = 52 (and the stack is empty) .  

2) We end this  first encounter by examining the tran lation into pseudocode 
of the statement x := (a - u - v ) - (b - v - w) - (c - w - u ) .  

100 push a 200 push b 300 push c 400 pop x 
101  push u 201 push v 30 1 push w 
102 sub 202 sub 302 sub 
103 push v 203 push w 303 push u 
104 sub 204 sub 304 sub 

250 sub 350 sub 

The first column contains the translation of a - u - v and the second that 
of b - v - w ;  the "250 sub" stacks the difference (a - u - v ) - (b - v - w ) ;  
the fird column contains the translation of c - w - u and the "350 sub" stacks 
( (a - u - v ) - (b - v - w) ) - (c - w - u ) . 

Recal l that addition, subtraction and multipl ication are associative from the 
left, which means that evaluation is made from left to right; in other words, 
the translation of a + b  + c + d  + e i s  the same as that of ( ( (a + b) +  c) + d) + e. 



364 1 3 .  Elements of compiler theory 

Branching statements 

You have certainly noticed the integers which precede each statement in the 
preceding examples. These integers are called addresses. They form an increas­
ing sequence which allows us to better structure our pseudocode by cutting it 
into segments of consecutive integers . 

The program which executes the pseudocode uses a global variable which 
we cal l the control variable and which contains the address of the statement 
to execute. 

As a general ru le, the program executes statements sequentially, that is ,  one 
after the other. This  effect is obtained simply by suitably incrementing the 
control variable after each statement. 

There are, nevertheless, cases where the program must branch to a statement 
which is  not the one immediately fol lowing. This can be real ized in three ways. 

The if goto statement 

This statement compares plates, variables or constants. When it compares two 
plates, they must be [0] and [- I ] ; when i t  compares a plate and a variable or 
constant, the plate must be [0] . 

100 if [OJ > [ - 1 J got o 200 
10 1  if x = [OJ got o 201  
102 if [O J  _::: 37 got o 202 

103  if [O J  =f. n goto 200 
104 if x :::: y goto 201 
105 if a _::: 9 goto 202 

The if goto statement is  executed as  fol lows: 

• the program performs the indicated test; 

• i t  then removes the plate or plates to be used (the statement I 00 removes 
two plates, the statements 1 0 1- 1 03 remove a single plate and the last two 
statements leave the stack intact because the test does not use any plate) ;  

• if the test succeeds, the program leaves to execute the statement whose 
address figures after the goto ( in  other words, the canto! variable stores this  
address) ;  

• if the test fai l s ,  the program goes to the following statement. 

The ifx goto statement 

This statement is a variant of the if goto statement. S ince the sequence in­
creases the translation into pseudocode of a l i ttle program can be fairly long. 
So sometimes we may find ourselves cheating a l i ttle by optimizing certain 
translations - that is ,  by writing a shorter, more intel l igible pseudocode than 
that produced by a compiler. 

100 ifx [ -2J > 0 got o 200 
101 ifx [OJ = [ - 3J got o 201  
102 ifx a _::: [O J  got o 202 
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In contrast to the preceding statement, the ifx variant (where "x" signal s 
exception) allows us to directly compare plates, a variable or a constant .  This 
command does not remove any plates and thus leaves the stack intact. 

The goto statement 

This statement results in a mandatory branching (that is ,  without a preliminary 
test) : "goto 200" means control := 200; there is no change to the stack. 

The return statement 

One can translate this statement in a viv id ,  but i l legal , way as "pop control" 
(this i s  " i l legal" because control i s  not one of the variables a, b, . . .  , z) . How­
ever, it does make clear that i t  means that the program transfers the number 
at the top of the stack into control and then removes the top plate. 

The programmer must arrange, however, that the top of the stack contains 
the address of an statement at  the moment of a "return". 

13.1.2. How to compile a pseudocode program by hand 

S ince our goal is to understand how a compiler functions, we are going to 
imitate its behav ior as faithful ly as possible. 

The compiler reads the program from left to right and translates i t  as i t  goes 
along without waiting. 

We need to beware of thinking of ourselves as compilers. A compiler has 
no global v ision of the text :  i t  only sees a single word (or token) at a time, 
i t  systematical ly forgets what it has read (but consults notes that have been 
taken: the value of a variable, the type of a variable, the dimensions of an 
array, etc . ) ,  i t  never sees the word fol lowing or the word preceding, i t  never 
backs up to reread something. A compiler advances inexorably without pauses 
towards the end of the program. 

A compiler is  a program. In other words, i t  is  a set of reflexes released 
by reading the current word, or even the current character (a parenthesis ,  for 
example). We must learn to do the same. 

The stack serves to store certain information (the parameters of a function 
or procedure, local variables, the address of a variable, return address) or 
intermediate results ( to calculate a + b * c ,  we must first find and store the 
value of b * c before adding i t  to the number a ) .  

Each time that w e  finish translating a sequence, w e  emit the necessary 
instructions which will clean up (notice the future tense) the stack by removing 
plates which have no further use so that the program restores (when it is  
functioning) the stack to the state in which it found it .  The examples that 
follow wi l l  make this prec ise. 



366 1 3 .  Elements of compiler theory 

A last remark: in our explanations, we will mix the compilation (the present) 
and the execution of the pseudocode (the future) because it is difficult to give 
a order without trying to imagine the result it provokes . 

13. 1.3. Translation of a conditional 

Consider the following fragment of code: 

if x + a > y * y + y then a else f3 ; y 

We suppose that the translations of a and f3 leave the stack intact: 

Stack 

Execution of alpha and hew 

When the compiler meets an "if" , it knows that it is going to encounter one 
or more tests that i t  must translate as i t  goes along. We imitate it faithfully. 

• We begin by translating the expression x + a ;  we let P denote its value 
(which wil l  stay in the stack) . This done, we memorize mental ly (without 
emitting code) the fact the comparison is " > ", then we translate the expression 
whose value we denote Q and stack above P .  

• When we meet the "then", we emit the code that compares P and Q using 
the opposite test P S Q which allows branching to the code of f3 (beginning 
with statement 300). But since we have not yet translated a or {3 ,  we hold 
in reserve the address after the goto of statement 300. (Recall that the test 
"if [- 1 ]  S [0] go to" results in the removal of the plates containing P and Q . )  1 100 push x 

"push P" 10 1 push a 102 add 1 200 push y 201 push y 
"push Q" 202 mul t 203 push y 204 add 

300 if [ -1] S [0] goto  600 400 l 
. . . code for a 
499 500 got o 700 (skip f3) 600 l 
. . . code for f3 
699 700 start of the code for y 

• We then read and translate the fragment of code a .  
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• When we meet the "else", we know that the translation of a is  finished; we 
emit an unconditional "goto" (statement 500) which allows us, at the moment 
the pseudocode i s  executed, to skip over to the translation of {3. But s ince we 
sti l l  do not know where thi s  translation ends, we hold in reserve the address 
of this "goto". By contrast, since we now know where the translation of f3 
begins, we return backwards in the pseudocode to complete the "goto" at 300 
before beginning to translate f3 .  

• When we meet the semicolon, w e  know that the translation of f3 i s  finished; 
we then return once more backwards to complete the "goto" in 500 before 
passing on to what follows. 

Remarks 

• When the execution of the pseudocode ends, we can be certain that the 
stack is  intact since a and f3 each leave it intact .  

• Recall that a compiler never goes backward in the program source code. 
In contrast, we see that it does so as often as necessary in the pseudocode to 
complete the addresses that are left standing by after the "goto"s .  

• Why use the opposite test? Try i t :  if you translate the conditional whi le 
keeping the test intact, you wi l l  be obliged to put the translation of f3 before 
that of a .  Since the compiler cannot go backwards in the program source code, 
this strategy would oblige it to store some part of the translation of a while 
waiting to be able to write it .  

• The mechanical translation of the embedded conditionals makes "flea 
jumps" (statements 300 and 500 below) appear. A good compiler knows to 
avoid this  by writ ing directly "goto 700" in 300. 

Exercises 1 

if p > 0 
then if q = 1 

then a 
else f3 

else y ; 8 

100 if p ::: 0 got o 600 
10 1  if q =f. 1 got o 400 
200 . . .  299 code for a 
300 got o 500 
400 . . . 499 code for f3 
500 got o 700 
600 . . . 699 code for y 
700 . . . code for 8 

1 )  Translate the embedded conditionals into pseudocode: 

if p > 0 
then if q = 1 

then x :=  x + (a * b - c) + y 
else if u = 2 

then u : = u + v - w 
else z : =  x + y - (u + v - w) * (a + b) 
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2) When the test is complicated 

if (p > 0) or (q = 2) then a else f3 

use the fol lowing scheme: 

if p .:::: 0 got o ( next test) 
got o (start of a)  
if q =f. 2 got o (start of {3 )  
(start of the code for a)  
got o (after {3 )  
(start of the code for {3 )  

Reading a n  "or" o r  a n  "and" then elicits the same reaction a s  meeting a 
"then" does :  emission of the opposite test and emission of a "goto" that i s  
provisionally incomplete and that branches to  certain sections of code. 

3 )  Translate : 

if (p > 0) or (q = 2) and (r < 3) or (s > 4) 
then if (u = 5 )  and ( v  = 6) 

then a else f3 

13. 1.4. Translation of a loop 

Consider the loop: 

while i * i + I < i + m do a 

We suppose that the translation of a restores the stack to what it was at the 
moment of execution 100 push i 10 1 push i 102 mult 103 push 1 104 add 105 push i 106 push m 

107 add 108 if [ - 1]  > [0] got o 201 { exit of the loop ) �-0·9 ] code for a { body of the loop } 199 200 got o 100 { return of the loop } 

• When the compiler meets a "while", it stores the number of the statement 
that i t  is  going to write (note the future), because this i s  where the loop wil l  
begin .  

• We are fami l iar with the translation of i * i + I < i + m (remember that 
the plates P = i * i + I and Q = i + m are automatical ly removed after the 
test 1 08) .  

• The statement 200 effects the return of the loop us ing the address stored 
while reading the "while". By proceeding this way, we are certain to leave the 
stack intact .  
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Exercise 2 

Translate the two loops 

for i : = 1 to n * n + 1 do s : = s + i ; 

repeat d : =  d + 1 until d * d > n 

13. 1.5. Function calls 

369 

In order to famil iarize ourselves with this  mechanism, we analyse the transla­
tion of statement 

s := x + square(y)  + z 
where square is the function which squares its argument. (The snapshot of the 
stack after 1 002 to the left of the code wi l l  help you to understand and check 
the offsets . )  

y2 1000 push [0] 100 push x 105 add 1001 push [ -1 ] 
y 

.<tack y' l 10 1 push ? 106 push z 1002 mult 
1 05 102 push 105 107 add 1003 pop [ -3] 
? 103 push y 108 pop s 1004 pop 
X 104 got o 1000 200 end 1005 return 

The sequence I 0 1 - 1  04 comprises the function call: 
• We begin by stacking an indefinite value (symbol ized by the question 

mark);  this value will ultimately be replaced by the value of the function. 

• We stack above the return address; that is ,  the address of the statement 
to execute when the function code finishes (i. e. when the question mark is 
replaced by the value of the function) .  This address (unknown for the moment) 
is  that which fol lows the "goto 1 000" . 

• We stack the value of the parameter y of the cal l .  

Note the ( indispensable) presence of  the "end" (statement 200) .  I f  one for­
gets it , the program would penetrate into the function code instead of stopping. 

The compilation of this function is  easy to understand :  

• Throughout the entire time during which the function cal l lasts we keep 
the plates ? , I 05 , y intact (by working above the stack) .  

• When we finally find the value of square (y) , we transfer it to where the 
question mark is and remove the plates needed to free the return address. 

To summarize, the sequence I 0 1 - 1 04 amounts s imply to saying: 
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y y 

y y y y y y 

� m  1 05 1 05 1 05 1 05 1 05 1 05 � ? ? ? ? ? l 
0 X X X X X X ld 
1 0 1  1 02 1 03 1 04 1 000 1 00 1  1 002 1 003 1 004 1 005 1 05 

Fig. 13.3. The number at the base of each column is that of the next statement 

Remark 

This translation is del iberately awkward because we are trying to emit a "me­
chanical" pseudocode which ressembles that which a compiler would produce. 
It is  possible to do better by suppressing the statement I 00 I and replacing the 
"pop [- 3 ]" by a "pop [- 2]" i n  1 003, which has the effect of destroying the 
value of the call parameter y. But such clairvoyance is  unavai lable to a com­
pi ler. 

� 
� 
Before the call 

Local variables 

Call parameters 

Return address 

? = Future value of f 

yyy 

. . . 

XXX 

During the call 

f (x )  

yyy 

. . .  

XXX 

After the call 

Fig. 13.4. Steps that follow a function call: the code of the function must work in the 
stack above the local variables in order not to destroy them; the value of the function is 
transferred above the old stack which must not be modified; the return address permits 
the program to return to the code right after the function call 

We now refine our understanding by translating a somewhat more elaborate 
statement: 

s := a *  F ( F (2 * x + I ) ) + b 

Recal l that the compiler reads the source text from left to right and translates 
as i t  goes along without pauses. The "reflexes" put into play are as fol lows: 

• Reading the name of a function fol lowed by an open parenthesis results in 
the immediate emission of a sequence which stacks ? and the return address. 
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• The ari thmetic expression in the parentheses is translated from left to right 
as usual . 

• Reading the closed parenthesis which ends the function call results in 
bringing the return address to the fore and branching of the pseudocode to 
that of the function . 

100 push a 106 push x 1 1 2  mult 
1 0 1  push ? 107 mult 1 13 push b 
102 push 1 1 2  108 push 1 1 14 add 
103 push ? 109 add 1 15 pop s 
104 push 1 1 1  1 10 goto 1000 
105 push 2 1 1 1  got o 1000 

When we read the chain of characers "a * F (", we emit the statements 1 00-
1 02 by holding the return address in 1 02 in reserve ( i t  wi l l  be known when 
we read the corresponding closed parenthesis) .  

We then compile the argument of the function which is  " F (2 * x + 1 ) " .  
Thus, we emit the statements I 03- 1 09 by leaving the return address in 1 04 
on standby. 

When we meet the first c losed parenthesis ,  we know that it is time to cal l 
the function F (statement 1 1  0) and that the return address in I 04 is equal 
to I l l . 

When we encounter the second closed parenthesis ,  we cal l the function F 
anew (statement I l l ) and complete the return address (now equal to 1 1 2) on 
standby in I 02. 

We now compile the body of the function that we take to be: 

if x * x < a then F := x - a else F := a - x 

We are famil iar with the translation of the fragment "if x * x < a then": we 
stack the value of x twice in a row ( statements 1 000 and 1 00 1 )  in order to 
calculate x *X in 1 002 (thus, we work systematically above the cal l parameter) . 

When the compiler deciphers the statement F : =  x - a , it takes note that 
it is  deal ing with the name of a function (and not the name of a variable) .  It 
then translates classical ly the calculation of x - a by replacing the references 
to x by the corresponding plate. 

When it encounters the "else", the compiler knows that it has finished the 
calculation of the value of F and that i t  is  time to perform the assignment. 
S ince it remembers that i t  is  deal ing with a function call and not a normal 
assignment, the compiler emits the necessary orders to transfer the value of F 
to a good spot and free the return address which allows it to leave the function 
code. 
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got o 1010 1009 return 1016 return 1004 push [0] 1010 push a 

Remark 

This code is somewhat optimized because we cheated a bit  by not issuing at 
I 0 1 0  the "go to" which allows jumping to the code of f3 once the translation 
of a is  complete. In contrast to the compiler, we know that we are leaving the 
function code. 

13.1 .6. A very efficient technique 

Let us describe a technique which makes compil ing function and procedure 
cal ls  easy and sure .  Suppose we want to compile a : =  x + square(y) + z . 

• We write down a first approximation of the code : 

read x push square (y)  pop a 
read y add 
read z push z 
push x add 

Note the absence of addresses and the use of the i l legal command "push 
square(y)". 

• We now write the code for "push square(y)" : 

push ? 
push (R1 ) 
push y 

got o ( square ) (R1 ) 
The labels ( R l ) and (square) represent unknown addresses. The last l ine con­
tains only the symbolic address (R I ) . 

• We assemble these two codes;  that is ,  we replace "push square(y)" by its 
code ; the symbolic address (R I )  becomes the address of the statement which 
fol lows. 

read x push ? (R1 ) add 
read y push (R1 ) push z 
read z push y add 
push x got o ( square)  pop a 

• All  we have to do now is introduce addresses to get the pseudocode of 
the previous paragraph. 
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To test this techn ique, let us compile the more difficult statement 

s := f (x - g (y + z ) )  * g (f (x + g(y + z ) ) - x )  

• The first draft is  

read x push f (A )  mult 
read y push g (B )  pop s 
read z 

• The first detai l s  for f (A )  are 

push ? push g (y+z) (Rl ) 
push (Rl ) sub 
push x goto ( f )  

We now expand the cal l g (y+z ) . 

push ? push (R2 )  
push (Rl ) push y 
push x push z 
push ? add 

• The first detai l s  for g (B )  are 

got o (g)  
(R2 )  sub 
goto ( f )  
(Rl ) 

push ? 
push (R3 )  
push f (x+g (y+z ) ) 

push x 
sub 
got o (g)  

(R3 )  

We introduce more detai l s  into g (B )  b y  expanding the cal l f 

push x push ? 
push (R3 )  
push ? 
push (R4)  

push g (y+z ) 
add 

(R4)  push x 
sub 
goto (g)  
(R3 )  goto ( f )  

We expand the last call g (y+z ) : 

push ? push ? got o (g)  got o (g)  
push (R3 )  push (R5 )  (R5 )  add (R3) 
push ? push y got o ( f )  
push (R4)  push z (R4)  push x 
push x add sub 
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• We assemble these fragments to get the final code: 

read x push z push x 
read y add push ? 
read z got o (g)  push (R5 ) 
push ? (R2 )  sub push y 
push (R1 ) got o (f ) push z 
push x (R1 ) push ? add 
push ? push (R3 )  goto (g)  
push (R2 )  push ? (R5 )  add 
push y push (R4)  got o ( f )  

A l l  w e  have to d o  now i s  to put i n  the addresses: 10 read x 107 push z 304 push x 1 1 read y 108 add 305 push ? 12 read z 109 got o 2000 306 push 400 101 push ? 200 sub 307 push y 102 push 300 20 1 got o  1000 308 push z 103 push x 300 push ? 309 add 

(R4) push x 
sub 
got o (g)  
(R3 )  mult 
pop s 

end 500 push x 501 sub 502 goto 2000 600 mult 601 pop s 104 push ? 30 1 push 600 310 goto  2000 105 push 200 302 push ? 400 add 106 push y 303 push 500 401 goto 1000 
Exercise 3 

Translate the fol lowing statements into pseudocode 

s := 0 ; for i := 1 to n do s := s + F(i) ; 

t : =  0 ; for i : =  1 to n do t : =  t + F(i) + F(2 * i) ; 

700 end 

v : =  0 ;  for i : = a +  b to a *  b do u : =  F(F(2 * i + 1 ) ) ; 

v : =  0 ;  for i : = 1 to n do v : =  v + F(G(F(i) , F(2 * i + 1 ) ) - 1 )  

knowing that F and G are the fol lowing functions 

F(x ) = (x + l ) (x + 2) , G (u , v ) = 
{ u 2 + u + 1 

u 2 - v 2 

13. 1. 7. Procedure calls 

Now consider the program fragment 

procedure toto(x : integer ; var y : integer) ; 
var i : integer ; 
begin 
I X := y * y ; i : = X + y ; y = = i + 1 
end ; 

if u - v > 1 ,  
if not. 

begin 
a := 1 ;  
b : =  5 
toto(a , b) 

end . 
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and its translation into pseudocode. The first column below contains the trans­
lation of the principal part of the program. The two fol lowing columns contain 
the translation of the procedure toto. 

� b 7 
100 a =  1 101 b = 5 102 push 107 103 push a 104 push @b 105 push ? 106 got o 1000 107 end 

jYYYl � 
Before the call 

1000 push [ - 1] 100 1 push [ -2] 1002 mult 1003 pop [ -3] 1004 push [ -2] 1005 push [ -2] 1006 add 1007 pop [ -1 ] 
Local variables 

Call parameters 

Return address 

yyy 
. . .  

XXX 

During the call 

1008 push [0] 1009 push 1 1010 add 10 1 1 pop [ -2] 1012 pop 3 1014 return 

jYYYl � 
After the call 

Fig. 13.5. Steps that follow a procedure call. The routine is the same as for a function 
call, but simpler because it does not have to return a value. The code for the procedure 
must work above the parameters of the call and must leave the original stack intact. 

The method used to cal l a procedure is the same as that for a function call 
except that there is  no need to reserve a place in  the stack to return the value 
of the function. To prepare a procedure cal l ,  we stack successively (and in  this 
order) : 

• the return address (address of the statement that fol lows the "goto 1 000") ;  
• the arguments of the procedure; 

• the local variable (or variables) of the procedure ; 

• we call the procedure and complete the return address. 

The way of stacking an argument depends on its nature:  

• if it  is  passed by value, we stack its value ; 
• if it is passed by address, we stack its address. 

To translate toto(a , b ) ,  we proceed as fol lows: 
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• When we read "toto(" , we issue a "goto" at 1 02 which must be fol lowed 
by a return address, an address which wi l l  only be known when we read the 
closed parenthesis of toto(a , b) ; 

• Reading a results in stacking the value of a (statement 1 03)  and reading b 
stacks the address of b (statement 1 04 ) ;  

• Reading the closed parenthesis results in the stacking of  the local variable i 
(statement 1 05 ) .  Since i sti l l  does not have a value, we stack an indefinite value 
symbolized by a question mark. This done, we call the code of the procedure 
and complete the return address. 

The compilation of the body of the procedure i s  easy to follow: 

• We especial ly avoiding touching the plates which have been stacked by 
statements 1 02- 1 04 in  order to keep the return address, the value of a and 
the address of b intact. This is because we cannot know in advance how 
many times we wi l l  need this information.  Thus we work above these plates. 
In contrast, we have the right (and the duty) to modify the plate stacked by 
statement 1 05 since it pertains to the local variable i .  

• Once the procedure compiles, we clean up the stack i n  order to free up 
the return address. 

The array that fol lows represents how the stack evolves during the exe­
cution of toto(a , b ) .  The number at the base of each column is  that of the 
statement which has just been executed. (Recal l that the statements "pop @b" 
and "pop b" have the same effect. ) 

y 
X 

Return 

b 
a 

- ,------ ,------
5 5 1 - - -
5 25 25 30 30 3 1  

? ? ? ? ? ? 30 30 30 30 
@ b  @ b  @ b  @ b  @ b  @ b  @ b  @ b  @ b  @ b  

1 1 1 25 25 25 25 25 25 25 
1 07 1 07 1 07 1 07 1 07 1 07 1 07 1 07 1 07 1 07 

I 5 I 5 I 5 I 5 I 5 I 5 I 5 I 5 I 5 1 3 ' I 
Fig. 13. 6. Evolution of the stack and the contents of a ,  h during the call of toto (a ,  h) 
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When a parameter passed by value is  an arithmetic expression, we evalu­
ate it .  Thus the translations of toto(a , b ) ,  toto(a , a) and toto(a + 7, b) are 

push address 
push a 
push @b 
push ? 
got o 1000 push addre ss  

push a 
push @a 
push ? 
got o 1000 push address  

push a 
push 7 
add 
push @b 
push ? 
got o 1000 

Even in the third case, the height of the stack increases only by four units 
(address, x = a +  7 ,  y = @b, z =?) as in the preceding cases.  The arguments 
are always at the same level in the stack when one reaches the procedure .  

Exercise 4 

Compile in pseudocode the cal l s  

toto( a +  F (b) , a ) ; toto(y + G (x ,  y) ,  x)  

where F and G are the functions in the exerc ise in the preceding section . 

13. 1.8. The factorial function 

We now know enough to be able to translate recursive programs.  We shal l see 
that recursion is  a natural consequence of the administration of a stack. We 
begin with the archetype, the factorial function : 

if n .::: 1 then fact :=  1 else fact :=  fact(n - 1 )  * n .  

The pseudocode below takes the value of n and returns y = n ! .  10 read n 1000 push [0] 1008 push 1013 100 push ? 1001 if [0] > 1 1009 push [ -3] 101 push 104 goto 1006 1010 push 1 102 push n 1002 push 1 101 1 sub 103 goto 1000 1003 pop [ -3] 1012 got o 1000 104 pop y 1004 pop 1013 mult 105 write y = 1005 return 1014 pop [ -3] 106 write y 1006 push [0] 1015 pop 200 end 1007 push ? 1016 return 

Remember, never forget the "end" ! 



378 1 3 . Elements of compiler theory 

• To understand how one gets the code for the factorial function, we write 
down our first approximation : 

(n - 1 ) !  (F )  push [0] pop pop [ -3] 
n if [0] > 1 return pop 
n got o (R1 ) (R1 ) push [0] return 

1 04 push 1 push f act (n- 1 )  
? pop [ -3] mult 

The snapshot of the stack on the left side of the code wi l l  help you to under­
stand and check the offsets. 

• When we compile fact(n - 1 ), we must be very carefu l :  the correct value 
of n is  the value which is  at the top of the stack. We cannot use the variable n 
of the program. 

push ? 
push (R2 )  
push [ -3] 
push 1 

sub 
goto (F )  
(R2 )  

(When the stack is  broken, you must read i t  from bottom t o  top and from left 
to right. ) 

• We now assemble our pieces of code : 

(F )  push [0] 
if  [0] > 1 got o (R1 ) 
push 1 
pop [ -3] 
pop 
return 

(R1 ) push [0] 
push ? 
push (R2 )  
push [ -3] 
push 1 
sub 

All  we have to do now is to introduce addresses. 

got o (F)  
(R2 )  mult 
pop [ -3] 
pop 
return 

Theorem 13.1 . 1. The proposed code correctly calculates the value of the fac­
torial function. 

Proof The proof is by induction on the integer n .  The statement is true when 
n = 0 or n = I (one need only execute statements 1 000- 1 005 ) .  Now suppose 
that n 2: 2 and make the fol lowing induction hypothesis :  each function cal l 
for a value k < n places k !  at the top of the stack after finite time. When 
the program executes statement I 000 for the first time, the top of the stack 
contains n ;  the induction hypothesis then assures us that the sequence 1 006-
1 0 1 2  puts (n - 1 ) !  above n and the statements 1 0 1 3- 1 0 1 6  transfer n !  to the 
right place in the stack and free up the return address. 
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Exercise 5 

1 )  Execute by hand the calculation of n !  for n = 0, . . .  , 5 .  
2 )  Translate "if n .:::: I then fact : =  1 else fact :=  n * fact(n - I )" into 

pseudocode and use it to calculate n !  when n = 1 ,  . . . 4. Notice the exchange 
of factors : fact := n * fact(n - 1 )  instead of fact :=  fact(n - 1 )  * n. 

3 ) For n = I ,  2, 3, 4, execute statements 1 00- 1 06 of the example in  which 
cal l ing n !  has been replaced by the fol lowing pseudocode. 1000 ifx [OJ > 1 got o 1003 1001 pop [ -2J 1002 return 1003 push ? 1004 push 1009 1005 push [ -2J 

1006 push 1 1007 sub 1008 got o 1000 1009 mult 1010 pop [ -2J 10 1 1 return 

This code has been optimized . Do you see how? 

13.1.9. The Fibonacci numbers 

The fol lowing code takes the value of n as input and displays the value 
of Fib(n ) :  99 read n 1001 if [OJ > 1 101 1 got o 1000 100 push ? goto 1006 1012 push ? 101 push 104 1002 push [OJ 1013 push 1018 102 push n 1003 pop [ -3J 1014 push [ -3J 103 goto  1000 1004 pop 1015 push 2 104 pop y 1005 return 1016 sub 105 write Fib (n) = 1006 push ? 1017 got o 1000 
IT] 106 wr ite y 1007 push 10 12 1018 add 200 end 1008 push [ -2J 1019 pop [ -3J 1009 push 1 1020 pop 1000 push [OJ 1010 sub 102 1 return 

Once again ,  note that the final "end" which stops the program from penetrating 
unduly into the code of the function Fib beginning at 1 000. 

We use the following definition of the Fibonacci function : 

if n .:::: I then Fib :=  n else Fib :=  Fi b (n - 1 )  + Fib (n - 2) 
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• To understand the code of the Fib function, we write down the first ap­
proximation for Fib. 

F (n - 2) 
(Fib)  push [OJ (R1 ) push Fib (n- 1 )  
i f  [OJ > 1 got o (R1 ) push Fib (n-2 )  

F (n - I )  push [OJ add 
n pop [ -3J pop [ -3J 

104 pop pop 
? return return 

• We now translate the cal l Fib(n - I ) .  One must be very cautious :  due to 
the recursive cal l ,  the variable n in which we are interested belongs to the 
function Fib, so its value (at the begining of the compi lation) is in the top 
plate. But the offset of the plate which contains this  value augments as we 
push new plates on the stack ! 

push ? 
push (R2 )  
push [ -2J 
push 1 

sub 
goto (Fib)  
(R2 )  

• When w e  translate the call Fib(n - 2) ,  the variable n i s  already deeper i n  
the stack a s  F ( n  - I )  now l ies o n  the top of the stack. 

n 
(R3 )  

? 

F(n - I )  

push ? 
push (R3 )  
push [ -3J 
push 2 

sub 
goto  (Fib)  
(R3 )  

• We now substitute the cal l s  Fib(n - I )  and Fib(n - 2) into the first 
approximation and introduce addresses to get the translation . 

(Fib)  push [OJ return got o (Fib)  got o (Fib)  
if  [OJ > 1 (R1 ) push ? (R2 )  push ? (R3 )  add 
got o (R1 ) push (R2 )  push (R3 )  pop [ -3J 
push [OJ push [ -2J push [ -3J pop 
pop [ -3J push 1 push 2 return 
pop sub sub 
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Exercise 6 

1 )  Execute this code when n = 0, 1 ,  2, 3 (after th is ,  it becomes painful ) .  

2) Inspired by the proof of the correctness of the code for the factorial 
function, show that statements 1 000 to 1 02 1  correctly calculate the Fibonacci 
numbers . 

3) Translate the fol lowing into pseudocode: 

if n .::: 1 then Fib :=  n 
else begin 

I u := Fib(n - 1 )  ; 
Fib :=  u + v 

v : =  Fib(n - 2) ; 

end 

13.1.10. The Hofstadter function 

Recal l the definition (Chap. 1 2) of the Hofstadter functions :  

G (O) = 0, G (n )  = n - G (G (n - 1 ) ) if n 2: 1 .  

The fol lowing code takes the value of n as input and displays the value of G (n ) :  

100 read n 1000 ifx [OJ > 0 1009 push 1 0 14 
1 0 1  push ? goto 1005 1 0 1 0  push [ -5J 
102 push 105 100 1  push 0 1 0 1 1 push 1 
103 push n 1002 pop [ -3J 1 0 1 2  sub 
104 got o 1 000 1003 pop 1 0 1 3  got o 1000 
105 pop g 1004 return 1014  got o 1000 
106 write G (n) = 1005 push [OJ 1 0 1 5  sub 
107 write g 1006 push ? 1 0 1 6  pop [ -3J 

1007 push 1 0 1 5  1 0 1 7  pop 
200 end 1008 push ? 1 0 1 8  return 

• To compile the Hofstadter function , we write our first approximation . 

G(G (n - I ) ) 
(G)  ifx [OJ > 0 got o (R1 ) push G (G (n- 1 ) ) 
push 0 sub 

n pop [ -3J pop [ -3J 
n pop pop 

105 return return 
? (R1 ) push [OJ 
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• We now get a first approximation for G ( G (n - 1 ) ) .  

G (n - 1 )  
(R2) 

? 

push ? 
push (R2 )  
push G (n- 1 )  
got o (G )  

(R2 )  

• We improve the previous code b y  expanding the call G ( n  - 1 ) :  we must 
not forget that n i s  deeper in the stack now. 

push ? 
push (R2 )  
push ? 
push (R3 )  
push [ -5J 

push 1 
sub 
goto (G)  
(R3 )  got o (G)  
(R2 )  

• A l l  w e  have t o  d o  now is  t o  assemble the fragments 

(G )  ifx [OJ > 0 goto (R1 ) push (R2 )  (R3 )  goto ( G )  
push 0 push ? (R2 )  sub 
pop [ -3J push (R3 )  pop [ -3J 
pop push [ -5J pop 
return push 1 return 
(R1 ) push [OJ sub 
push ? goto (G )  

and introduce addresses to  get the final code. 

13.1 .11. The Towers of Hanoi 

Our last example consists in translating the towers of Hanoi into pseudocode. 
The vertical pegs are represented by the integers 1 ,  2 and 3 .  

procedure Hanoi(a , b ,  c : integer) ; 
begin 

if n = 1 then move(a, c) 
else begin 
Hanoi(a,  c ,  b ,  n - 1 )  ; 
move (a,  c) ; 
Hanoi(b, a ,  c, n - 1 )  

end 
end ; 

procedure move(x, y : integer) ; 
begin 
I writeln (x, ' to ' , y) 
end ; 

The translation of the main body of the program is simple: we ask for the 
value n ,  then in i tial ize a ,  b ,  c with 1 ,  2 ,  3 and call the procedure Hanoi whose 
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translation begins at  1 000. We do not  push any question mark ( indefinite value) 
because a procedure does not have a value and Hanoi does not have a local 
variable. 

100 read n 
1 0 1  push 107 
102 push 1 

103 push 2 1 06 got o 1000 
1 04 push 3 
105 push n 200 end 

• The first approximation for Hanoi (a , b, c, n) is 

(H)  ifx [0] > 1 goto (R1 ) 
move ( a , c ) 
pop 4 
return 

(R1 ) Hano i ( a , c , b , n- 1 )  
move ( a ,  c )  
Hanoi (b , a , c , n- 1 )  
pop 4 
return 

(Note that we cheated a l i ttle by using an "ifx" . )  Recal l that a procedure 
must restore the stack intact. When n = 1 ,  and if we suppose that move (a , c) 
restores the stack we need the "pop 4" before the "return" to clean the stack 
and free the return address. If n > 1 and if Hanoi (a , c, b, n - 1 ) , move(a , c ) ,  
Hanoi(b ,  a ,  c ,  n - 1 )  leave the stack intact, we  need again a "pop 4" to  clean 
the stack. 

• One must avoid confusion at this point .  Here, we are asking the program 
to execute statements, we are not defining Hanoi : therefore, we must not use 
a pop. The code for Hanoi (a , c, b, n - 1 )  i s :  

push (R2 )  sub 

m push [ -4] got o (H )  
push [ -3] (R2 )  

1 1

�
7 1 

push [ -5] 
push [ -4] 
push 1 

• Remark again that no pop is necessary because Hanoi (a , c ,  b ,  n - 1 )  leaves 
the stack clean. Thus the code for move (a ,  c) is 

push (R4)  
push [ -4] 
push [ -3] 
got o (move ) 
(R4)  
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• The code for Hanoi (b ,  a ,  c, n - 1 )  i s :  

push (R3 )  sub 
n 

push [ -3] goto (H)  w c push [ -5] (R3 )  
a push [ -4] 

1
1
�
7
1 

b push [ -4] 
( R3)  push 1 

• We assemble the fragments and introduce addresses to get the final 
pseudocode. 

1000 ifx  [0] > 1 1009 push [ -3] 1 0 1 9  push 1027 
got o 1007 1 0 1 0  push [ -5] 1020 push [ -3] 

1001  push 1005 1 0 1 1 push [ -4] 102 1 push [ -5] 
1002 push [ -4] 1 0 1 2  push 1 1022 push [ -4] 
1003 push [ -3] 1 0 1 3  sub 1023 push [ -4] 
1004 got o 2000 1 0 1 4  got o 1000 1024 push 1 
1005 pop 4 1 0 1 5  push 1 0 1 9  1 0 2 5  sub 
1006 return 1 0 1 6  push [ -4] 1025 got o 1000 
1007 push 1 0 1 5  1 0 1 7  push [ -3] 1027 pop 4 
1008 push [ -4] 1 0 1 8  got o 2000 1028 return 

The code for the procedure move is simpler because it does not contain a 
procedure cal l .  We simply display the disks to move, then leave the procedure 
after having freed in advance the return address. 

For beginners 

2000 write [ - 1]  
200 1 write t o  
2002 write [0] 

2003 pop 2 
2004 return 

A common error consists in unstacking after the cal l s  Hanoi(a , c, b, n - 1 ) 
and Hanoi(b, a ,  c ,  n - 1 ) . We absolutely do not undertake this  task : i t  i s  the 
cal l s  Hanoi(a , c , b , n - 1 )  and Hanoi(b, a , c , n - I )  which do it. The same 
argument appl ies after cal l i ng move (a ,  c) . We unstack only once, in order to 
free the return address (statements I 005 and I 027) . 

Exercise 7 

• Execute the code when n = 3 .  
• Prove that th is  code is  correct. 
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13.2. A Pseudocode Interpreter 

To better understand the mechanism of procedure cal l s  and recursion, 1t I S  
indispensable to translate some smal l programs into pseudocode and to run 
them by hand. As you realize by now, this is a long and tedious mechanical 
activity which is  very prone to error. 

Thus, we are going to write a pseudocode interpreter; that is ,  a program 
which wi l l  execute pseudocode in our stead, but without error. This wi l l  allow 
us to focus on the intel lectual ly most interesting part, the action of the compiler; 
that is, the translation of a given program into pseudocode. 

Consider for example the following program which is  the translation into 
pseudocode of the instruction s :=  a * F ( F (2 * x + 1 ) )  + b where F is the 
function defined by F(x )  := x - a if x * x < a and F(x )  = a - x if not. 

10 read a 107 mult 1000 push [OJ 1009 return 
1 1  read b 108 push 1 1001  push [- 1J  1010 push a 
12  read x 109 add 1002 mult 1 0 1 1  push [ - 1 J  
100 push a 1 10 got o 1000 1003 if  [OJ � a 1 0 1 2  sub 
1 0 1  push ? 1 1 1  goto 1000 goto 1 0 1 0  1 0 1 4  pop [ -3J 
102 push 1 12 1 12 mult 1004 push [OJ 1 0 1 5  pop 
103 push ? 1 13 push b 1005 push a 1 0 1 6  return 
104 push 1 1 1  1 14 add 1006 sub 
105 push 2 1 15 pop s 1007 pop [ -3J 
106 push x 1 16 end 1008 pop 

The execution of thi s  pseudocode by our interpreter when a = 1 0, b = 1 00 
and x = 5 is exhibited in Table 1 3 .2 .  

Writing such an interpreter is  a lso a very interesting programming exercise, 
because it is  a very pretty example of the minutiae and rigor that is  necessary 
to bring to bear each time that one deals with the recognition of forms and the 
treatment of chains of characters . 

S ince the program is quite long, we wil l  not always adhere to our method 
of developing a program. We group the procedures by themes in order to 
faci l i tate their comprehension . 

Declarations 

The program to be interpreted is stored in the array code. A line of code is a 
pair (number of statement, statement) . 
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10 : a =  10 , 1 1 : b = 100 , 1 2 : x = 5 
100 : I I I I I 10 1 
1 0 1 : I I I I I ? I 10 1 
102 : I I I I I 1 12 1 ? I 10 1 
103 : I I I I I ? I 1 12 1 ? I 10 1 
104 : I I I I 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
105 : I I I 2 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
106 : I I 5 1 2 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
1 07 : I I I 10 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
108 : I I 1 1 10 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
109 : I I I 1 1 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
1 10 :  got o 1000 

1000 : I I 1 1 1 1 1 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
100 1 : I 1 1 1 1 1 1 1 1 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
1002 : I I 1 2 1 1 1 1 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
1003 : I I I 1 1 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
1 0 1 0 : I I 10 1 1 1 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
10 1 1 : I 1 1 1 10 1 1 1 1 1 1 1 1 ? I 1 1 2 1 ? I 10 1 
1 0 1 2 : I I - 1 1 1 1 1 1 1 1 1 ? I 1 12 1 ? I 10 1 
1 0 14 : I I I 1 1 1 1 1 1 1 - 1 1 1 12 1 ? I 10 1 
1 0 1 5 : I I I I 1 1 1 1 - 1 1 1 12 1 ? I 10 1 
1 0 1 6 : return 1 1 1  

1 1 1 : got o 1000 
1000 : I I I - 1 1 - 1 1 1 1 2 1 ? I 10 1 
1001 : I I - 1 1 - 1 1 - 1 1 1 1 2 1 ? I 10 1 
1002 : I I I 1 1 - 1 1 1 12 1 ? I 10 1 
1003 : I I I I - 1 1 1 1 2 1 ? I 10 1 
1 004 : I I I - 1 1 - 1 1 1 1 2 1 ? I 10 1 
1005 : I I 10 1 - 1 1 - 1 1 1 1 2 1 ? I 10 1 
1006 : I I I - 1 1 1 - 1 1 1 12 1 ? I 10 1 
1007 : I I I I - 1 1 1 12 1 - 1 1 1 10 1 
1008 : I I I I I 1 12 1 - 1 1 1 10 1 
1009 : return 1 1 2 

1 1 2 : l - 1 10 1 
1 13 :  100 1 - 1 10 1 
1 14 :  I - 10 1 
1 15 : s = - 1 0 ; the stack i s  empty 
1 16 : end of program ; the st ack i s  empty 

Table 13.2. Execution of pseudocode for s : = a *  F ( F (2 * x + I ) ) + b 
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Here, the stack is  a pair (height, array) .  Since a plate contains ei ther a value 
or an address 1 we represent it as a pair ( integer, boolean) so as to distinguish 
values and addresses when we must perform an ari thmetic operation.  

const empty = "  ; vert = ' I ' ; 
space = ' ' ; max = 1 00 ; 

type 
_string80 = string[80] ; 
_ value_or _address = record 

I value : integer ; 
address : boolean 

end ; 
_stack = record 

I top : integer ; 
plate : array[ 1 . .  max] of _value_or_address 

end ; 
_code_line = record 

I num : integer ; 
statmt : _string80 

end ; 
_code = array[ 1 . .  max] of _code_ line ; 
_variable = array[{z' . .  'z' ] of integer ; 
var code : _code ; 

variable : _variable ; 
stack : _stack ; 

The main part of the program 

The program begins by transferring and displaying the contents of the file con­
taining the pseudocode into the array code. It then executes thi s  pseudocode. 

begin l load_program(code) ; 
interpret_pseudocode (code) 

end . 

The procedure load_program 

We could arrange to have the pseudocode interpreted as we type i t  in ,  but 
this would be awkward. Not only would i t  be painful ,  but in case of error al l 
would be lost and it would be necessary to begin again .  

This is  why we wi l l  - for the first and last time in this book - make use 
of a file into which the program to be interpreted wi l l  be typed. The procedure 

1 The address part is reserved for single variables; and destined for arithmetic op­
erations. When we stack the address of a statement, we stack the number of this 
statement; that is ,  an integer considered as value.  
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opens this file ,  reads it ,  transfers the statements into the array code, and closes 
the file again according to the fol lowing scheme. 

open(the_file ,file_name) ; 
while not eof(the_file) do begin 

I ���dln (the_file, line) ; 

end ; 
close(the_file) ; {never forget ! }  

The treatment of a l ine consists of separating the address of the statement 
(variable num_statmt) from the text of the statement (variable statement) . To 
avoid future recognition problems, we clean up each l i ne before treating i t  by 
suppressing the spaces at the beginning and end of the l i ne. 

procedure load_program(var code :_  code) ; 
var file_name, line, num_statmt, statement : _string80 ; 

the_file : text ; £ : integer ; 
begin 
£ := 0 ; {no line has been read} 
write ('name of file to open : ' ) ; readln(jile_name) ; 
open (the_file , file_name) ; 
while not eof(the_file) do begin 
readln (the_file , line) ; 
suppress_spaces(line) ; 
separate(line , num_statmt, statement) ; 
£ : =  £ + 1 ; {one makes a place for the upcoming line} 
with code[£ ]  do begin 
num := convert_constant(num_statmt) ; 
statmt : = statement ; 
writeln (num, ' : ' , statmt) {one displays the line } 

end 
end ; 
close(the_file) ; {never forget ! }  
writeln ('- end of program -' ) ; 
writeln (' execution of the program' ) {serious things begin } 

end ; 

We also take this  opportunity to have the procedure display the pseudocode 
that wi l l  be interpreted. In this way, we wi l l  see the code and the evolution of 
the stack on our screen .  

The interpreLpseudocode procedure 

The interpreter begins by isolating the prefix (that is ,  the first word) of the 
statement to be executed, which allows i t  to know - via a long discussion -
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which action to undertake, i. e. which procedure to cal l .  We are obliged to fal l  
back on  a succession of  "if then else" statements, which obscures somewhat the 
legibil ity because the statement "case" does not accept a string of characters 
as a control variable. 

procedure interpret_pseudocode (code : _code) ; 
var num_/ine , control, address : integer ; 

prefix, suffix : _string80 ; 
finish , branching , see_stack : boolean ; 

begin 
empty_stack (stack) ; num_/ine := l ; 
control : = code[ l ]  .num ; finish : = false ; 
repeat 
branching : = false ; see_stack := true ; 
write (control : 4 , ' : ' ) ; 
with code[num_/ine] do begin 
separate (statmt, prefix, suffix) ; 
if prefix = 'end' 
then execute_end(jinish , branching) else 
if prefix = 'push' 
then execute_push(stack ,  suffix) else 
if prefix = 'pop' 
then execute_pop (stack, suffix, variable) else 
if prefix = 'write' 
then execute_write (suffix, see_stack) else 
if prefix = ' read' 
then execute_read(suffix[ l ] , variable , see_stack) else 
if prefix = 'go to' 
then execute_goto(suffix, address, branching, see_stack) else 
if prefix = ' return' 
then execute_return(stack, address , branching , see_stack) else 
if prefix = 'if' 
then execute_if(suffix, address , branching) else 
if prefix = 'ifx' 
then execute_ifx(suffix, address, branching) else 
if prefix = 'add' 
then execute_add(stack, suffix) else 
if prefix = 'sub' 
then execute_sub(stack, suffix) else 
if prefix = 'mutt' 
then execute_mult(stack, suffix) else 
if prefix[ l ]  = ' [ ' 
then execute_assign_stack(stack, prefix, suffix) else 

if prefix[ l ]  in [ 'a' . .  'z' ] 
then execute_assign_ variable ( variable , prefix, suffix, see_stack) ; 
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if branching 
then seek(num_line, control, address) 
else nexLstatement(num_line, control) ; 
if see_stack then display(stack) 

end { with code[num_line] } 
until finish 

end ; 

The procedures execute_goto, execute_return and execute_if which give rise 
to branching communicate the address of the next statement as a string of 
characters which must be converted into an integer. 

To keep track of, and above all to see, what happens - because what else 
justifies this program? - we ask that the number of the statement which 
has just been executed be displayed, as well as the state of the stack when 
necessary. 

Note that a statement can be decoded and translated several t imes in the same 
program. The chosen solution is not the most rapid; this has no importance 
because we are not investigating performance. 

One last note :  in  order not to lengthen the program, no protection i s  provided 
against erroneous statements. You are strongly urged to perfect your code. 

The procedures for manipulating strings of characters 

The first procedure suppresses the undesirable spaces that one finds at the 
beginning or end of a string of characters. 

procedure suppress_spaces(var line : _string80) ; 
begin 

if line =I- empty 
then while line[ 1 ]  = space do delete ( line, I ,  I ) ; 
if line =I- empty 
then while line[length (line) ] = space do delete (line, length (line) , 1 )  ; 

end ; 

The second cuts the string of characters into the substrings prefix and suffix. 
The substring prefix begins with the first character, because there is no space 
at the beginning of string. In contrast, i t  is  necessary to remember to suppress 
the spaces which can appear at the beginning of the substring suffix. 

procedure separate (line : _string80 ; var prefix, suffix : _string80) ; 
var i : integer ; 
begin 
i := I ; 
case line[ I ]  of 1 '0' . .  '9' : while line [i  + I ] in [ '0' . .  '9' ] do i :=  i + I ; 
'a' . . 'z' : while line[i  + 1 ]  in [ 'a' . .  'z' ] do i : =  i + 1 ; 
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1 ' [ ' : repeat i :=  i + 1 until line[i ] = ' ] ' ; 
end ; 
prefix :=  copy( line , 1 ,  i) ; 
delete ( line, 1 ,  i) ; 
suffix :=  line ; 
suppress_spaces(suffix) ; 

end ; 

39 1 

If line[ 1 ]  begins with a character which is neither a digit , nor a lower case 
letter, nor an open bracket, the character stands al l alone in the prefix.  This is 
produced when string begins with a "-" sign.  

The nexLstatement and seek procedures 

The first procedure is  activated when there is no branching. 

procedure nexLstatement(var num_line, control : integer) ; 
begin 

I num_line := num_line + 1 ; 
control :=  code[num_line] .num ; 

end ; 

The second is activated by procedures which result in branching. 

procedure seek(var num_line , control : integer ; address : integer) ; 
begin 
num_line := 0 ;  
repeat 
I num_line := num_line + 1 
until code[num_line] .num = address ; 
control :=  address ; 

end ; 

Conversion functions 

The first function receives for example the string " 1 999" and returns the cor­
responding integer. This is an ultra-classical exercise. 

function convert_constant(the_string : _string80) : integer ; 
var i, temp : integer ; 
begin 
temp :=  0 ;  
for i :=  1 to length (the_string) do 

temp := 10 * temp + ord(the_string[i ] )  - ord('O' ) ; 
convert_constant : =  temp 

end ; 
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The fol lowing function converts a string of characters between brackets into 
the corresponding offset. 

function convert_offset(the_string : _string80) : integer ; 
begin 

if the_string = ' [0] ' 
then convert_offset : =  0 
else convert_offset :=  -converLconstant( 

copy(the_string, 3, length (the_string) - 3) )  ; 
end ; 

The function converLref_stack converts a reference to a stack such as 
" [-2]" to the corresponding integer. For this, i t  cal l s  the function plate_ value 
which wi l l  be written later (when we deal with primitives for stack manipula­
tion) .  

function converLstack_ref(stack_ref : _string80) : integer ; 
begin 
I convert_stack_ref := plate_value (convert_offset(stack_ref) )  
end ; 

To convert a term, it suffices to look at its first character to determine if i t  
i s  a constant, a stack reference or a variable. 

function converLterm(the_string : _string80) : integer ; 
begin 
case the_string[ I ]  of 
'0' . .  '9' : converLterm := converLconstant(the_string) ; 
' [ ' : converLterm :=  converLstack_ref(the_string) ; 
'a' 

. .  
'z' : converLterm :=  variable[the_string[ I ] ] 

end { case } 
end ; 

To determine whether a term is signed, we look at its first character. If we 
encounter the sign "-" (the only case allowed beyond a digit) , we separate 
this sign from the nonsigned term that fol lows. 

function converLsigned_term(the_string : _string80) : integer ; 
var sign , non_signed_term : _string80 ; 

value : integer ; 
begin 

if the_string[ I ]  = '-' 
then separate (the_string, sign , non_signed_term) 
else begin 

I sign : = '+' ; 
non_signed_term :=  the_string 

end ; 
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case sign[ I ] of 

I '+' : converLsigned_term : =  converLterm(non_signed_term) ; 
'- ' : converLsigned_term : =  -converLterm(non_signed_term) 

end {case } 
end ; 

Primitives for stack manipulation 

The first two functions are clear. 

function is_full(stack : _stack) : boolean ; 
begin 
I if stack . top = max then is_full := true else is_full : = false 
end ; 

function is_empty(stack : _stack) : boolean ; 
begin 
I if stack . top = 0 then is_empty := true else is_empty : = false 
end ; 

We also need a procedure which create an empty stack. 

procedure empty_stack(var stack : _stack) ; 
begin 
I stack. top := 0 
end ; 

When we stack an integer, we do not forget to spec ify whether it is a value 
or an address. 

procedure push(var stack : _stack ; 
begin 

if is_full(stack) 
then writeln (' thestackisfull' ) 
else with stack do begin 
top :=  top + I ; 
plate[top] . value :=  x ;  
if c =  ' @ ' 
then plate [top] .address := true 
else plate [top] .address : = false 

end 
end ; 

x : integer ; c : char) ; 

{one pushes an address } 
{one pushes a value} 

When we pop, we must take the same precautions. If the popped plate 
contains a value, we col lect this value directly. If not, we use the address 
(which is the ASCII code of the variable) to seek the right value among the 
variables a , . . .  z . 
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function pop(var stack : _stack) : integer ; 
begin 

if is_empty(stack) 
then writeln (' thestackisempty') 
else with stack do begin 
if plate [top] .address 
then pop := variable[chr(plate [top] . value) ]  
else pop :=  plate[top] . value ; 
top :=  top - I 

end 
end ; 

The procedure transfer_value modifies a plate which need not be at the top 
of the stack. We use thi s  procedure to modify a parameter passed by value 
which is somewhere in the stack. Note that we wi l l  always transfer a value, 
never an address. 

procedure transfer_value (var stack : _stack ; offset, new_ val : integer) ; 
var target : integer ; 
begin 
with stack do begin 
target := top + offset ; 
plate[target] . value :=  new_val ; 
plate[target] .address : = false 

end 
end ; 

The function plate_ value begins by testing whether a plate contains a value 
or an address, and reacts accordingly. 

function plate_ value( offset : integer) : integer ; 
begin 
with stack do 
if plate [top] .address 
then plate_ value :=  variable[chr(plate[top + offset] . value) ] 
else plate_ value :=  plate[top + offset] . value ; 

end ; 

A binary operation (addition, subtraction, multipl ication) exclusively con­
cerns the top of the stack and the plate just below. It i s  necessay to correctly 
treat the plates which contain an address (a call to the function plate_value) .  
Note that result i s  always a value. 

procedure binary_operation (var stack : _stack ; op : char) ; 
var operand_ I , operand_2 : integer ; 
begin 
I with stack do begin 
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operand_ ) := plate_ value ( - 1 )  ; 
operand_2 :=  plate_value (O) ; 
case op of 
'+' : plate [top - 1 ] .  value : =  operand_ I + operand_2 ; 
'- ' : plate[top - 1 ] . value : = operand_ ) - operand_2 ; 
'*' : plate[top - 1 ] . value := operand_ ) * operand_2 ; 

end ; { case } 
plate[ top - 1 ] .address : = false ; 
top :=  top - 1 

end 
end ; 
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The last two procedures concern the display of the contents of the stack. 
Recal l that we have chosen the integer -32 ,000 to represent an indefinite 
value (the question mark in pseduocode) that we insert into the stack to free 
up a place in  which we eventual ly want to put the value of a function . The 
probabil ity is  very smal l that -32 ,000 i s  a true value. 

procedure display_plate (offset : integer) ; 
begin 
with stack do begin 
if plate [top + offset] .address 
then write (chr(plate [top + offset] . value) : 5 ,  vert) 
else if plate[top + offset] . value = -32000 

end 
end ; 

then write (' ?' : 4, vert) 
else write(plate[top + offset] . value : 4 ,  vert) 

Given the size of a screen ,  we never display more than ten plates. 

procedure display(stack : _stack) ; 
var i, number_plates : integer ; 
begin 

if is_empty(stack) 
then writeln (' the stack is empty') 
else begin 
number_plates := stack. top ; 
if number_plates < 1 0  then begin 
for i : = 0 to 9 - number_plates do write (vert : 5) ; 
for i : = 0 to number_plates - 1 do display_plate (- i) ; 
writeln 

end 
else begin {number_plates :::: 1 0 } 

I for
_
i : =  

,
o to

, 
9 do display_plate (- i) ; 

wnteln ( . . . : 5 )  
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I I  end 
end 

end ; 
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Procedures which execute a statement 

The first such procedure hands control back to the system by having the 
program properly leave the "repeat unti l"  loop in which the interpreter works. 
We take the opportunity to signal whether or not the stack is  empty. 

procedure execute_end(var finish , branching : boolean) ; 
begin 
finish := true ; 
branching :=  true ; 
write (' end of program ; ' ) ; 
if not is_empty(stack) 
then writeln (' caution : the stack is not empty ! ' ) 

end ; 

We we encounter a "push" fol lowed by a question mark, we must stack an 
indefinite value. We choose again the number -32 ,000 to play this role. 

In this context, an address is  the ASCII code of the variable referenced by 
one of the letters a, . . . , z .  The choice of the character "v" i s  arbitrary : any 
character other than "@"  would do, because we simply need to distinguish an 
address from a value. 

procedure execute_push(var the_stack : _stack ; suffix : _string80) ; 
var offset : integer ; 
begin 

if suffix = ' ?' 
then push (the_stack, -32000, ' v' ) { v  for value } 
else if suffix[ I ]  = ' @ '  
then push (the_stack, ord(suffix[2] ) ,  ' @ ' ) 
else push (the_stack , convert_signed_term(suffix) , ' v' ) 

end ; 

The procedure execute_pop is delicate . To translate the statement "pop[ - i ] ' ' , 
we begin by popping to collect the value at the top of the stack. We must then 
remember that the plate into which we want to transfer this  value is  at level 
-i + 1 (and no longer at - i ) . 

The variable garbage provides an elegant way to avoid introducing another 
primitive for stack manipulation. 

procedure execute_pop(var stack : _stack ; suffix : _string80 ; 

var i, garbage , value : integer ; 
begin 

var variable : _variable) ; 
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if suffix = empty 
then garbage :=  pop(stack) 
else begin 
case suffix[ 1 ]  of 
'a' . .  'z' : begin 

I variable [suffix[ 1 ] ] := pop(stack) ; 
write (suffix[ 1 ] ,  ' = ' , variable [suffix[ 1 ] ]  : 1 ,  ' ; ' ) 

end ; 
'0' . .  '9' : for i :=  1 to convert_constant(suffix) do 
garbage :=  pop(stack) ; 
' [ ' : begin 

I value := pop(stack) ; {attention, decreased offset} 
transfer_ value(stack , convert_offset(suffix) + 1 ,  value) 

end ; 
end { case } 

end 
end ; 
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procedure execute_write (suffix : _string80 ; var see_stack : boolean) ; 
begin 
see_stack : = false ; 
if length (suffix) = I 
then writeln( variable [ suffix[ I ] ] )  
else i f  suffix[ I ]  in [ ' [ ' , '- ' ] 
then writeln (convert_term(suffix) ) 
else writeln(suffix) 

end ; 

procedure execute_read(variable_name : char ; 
var variable : _variable ; 

var see_stack : boolean) ; 
begin 
see_stack : = false ; 
write (' value of ' ,  variable_name, ' = ' ) ; 
readln( variable[ variable_name] ) ; 

end ; 

procedure execute_goto(suffix : _string80 ; var address : integer ; 
var branching , see_stack : boolean) ; 

begin 
branching := true ; 
address :=  convert_constant(suffix) ; 
see_stack : = false ; 
writeln (' goto' , address : I ) ; 
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end ; 

procedure execute_return(var stack : _stack ; var address : integer ; 
var branching, see_stack : boolean) ; 

begin 
branching := true ; 
address :=  pop(stack) ; 
see_stack : = false ; 
writeln (' return' , address : 1 )  ; 

end ; 

procedure execute_assign_stack(var stack : _stack ; 

var 
offset : integer ; 
begin 
case prefix[2] of 
'0' . . '9' : 

prefix, suffix : _string80) ; 

offset :=  converLconstant(copy(prefix, 2, length (prefix) - 2))  ; 
I I . 

offset :=  -converLconstant(copy(prefix, 3 ,  length (prefix) - 3) )  ; 
end ; { case } 
separate (suffix, prefix, suffix) ; {prefix contains the sign ' =' } 
transfer_value (stack,  offset, converLterm(suffix) ) ; 

end ; 

procedure execute_if(suffix : _string80 ; var address : integer ; 
var branching : boolean) ; 

var 
prefix_ 1 ,  prefix_2 ,  prefix_3 ,  garbage : _string80 ; 
operand_ 1 ,  operand_2 ,  num_pop,  lost, i : integer ; 
begin 
separate (suffix, prefix_ I ,  suffix) ; 

{prefix_ I contains the first operand} 
separate (suffix, prefix_2 ,  suffix) ; 

{prefix_2 contains the comparison } 
separate(suffix, prefix_3 ,  suffix) ; 

{prefix_3 contains the secondoperand} 
separate (suffix, garbage , suffix) ; 

{ suppresses the goto in suffix} 
operand_ I :=  converLterm(prefix_ l )  ; 
operand_2 :=  converLterm(prefix_3 )  ; 
num_pop : = 0 ; 
if (prefix_ I = ' [0] ' ) or (prefix_ I = ' [- I ] ' ) 
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then num_pop : = num_pop + 1 
if (prefix_3 = ' [0] ' ) or (prefix_3 = ' [- I ] ' ) 
then num_pop :=  num_pop + 1 ; 
case prefix_2[ I ]  of 
' < ' : if operand_ I < operand_2 then branching :=  true ; 
' <' : if operand_ I ::::: operand_2 then branching :=  true ; 
' -' · if operand_ I = operand_2 then branching :=  true ; 
' =j::. ' :  if operand_ I =I= operand_2 then branching : =  true ; 
' > ' : if operand_ I > operand_2 then branching :=  true ; 
' > ' : if operand_ I 2: operand_2 then branching : =  true ; 
else 
branching : = false 

end ; { case } 
for i := I to num_pop do lost :=  pop(stack) ; 
if branching then address :=  convert_constant(suffix) 

end ; 

procedure execute_ifx(suffix : _string80 ; var address : integer ; 
var branching : boolean) ; 

var 
prefix_ I , prefix_2 ,  prefix_3 ,  garbage : _string80 ; 
operand_ I ,  operand_2 : integer ; 
begin 
separate (suffix, prefix_ I , suffix) ; 

{prefix_ I contains the first operand} 
separate (suffix, prefix_2 ,  suffix) ; 

{prefix_2contains the comparison } 
separate (suffix, prefix_3 ,  suffix) ; 

{prefix_3contains the second operand} 
separate (suffix, garbage , suffix) ; 

{suppresses the goto in suffix} 
operand_ I :=  convert_term(prefix_ I )  ; 
operand_2 :=  convert_term(prefix_3)  ; 
case prefix_2[ I ]  of 
' < ' : if operand_ I < operand_2 then branching :=  true ; 
' <' : if operand_ I ::::: operand_2 then branching :=  true ; 
' - '  · if operand_ I = operand_2 then branching :=  true ; '=!=' : if operand_ I =I= operand_2 then branching :=  true ; 
' > ' : if operand_ I > operand_2 then branching :=  true ; 
' > ' : if operand_ I 2: operand_2 then branching :=  true ; 
else branching : = false 

end ; { case } 
if branching then address : =  convert_constant(suffix) 
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end ; 

procedure execute_add(var stack : _stack ; suffix : _string80) ; 
begin 
I binary_operation (stack,  1 +1 )  
end ; 

procedure execute_sub (var stack : _stack ; suffix : _string80) ; 
begin 
I binary_operation (stack , 1 - 1 )  
end ; 

procedure execute_mult(var stack : _stack ; suffix : _string80) ; 
begin 

I binary_operation (stack, 1* 1 )  
end ; 

procedure execute_assign_variable(var variable : _ variable ; 
prefix, suffix : _string80 ; var see_stack : boolean) ; 

var prefix_ I : _string80 ; 
begin 
separate (suffix, prefix_ ) ,  suffix) ; {prefix_ I contains the sign 1=1 } 
variable [prefix[ 1 ] ] :=  convert_term(suffix) ; 
see_stack : = false ; 
writeln 

end ; 

Advice for fine tuning 

Type in the procedures by group and adjust them immediately by submitting 
them to a complete battery of tests. Do not wait until the end of the program; 
if you do, you wi l l  drown . . .  

13.3. How to Analyze an Arithmetic Expression 

Suppose that we wish to write a program that calculates the numerical value 

of the integral I = J: f (x ) dx by the trapezoid rule. What we would l ike 
is a program that asks for the values of a and b, and then the function to 
be integrated. The program should allow us to type a string of characters 
representing the function, for example: 

f (x )  = sin (3  * x + exp( l + cos(x * x ) ) )  + 3 * x * x - 7 * x + I 

When we type a program, the compiler knows how to convert a string of 
characters into statements executable by the microprocessor. The trouble is 
that the compiler is not there when our program kicks in .  
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We are going to try to understand what the compiler does by describing 
the steps which separate the beginning (the string of characters) from the end 
(the executable code) .  Taking this path , we shal l learn to write an interpreter 
capable of calculating the value of an arithmetic expression "on the fly" as 
wel l  as a compiler for the ari thmetic expressions that we could insert into our 
numerical integration program. 

13.3. 1. Arithmetic expressions 

In this section, by an arithmetic expression we mean any string of characters 
which only contains the fol lowing characters : 

• the letters "a" to "z" ; 
• the binary symbols "+" and " *" ; 
• left and right parentheses .  

We can divide arithmetic expressions into two classes: good and bad. We all 
know, for example, that "a *x *x +b*x +c" i s  a good expression and "a *x + )  b" 
is a bad expression . But how do we distinguish good and bad expressions? 

To better grasp the problem, we forbid any global reading and suppose that 
we have before our eyes an arithmetic expression which occupies an entire 
page. We would know that this expression is good if we were capable of 
reconstructing it using only the fol lowing rules :  

( i )  A name of a variable is  a good expression . 

( i i )  If a and f3 are good expressions then the string of characters obtained 
by concatenating (in this order) a, "+", f3 is  a again a good expression . 
S imi larly, the string of characters obtained by concatenating a ,  "*", f3 is  
good. 

( i i i )  If a is a good expression, the string of characters obtained by concatenat­
ing (in this order) a left parenthesis ,  a and a right parenthesis is a good 
expression. 

This definition, while correct, is  not at all statisfactory. 

• It is not adapted to reading from left to right. 

• Consider the strings a = "a + b" and f3 = "x + y" : the second part of 
rule ( i i )  tel l s  us that the string "a + b * x + y" i s  a good expression . But thi s  
is  a l i ttle troubl ing because the value of a +  b * x + y i s  not  the product of  the 
values of a +  b and x + y.  

Thus, we need a finer definition which is  compatible with the direction 
in which we read and which reflects the usual priorities (multiplication and 
parenthesizing) .  
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Definition 13.3. 1 . • We call good expression (or expression for short) an arith­
metic expression which is a term or a sum of terms; that is, a string of char­
acters obtained by concatenating a term, the sign "+ ", another term, etc. 

• We call term an arithmetic expression which is a factor or a product of 
factors; that is, any string of characters obtained by concatenating a factor, 
the sign "* ", another factor, etc. 

• Finally, we call factor a name of variable (that is, one of the letters 
"a , b ,  . . .  , z ") or a parenthesized expression (that is, the string of characters 
obtained by concatenating a left parenthesis, a good expression, and a right 
parenthesis). 

Notice the highly recursive character of this definit ion. 

If we let "id" (for identifier) denote the set of lower case letters (the names 
of variables) and £, 'J, and 3" the sets strings of characters formed by the 
expressions, the terms, and the factors, respectively, then we can summarize 
the preceding definitions by the fol lowing equations: 

£ = 'J u 'J + 'J u 'J + 'J + 'J u · · · = 'J + · · · + 'J, 

'J = 3" u 3" * 3" u 3" * 3" * 3" u . . .  = 3" * . . .  * 3", 

3" = id u ( £ ) .  

( 1 3 . 1 )  

( 1 3 .2) 

( 1 3 .3 )  

Here the notation 'J + 'J denotes the se t  of  strings obtained by concatenation 
of an element of 'J, the character "+" and another element of 'J. 

Example 

Is the string of characters 

a + b + (x + a * y + u )  

a good expression in the sense o f  our new definit ion? 

• According to ( 1 3 . 1 ) ,  the given string would be a good expression if we 
knew how to prove that the subchains "a", "b" and "(x + a * y + u )"  are terms. 

• By combining ( 1 3 .2) and ( 1 3 . 3 ) ,  we immediately see that the strings "a" 
and "b" are terms because they are factors . 

• Definition ( 1 3 .2 )  shows that " (x + a *  y + u )" would be a term if we could 
show that it i s  a factor. 

• Speeding up a bit :  the string " (x + a  * y + u )"  is a factor because "x + a  * 
y + u"  is a good expression . In effect, "x", "a * y" and "u" are three terms. 

We can i l lustrate and sumarize our approach, which is  called syntactic analy­
sis, by drawing a tree. This tree is  called the syntactic tree (see Fig. 1 3 .6) .  
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Fig. 13. 7. The syntactic tree associated to the expression a +  b + (x + a * y + u )  

Remarks 

I )  One can show that the two defini tions define the same good arithmetic 
expressions. 

2) When we look at the syntactic tree, we find that it describes an order 
in which the calculations should be done: a multipl ication occurs before an 
addition and a parenthesized expression is given priority. These priori ties are 
subtle consequences of ( 1 3 . 1  ), ( 1 3 .2) and ( 1 3 . 3  ). In effect, 

1> when we say that "an expression is  a sum of terms," we automatically 
give multipl ication priority over addition since we must know the 
value of the terms before adding them; 

1> when we say that "a parenthesized expression is a factor," we give 
parenthesized expressions priority because we must first know their 
values if we want to multiply terms. 

3 )  This  remark wil l  be very useful when we wi l l  generalize Defini­
tions ( l 3 . 1 ) , ( 1 3 .2)  and ( 1 3 . 3 )  to allow us to analyze richer ari thmetic ex­
pressions which contain subtractions, d iv isions, function cal ls ,  etc . 

4) One can show that a given expression has a single syntactic tree . This 
seemingly harmless result is  fundamental because it implies that an expression 
has a single value. 
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13.3.2. How to recognize an arithmetic expression 

If you want to easi ly understand what fol lows, do not go too fast; train yourself 
first by doing the fol lowing exercises: 

1 )  Sketch the syntactic trees of several good expressions. 

2) When the first exercise becomes famil iar, ask a friend to dictate a good 
expression to you character by character. You must sketch corresponding part 
of the syntactic tree as soon as you receive the character. 

Do this until the construction of syntactic tree becomes natural and sponta­
neous.  

The fundamental idea 

Contemplating syntactic trees wi l l  sooner or later bring to mind trees of re­
cursive cal l s  of the three procedures E ,  T, F. We have our program ! 

A good way to grasp what fol lows is to imagine that E ,  T, F are three 
"pacmen" who eat2 , respectively, the biggest expression, the biggest term, or 
the factor that starts the given string of characters. 

For programming clarity, we systematical ly work using context effects3 : all 
variables are global and the procedures do not have parameters, so there is 
nothing to stop us from modifying certain global variables of the program. 

The main body of the program 

The variable expression contains the string of characters to analyze, token i s  
the current character in the string so that token = expression[place_token] i s  
true at each instant .  

type str2SS = string[2SS ]  ; 
var expression : str2SS ; 

token : char 
place_token : integer ; 

After the indispensable in i tializations, we ask s imply that the procedure E 
devour the string expression. 

We shal l see later that in order to avoid trouble, it is necessary that token i s  
always fol lowed by a character ( if one forgets, the program wi l l  crash when E 
finishes eating the string expression) .  We fol low tradition and use the classical 
trick of adding the indigestible character "$" at the end of the string to be 
analysed. This character is  not only a mouthguard :  i t  allows one to detect bad 
arithmetic expressions; that is strings that E does not eat entirely. 

2 In order not to repeat ourselves, we shal l ,  from time to ti me, replace the verb "eat" 
by one of the verbs "devour", "analyse", "consume", or "recognize". 

1 I s  it necessary to recal l that this is  not a good way to program? 



1 3 . 3 .  How to Analyze an Arithmetic Expression 

begin 
write (' expression = ' ) ; readln (expression) ; 
expression :=  concat(expression , '$' ) ; 
place_token :=  I ; token := expression[ place_token] ; 
E ;  { try to eat the whole expression ! }  
if token = '$' 
then writeln(' good expression' ) {because E has eaten it all} 
else write in(' bad expression' ) 

end . 
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Notice the context effect : without its presence, we should have had to write 
E(place_token , token ) ,  these two parameters being passed in "var" s ince the 
procedure E modifies the variables token and place_token on the sly. 

The procedures E, T, F 

Since our three pacmen mutual ly call each other (mutual recursion) ,  we must 
separate the declaration of the procedures from their respective bodies :  

procedure E ; forward ; 
procedure T ; forward ; 
procedure F ; forward ; 

The procedure E 

The code is a faithful translation of Definition (3 . 1 ) .  

procedure E ; 
begin 
T ; { to eat the first term} 
while token = ' +' do begin 

I nexuoken ; {get rid of the ' +' sign } 
T { to eat the term after the ' +' sign } 

end 
end ; 

The procedure E begins by eating the first term (or asks instead that T takes 
its place) .  If something remains, i t  eats as much as i t  can of the substrings of 
the form " +  'J" by first cal l ing next_token to get rid of the sign "+", then the 
procedure T .  

Note (this is  important) that one always finds oneself before the entrance of 
the "while" loop when one leaves the procedure T .  

The procedure nexLtoken 

This procedure passes to the next token by modifying the global variable token. 
Note that the context effects modify place_token and token. 
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procedure next_token : 
begin 

I place_token := place_token + 1 ; 
token :=  expression[ place_token] 

end ; 
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The procedure T 

This procedure eats the biggest term with which token begins .  Thus, its code 
is analogous to that of the procedure E and is a faithful translation of ( 1 3 .2) .  

procedure F ; 
begin 
F ;  { eat the first factor} 
while token = '*' do begin 

I next_token ; {get rid of the '*' sign } 
F { to eat the term after the '*' sign ) 

end 
end ; 

Again it is important to note that one always finds oneself at the entrance 
to the "whi le" loop when leaving the procedure F. 

The procedure F 

This procedure eats the factor which begins with the character token. Here 
again ,  the code is a transparent translation of ( 1 3 . 3 ) :  if token is the name of a 
variable (that is ,  a lower case letter) , F eats it by cal l ing next_token ; if token i s  
a left parenthesis, F eats it ,  then demands that E handle the expression situated 
between the parentheses .  If al l goes wel l ,  E stops before the corresponding 
right parenthesis which is  devoured by next_token. Otherwise, there i s  an error. 

procedure F ; 
begin 
case token of 
'a' . .  

'z' : newt_ token ; {get rid the name of the variable } 
' ( ' :  begin 
newt_token ; {get rid of the left parenthesis } 
E ;  { eats the biggest expression } 
if token = ' ) ' 
then newt_token {get rid of the right parenthesis } 
else error { because the right parenthesis is absent} 

end 
else error {because token is not the beginning of a factor} 

end ; 

It is important to remember that one always finds oneself before the test 
token = ' ) '  when one leaves the procedure E .  
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The procedure error 

The first error i s  fatal; there is no attempt to repair the error or to produce any 
diagnosis .  Its action consists of giving (by context effect) an indigestible value 
to token different than "$" (we have chosen "@") .  We will see a l i tt le later 
that token = 

'$' or token = ' @ ' stops the program properly without a crash.  

procedure error ; 
begin 

I writeln ('error on the token ' , token) ; 
token := ' @ ' 

end ; 

How the program works 

We analyze the string "a + b * (x + y)" .  To better fol low the action of our 
program, we are going to sketch the the tree of recursive cal l s  (Fig. 1 3 . 7) 
by placing the value of the variable token in  the index at the moment the 
procedure is  cal led. Cal ls  of nexLtoken are represented by dotted l ines .  

X y 

Fig. 13.8. Recursive calls for expression a +  b * (x + y )  

Before launching into the multiple recursive cal l s ,  i t  is  worth keeping several 
essential features in mind. 

• Leaving a procedure means changing a level in  the tree of recursive cal l s .  

• We leave the procedure E in  two ways : either through the root of the 
the tree of recursive cal ls ,  which means that we are back in the main part 
of the program or, in al l other cases, we find ourselves inside the code of F 
before the test token = ' ) ' . 
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• When we leave the procedure T, we always wind up in the interior of the 
procedure E before the "whi le" loop token = 1 +1 • 

• When we leave the procedure F, we always wind up in the interior of the 
procedure T, before the "while" loop token = 1 *1 • 

The program begins by cal l i ng Ea which cal l s  Ta which cal l s  Fa . The latter 
procedure then asks next_token to consume the character 'a ' . 

Then the program leaves F and finds itself in the procedure cal l ing T,  
before the "while" loop token = 1*1 • Since token i s  now the character ' + ' , the 
program then returns into the procedure E and finds itself before the "while" 
loop token = 1 +1 • It enters the loop, asks next_token to get rid of the ' + ' ,  then 
cal l s  Tb , which cal l s  Fh which eats the character 'b ' by next_token, etc . 

We now examine how the program stops. When the program eats the last 
character of the string being analyzed, token takes the value ' $ ' ; since this 
shows up necessari ly in the procedure F, the program leaves F and finds 
i tself in  T before the "while" loop token = 1 +1 ; since it i s  not able to penetrate 
into thi s  loop because of the value of token, it leaves the procedure T and 
finds itself before the "while" loop token = 1*1 , which has the effect of making 
i t  leave E through the root of the tree of cal l s .  

The analysis stops and the program announces that the expression is a good 
expression . 

What provokes the c l imb in the tree of recursive cal l s  and the exit by the 
root is the indigestible value of the character ' $ ' , because an expression can 
only contain lower case letters, operations, and parentheses .  

The procedure error has the same effect s ince i t  gives - always by context 
effect ! - the indigestible value ' @ ' to token. Thus we find ourselves at the 
end of the main program which announces an error because token i s  different 
from ' $ ' . 

For beginners 

If you want to master this program, learn it by heart; to do this, copy it several 
t imes; try to reconstruct i t  from memory unti l  i t  appears natural to you. Do 
not read what fol lows unti l  you are at ease with the procedures E, T, F. They 
must become evident to you ! 

To fol low easi ly the dialogue between the three procedures, introduce the 
global variable depth of integer type and in it ial ize it to - I  in the main body 
of the program. Add the fol lowing procedure .  

procedure show_depth (word : str2SS) ; 
begin 
I writeln (' 1 : 3 * depth , word, 1 , token = 1 , token : I )  ; 
end ; 

Then modify the procedure E as follows: 
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procedure E ; 
begin 
depth := depth + 1 
show_depth(' enter E ' ) ; 
T ;  
while token = ' +' do begin 
nexLtoken ; 
T ;  
show_depth (' leave E ' ) ;  
depth :=  depth - I 

end 
end ; 

Modify the procedures T and F in a simi lar way. 

Think as well about introducing a message in the procedure nexLtoken, to 
indicate (via the procedure print) which token is eaten .  

The program wil l  then display its activity on the screen, the indentations 
translating the level of depth of the recursive cal l s .  

expression = a+ (b*x+ c )  
enter E ,  token = a 

enter T ,  token = a 
enter F ,  t oken = a 
F ,  eat a 
leave F ,  t oken = + 

leave T ,  t oken = + 
main loop of E ,  token = + 
eat + 

enter T ,  token = ( 
enter F ,  t oken = ( 
F ,  eat ( 

enter E ,  token = b 
enter T ,  t oken = b 

enter F ,  token = b 
F ,  eat b 
leave F ,  t oken = * 

main loop of T 

eat * 
ent er F ,  t oken = x 
F ,  eat x 
leave F ,  t oken = + 

leave T ,  token = + 
main loop of E ,  t oken = + 
eat + 

enter T ,  token = c 
enter F ,  t oken = c 
F ,  eat c 
leave F ,  t oken = ) 

leave T ,  t oken = ) 
leave E ,  token = ) 

F ,  eat ) 
leave F ,  t oken = $ 

leave T ,  t oken = $ 
leave E ,  t oken = $ 
good expres s i on 

Fig. 13.9. Analysis by procedures E, T, F  of the arithmetic expression a + (b * x + c) 

First run the program with several s imple ari thmetic expressions, then com­
pl icate things. Follow the recursive rules by sketching the syntactic tree as one 
goes along. 
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Now do the contrary : sketch the branching of the recursive cal l s  (with token 
as index) before running the program. Repeat this  operation until it is com­
pletely mechan ical (the del icate points are the returns in the the principal loops 
of E and T and the right parentheses in F) . Try not to skip steps; this wi l l  
only s low you up.  

Also send some erroneous expressions to the program and see how it detects 
the errors . Try to enrich the code so that it emits a reasonable diagnosis in 
case of error. 

Remarks 

1 )  We now know how to associate two trees (Fig .  1 3 .9) to the same arith­
metic expression . These trees carry the same information, namely the order 
in which we must do the calculations to obtain the value of the expression . 
The tree on the left is binary ; it is very compact, but difficult to real ize by a 
program. Although it is more complex, we prefer the tree on the right because 
i t  can be realized very simply by recursive cal ls . 

E / ! � 
T ' T /+\ 

a \ * :1 I / [ � 1-\ F F F 

b X a + b * X 

Fig. 13. 10. The two trees associated to the expression a + b * x. 

2)  Note the division of labor: the procedure nexLtoken i s  the only one that 
"eats" tokens.  The procedures E ,  T, F are the white col lar workers which 
content themselves with giving the pertinent orders . 

3 )  When you have analyzed several expressions by running the program 
"by hand" and when you are at ease, you wi l l  real ize that 90 % of the program 
consists of ( 1 3 . 1  ), ( 1 3 .2) ,  and ( 1 3 .3  ) . The translation of these equations into 
code is a mere formal i ty. 

13.4. How to Evaluate an Arithmetic Expression 

We are going to perfect our program by asking that our procedures return the 
value of an arithmetic expression such as 

- 2 + (3 * 5 - 1 4) + 45 - 1 999. 
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The expressions that we want to analyze contain no variables (that is ,  no 
letters) - these are replaced by integers with one or more digits . We remark 
as wel l  that the signs "+" and "-" are at the same time binary and unary. 

The presence of the integers and the new signs is going to require us to 
enrich the description of expressions, terms and factors : 

£ = 'J ±  . . . ± 'J, 
'J = 3" * . . .  * 3", 

3" = int U (£ )  U +3" U - 3"  

( 1 3 .4) 
( 1 3 . 5 )  
( 1 3 .6) 

This new description (which contains 90% of the new program) has some 
subtleties which are essential to understand wel l . 

• We put the binary "+" and the "-" at the same level in ( 1 3 .4) ,  because 
subtraction does not have priority over addition (or the contrary) .  

• Multipl ication appears at  the second level ( 1 3 . 5 )  in  the terms:  in th is  way, 
it takes priority over addition and subtraction . 

• The factors ( 1 3 .6) contain the strings with the most priority. There one 
finds: (i) the set "int'' of strings of characters which represent integers, ( i i )  
parenthesized expressions, ( i i i )  the unary signs "+" and "-",  under the form 
±3" ( in effect, when we write a * -b, we must change the sign of b before 
carrying out the multipl ication) .  

It is necessary to put ±3", and not ±£ ,  in the factors because, when we 
write a + -b + c, we want to change only the sign of b, not that of b + c. 

The body of the program 

The only novelty i s  the appearance of the variable value: we ask that the 
procedure E return the value of the expression that i t  eats .  

begin 
write (' expression = ' ) ; readln (expression) ; 
expression : =  concat(expression , '$' ) ; 
place_token :=  1 ; 
token :=  expression[ 1 ]  ; 
£(value) ; 
if token = '$' 
then writeln (' value = ' , value : 1 )  
else writeln(' bad expression' ) 

end . 

The procedure nexLtoken 

We ask this procedure to perform two services: 



4 1 2  1 3 .  Elements of compiler theory 

• to return the value of the next token in token ; 
• to return the value of the token that it has just left in the variable value 

when token is a digit (the chronology is crucial ) .  

procedure next_token(var value : integer) ; 
var temp : integer ; 
begin 

if not (token in [ '0' . .  '9' ] )  
then place_token : =  place_token + I 
else begin 
value :=  0 ;  
while token in [ '0' . .  '9' ] do begin 

I value := 10 * value + ord(token) - ord('O' ) ; 
place_token :=  place_token + 1 ; 

end 
end ; 
token :=  expression[place_token] 

end ; 

Recal l the token contains only a single character at a time; when we have 
to deal wi th a number of digits, token points to the first digit ;  i t  is only when 
we leave a number (which requires us to traverse it) that next_token calculates 
i ts value . As usual , we work by context effect on the variables token and 
place_token . 

The procedures E, T, F 

These procedures are charged with return ing the value of the expressions, the 
terms or the factors that they are analyzing.  

procedure E(var value : integer) ; forward ; 
procedure T(var value : integer) ; forward ; 
procedure F(var value : integer) ; forward ; 

The procedure E 

The role of this procedure is to add or to cut off terms it encounters .  S ince we 
cannot go backwards, we must remember to store the binary operation which 
separates two terms in the local variable op. Notice the appearance (a necessary 
techn ique) of the global variable garbage i n  the statement next_token(garbage) 
when E swal lows a sign "+" or a sign "-" .  

procedure E ; 
var new_ val : integer ; op , garbage : char ; 
begin 

I T(value) ; 
while token in [ '+' , ' - ' ] do begin 
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op := token ; 
nexLtoken(garbage) ; 
T(new_val) ; 
if op = '+' 
then value : = value + new_ val 
else value := value - new_ val 

end 
end ; 

The procedure T 

4 1 3  

This i s  analogous to the procedure E ,  but s impler because there are only 
products of factors . 

procedure T ; 
var new_val : integer ; garbage : char ; 
begin 
F(value) ; 
while token = '*' do begin 
next_token (garbage) ; 
F(new_val) ; 
value :=  value * new_ val 

end 
end ; 

The procedure F 

We must bear in mind the integers and unary signs. 

procedure F ; 
var garbage : char ; 
begin 
case token of 
'0' . .  '9' : next_token (value) ; { token is obtained by context effect} 
' ( ' : begin 
nexLtoken(garbage) ; 
E(value) ; 
if token = ' ) ' 
then nexLtoken(garbage) 
else error {missing right parenthesis } 

end ; 
'+' : begin 

I next_token (garbage) ; 
F(value) ; 

end ; 

' - ' :  begin 
I next_token(garbage) ; 
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I F(value) ; 
value :=  - value { unary '- ' sign } 

end 
else error { token is not the first character of a factor} 

end { case } 
end ; 

It suffices to contemplate the syntactic tree below to understand how the 
procedure F goes about distinguishing unary and binary signs. 

Exercise 8 

E 

----- -----
T T 

I I 
F 

F 
' "  

" ' 
' ' ' 

' ' ' 

,
' 

� 

\ 

I 3 5 

F 
' " 

, , , 
' ' '  ' ' ' ' ' '  

2 4 6 

1 )  Enrich the procedure F in order to evaluate ari thmetic expressions such 
as 26 * ( -0.45 + 665 ) + 3 . 5  ( the value returned is  now a real number) . 

2) Refine the program so that it evaluates expressions such as: 

- 1 2 + ( 1 3  * 5 - 517) 1 (8 + 514) - 1 999 . 

The value returned must be an irreducible fraction. The difficult part of this 
exercise is  not programming, but comprehension. The procedure F only "sees" 
integers which i t  converts into fractions of the form nl I .  It is  the procedure T 
that first "sees" true fractions. The syntactic tree below shows you what hap­
pens with the expression I 13 + 512 .  

E 1 7/6 
----- � 

Tl /3 Ts12 / \  I \ 
F , I l l  �11 1 F_,l l ':21 1 

' 

I 3 + 5 I 2 



1 3 . 5 .  How to Compile an Arithmetic Expression 4 1 5  

3 )  Enrich the procedures E ,  T ,  F and next_ token to calculate i n  the ring 
Z[i ] of Gaussian integers ; that is, to be able to attribute a value to expressions 
such as 

- ( l  + 2 * i) * ( 1 45 + i * 1 7 ) * i - (-3 + ( 1 5  * i + 9) ) . 

4) We now want to evaluate an arithmetic expression containing function 
cal l s  and the variables a ,  b, x ,  y. To simplify and to safeguard the equation 
"character = token" we suppose that functions are coded by an uppercase letter 
(" L" for log, "C" for cos, "S" for s in ,  etc . )  : 

-a + b * L ( l  + x * x ) - C (x + y)/  S ( l - A (x + I ) ) .  

The program uses the variables val_a , val_b,  val_x , val_y which contain 
the values of a, b, x, y (but you can also put the values in  an array t ['a ' . .  'z ' ] ) .  
Use the following description: 

£ = 'I ± · · · ± 'I 

'J = 3" . . .  3" 

3" = id U (£ )  U ID(£)  U ±3" 

( 1 3 .7 )  
( 1 3 . 8 )  
( 1 3 .9)  

where id = { 'a ' ,  'b' , 'x ' ,  'y' } and where ID denotes the set  of names of func­
tions (uppercase letters) .  

13.5. How to Compile an Arithmetic Expression 

We now know how to interpret (that is ,  immediately evaluate without leaving 
the program) an ari thmetic expression entered on the keyboard. If we were to 
decide to take advantage of our fresh knowledge to write a program which 

calculates J: f(x )  dx, we would be chagrinned by its slowness. It is  easy to 
understand why: if the program needs 1 000 values of the function , it analyzes 
and evaluates the same arithmetic expression 1 000 t imes in a row. 

However, a single analysis ought to be sufficient. Is it possible to separate 
the analysis from the evaluation (this is the idea of compiling)? We would then 
replace 1 000 analyses and 1 000 evaluations with a single analysis and 1 000 
evaluations. 

13.5.1. Polish notation 

How shal l we reframe our results on recognition? We choose to use suffixed 
polish notation. 4 

4 This  notation was discovered in 1 920 by the Pol ish mathematician Jan Lukasiewicz 
( 1 878- 1 956) in  the course of some work on logic where he was seeking to get rid 
of parentheses. 
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a + b * (x + y * z )  ----+ 

infixed notation 

compiler 
E , T, F  

1 3 . Elements of compiler theory 

mffixed Poli'lh notation 

As we have seen in Chapter 8, we can associate a binary tree (Fig. 1 3 . 1 1 )  
to each arithmetic expression (a tree which must not be confused with the 
syntactic tree introduced in this chapter, which is bushier) . 

Fig. 13. 11. The binary tree associated with the expression a +  (b + c * d) +  (e + f).  

The coding of an expression by a tree is  remarkable because i t  very clearly 
indicates the order of the calculations .  Why not use it? Because trees are "bidi­
mensional" objects difficult to integrate into a text :  imagine doing algebraic 
calculations with trees . . .  

The reason we use strings of characters to represent expressions is  that 
strings are "unidimensional" objects. But are there other ways of coding an 
arbitrary binary tree "linearly"? 

To answer this question, we are going to visit ( that is ,  run over) the tree 
writing what we encounter as we go along. There are three classical vis i ts of 
a binary tree: 

(i) Visit the left child, visit  the father, visit the right chi ld .  

( i i )  Visit the left child, visit the right child, v isit the father. 

( i i i )  Visit  the father, v is i t  the left child, vis i t  the right chi ld .  

We specify how we use these strategies. We leave from the root of the tree. 
Each time that we begin to visit a subtree, we write a left parenthesis ;  when the 
vis i t  to the subtree i s  finished, we indicate that by writ ing a right parenthesis .  
Between these parentheses we write the names of the objects (an interior node 
or leaf) that we encounter. 

• If we adopt the strategy "left chi ld,  father, right child," we obtain 
(Fig. 1 3 . 1 2) an ordinary, totally parenthesized arithmetic expression: 

(a + (b + (c * d ) ) ) + (c + f) ) .  



1 3 . 5 .  How to Compile an Arithmetic Expression 

( a 
( a + 
( a + ( 
( a  + ( b 
( a + ( b +  
( a + ( b + (  
( a + ( b + ( c  
( a + ( b + ( c *  
( a + ( b + ( c * d  
( a + ( b + ( c * d ) 
( a + ( b + ( c * d ) )  
( a + ( b + ( c * d ) ) )  
( a + ( b + ( c * d ) ) ) +  
( a + ( b + ( c * d ) } } + (  
( a + ( b + ( c * d ) ) ) + ( e  
( a + ( b + ( c * d ) ) ) + ( e +  
( a + ( b + ( c * d ) ) ) + ( e + f  
( a + ( b + ( c * d ) ) ) + ( e + f )  
( a + ( b + ( c * d ) ) } + ( e + f ) )  

4 1 7  

Fig. 13. 12. Visit of the binary tree associated to a + b * (x + y * z )  using the strategy 
"left child, father, right child " (infixed notation) 

Conversely, we can reconstruct the binary tree from such an ari thmetic ex­
pression. (We remark in passing that the priori ty of multipl ication i s  only an 
artifice to l imit the number of parentheses . )  

• If we adopt the strategy "left chi ld ,  right chi ld ,  father," we obtain 
(Fig. 1 3 . 1 3 ) the fol lowing string of characters : 

( ( a  ( b ( c d * )  + )  + )  ( e f + )  + ) .  

Conversely, we can reconstruct the tree from this string using the fol lowing 
algorithm (see Fig. 1 3 . 1 4 ) .  We read the string from left to right; each time that 
we meet a letter, we write it down;  when we meet an operator, we join it to 
the roots of the two last trees created (recall that a leaf is considered to be a 
tree reduced to its root). 

Now, we encounter a minor miracle .  This algorithm does not need parenthe­
ses ! In other words, we can suppress these and code our tree with the single 
chain of characters : 

a b c d * + + e f + + . 
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( a 
( a  ( b 
( a ( b ( c  
( a ( b ( c d  
( a ( b ( c d * 
( a ( b ( c d * )  
( a ( b ( c d * ) +  
( a ( b ( c d * ) + ) +  
( a ( b ( c d * ) + ) + )  
( a ( b ( c d * ) + ) + ) (  
( a ( b ( c d * ) + ) + ) ( e 
( a ( b ( c d * ) + ) + ) ( e f  
( a ( b ( c d * ) + ) + ) ( e f +  
( a  ( b ( c d * ) + ) + )  ( e f + )  
( a ( b ( c d * ) + ) + ) ( e f + ) + 
( a ( b ( c d * ) + ) + ) ( e f + ) + )  

Fig. 13. 13. Visit of the binary tree associated to a +  b * (x + y * z )  using the strategy 
"left child, right child, father " (suffixed polish notation) 

This way of coding a binary tree (or arithmetic expression) is cal led suffixed 
polish notation. 

Exercise 9 

1 )  Translate more and more compl icated arithmetic expressions "into Pol­
i sh", then reconstruct the binary trees from their pol i sh notation . Do this until 
you are perfectly at ease. 

2) What strings of characters occur when you vis i t  using the strategy "father, 
left chi ld,  right chi ld"? Can you get rid of the parentheses? How can one 
reconstruct a tree from its coding? 

Remark 

The tree associated to an arithmetic expression which contains function cal l s  
can be considered as  a binary tree in  which some right chi ldren are absent. 
For example, the "polish translation" of the arithmetic expression I + x * x + 
log(a * x + b) - cos (u + v * x )  is the string of charaters : 

1 X X * + a X * b + Jog U V X * + COS 
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a b 

+ 

/)>" a b c d 

a 

f 

Fig. 13. 14. Reconstruction of the binary tree associated to a b c d  * + + ef + + 

Evaluation of a polish expression 

4 1 9 

If we dispose of the pol ish translation n of an ari thmetic expression w, the 
evaluation of the value of w is very simple. It is done by using a stack cal led 
the evaluation stack. The algori thm is the same as that for reconstructing the 
binary tree; the only difference is that one manipulates values instead of trees. 

We read the string n from left to right and the stack is  in i tial ly empty. 

• If the current token is a name of a variable or a number, we push the 
corresponding value. 

• If the current token is  the sign "+", we pop the last two stacked values 
and push their sum. 

• We proceed in a simi lar way when the current token is  the sign "*" 
(replacing, of course, addition by multipl ication) .  

• When the string i s  read, the evaluation stack contains on ly  a single number: 
the value of the expression. 

Example 

We evaluate the polish expression "a b c d * + e f + + +" knowing that: 

a = I ,  b = 2 ,  c = 3 ,  d = 4 ,  e = 5 ,  f = 6 .  
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Evolution of the stack during the evaluation of a b c  d * + e f + + + 

13.5.2. A Compiler for arithmetic expressions 

We are going to l ightly modify the procedures E ,  T, F to translate a given 
ari thmetic expression into the corresponding pol ish notation . The result of their 
action is  not a value, but a string of characters. More precisely, the result of 
the cal l E (polish) wil l  be a translation into "suffixed pol i sh notation" of the 
expression that E has analyzed. Simi larly, the result of the cal l s  T(polish) 
and F(polish) wil l  be "Polish translations" of the term or factor that T and F 
would have analyzed. At the level of declarations, this gives: 

procedure E(var polish : str255) ; forward ; 
procedure T(var polish : str255) ; forward ; 
procedure F(var polish : str255) ; forward ; 

The procedure E 

A schematic for the translation is as fol lows 

(term) 1---+ ( polish) , 
( term 1 ) + (term2 ) 1---+ ( polish 1 ) ( polish2 ) + .  

The translation into code is  immediate . 

procedure E ; 
var new_pol : str255 ; 
begin 
T(polish) ; 
while token = 1 +1 do begin 
next_token ; 
T(new_pol) ; 
polish : =  concat(polish , new_pol, 1 +1 ) 

end 
end ; 

The procedure T 

The schema of the translation is analogous except that we replace additions 
by multipl ications. 
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procedure T ; 
var new_pol : str2SS ; 
begin 
F(polish) ; 
while token = '*' do begin 
next_token ; 
F(new_pol) ; 
polish : =  concat(polish , new_pol, ' *' ) 

end 
end ; 

The procedure F 

42 1 

The "Pol ish translation" of the expression "a" is "a" itself; and the expressions 
" (w) " and "w" have the same translation. 

Remark 

procedure F ; 
begin 
case token of 
'a' . .  'z' : begin polish : = token ; next_ token end ; 
' ( ' : begin 
nexLtoken ; 
E(polish) ; 
if token = ' ) ' 
then next_token 
else error 

end 
else error 

end { case } 
end ; 

What role do parentheses play? 

Consider the expression "a + b + c" . The procedure E treats i t  as a sum 
of three consecutive terms which gives the translations "a", "a b + " and 
"a b + c + " . The cal l s  are E T FE T FE T F .  

Now translate the expression "a  + (b + c)" .  The procedure E treats each 
string as a sum of terms 'J1 = "a" and 'J2 = "(b + c)" .  The "Pol ish translation" 
of 'J2 i s  "b c+". Thus, the translation of "a + (b + c)" is  "a b c + +" and the 
cal l s  are E T FE T FE .  

Thus, the parentheses serve to  modulate the procedure cal l s  and they modify 
the form of the syntactic tree. 
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Exercise 10 

When we translated arithmetic expressions into pseudocode, we used "Pol ish 
translations" without explicit mention. Lightly modify the procedures E, T, F 
to automatical ly translate ari thmetic expressions into pseudocode. 

The evaluation function 

When an infixed arithmetic expression has been "translated into Pol ish," we 
must teach our program to calculate the value of the pol ish expression that is  
obtained. We suppose that the values of the variables a ,  b ,  c ,  . . .  are stored in 
the global variables vaLa, vaLb, vaLe, etc . 

function evaluation(polish : expression) : real ; 
type table = array[ 1 . .  50] of real ; 
var stack : table ; h ,  i : integer ; token : char ; 
begin 
h := 0 ; { the stack is empty} 
for i := 1 to length (polish) do begin 
token := polish [i] ; 
case token of { vaLa, vaL ,  vaLe contains the values of a, b, c)  
'a' : begin h :=  h + 1 ; stack[h] :=  vaLa end ; 
'b' : begin h :=  h + 1 ; stack[h] :=  vaLb end ; 
'c' : begin h :=  h + 1 ; stack[h] := vaLe end ; 

'+' : begin stack[h - 1 ]  :=  stack[h - 1 ]  + stack[h] ; h :=  h - 1 end ; 
' - '  : begin stack[h - 1 ]  :=  stack[h - I ]  - stack[h] ; h :=  h - 1 end ; 
' *' : begin stack[h - 1 ]  :=  stack[h - 1 ]  * stack[h] ; h :=  h - I end ; 

end { case } 
end ; 
evaluation : =  stack[ I ]  

end ; 
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