
Computation of pi(x) : improvements to the Meissel, Lehmer,

Lagarias, Miller, Odlyzko, Del�eglise and Rivat method

Xavier Gourdon

February 15, 2001

Abstra
t

In 1870, the German astronomer Meissel initiated a method to 
ompute eÆ
iently single

values of �(x) (the number of primes � x). His method has been improved several times, �rst

by Lehmer in 1959, then by Lagarias, Miller and Odlyzko in 1985, and �nally by Del�eglise and

Rivat in 1994. We aim at presenting new improvements to this method. As a result, some


onstant fa
tors are saved in the algorithm, the method is more e
onomi
al in spa
e, and

we present a te
hnique whi
h permits to distribute the 
omputation with minimal memory

ex
hange. Implementation of these improvements permits to rea
h larger values of x and was

used to 
ompute �(10

21

) by the author. A distributed proje
t on the web was started and

permitted to rea
h the value of �(2� 10

22

).

1 Introdu
tion

The Sieve of Eratosthenes was, until 1870, the only known method to 
ompute eÆ
iently �(x),

when Meissel proposed a method to 
ompute eÆ
iently �(x) without 
omputing all the prime

numbers less than x. He 
omputed by hand �(10

8

) and �(10

9

), rea
hing values whi
h were

far beyond the prime tables at that time. Later in 1959, Lehmer improved the te
hnique and


omputed �(10

10

). In 1985, a breakthrough was obtained when Lagarias, Miller and Odlyzko

proved, using re�nement of the method, that �(x) 
an be 
omputed in time O(x

2=3

= log(x)) using

O(x

1=3

log

2

(x) log log(x)) spa
e. They 
omputed several values of �(x) up to 4 � 10

16

. On
e

again, the method was re�ned in 1994 by Del�eglise and Rivat who saved a fa
tor of log(x) in the

time 
ost, but with a spa
e O(log(x)) bigger. The re�nements lead to pra
ti
al improvement and

Del�eglise implemented the method so that values up to x = 10

20

were 
omputed.

We improved again this method, with the following features :

� Constant fa
tors have been saved in the time 
ost,

� the method is more e
onomi
al in spa
e,

� the 
omputation 
an be distributed on several ma
hines with a very small memory ex
hange,

provided a relative 
heap pre
omputation is done on ea
h ma
hine.

As a result, an implementation permitted to rea
h the value of �(10

21

). A distributed version has

also been implemented, permitting to obtain from a distributed proje
t on the web the values of

�(2� 10

21

), �(4� 10

21

), �(10

22

) and �(2� 10

22

). (the distributed proje
t is going on and higher

values will be obtained).

Note that in 1987, Lagarias and Odlyzko [3℄ des
ribed an analyti
 method to 
ompute �(x),

based on numeri
al integration involving Riemann �-fun
tion, using O(x

1=2+�

) time and O(x

1=4+�

)

spa
e. Despites this asymptoti
 superiority, the 
orrespondingmethod has never been implemented

and the implied 
onstant are probably large, therefore the method does not seem of pra
ti
al use

for rea
hable values of x today.

1



2 Re
all of the method

The algorithm is well des
ribed in [2℄ and [1℄. We just outline the method. In the following, p and

q always denote prime numbers.

Let p

1

, p

2

, p

3

, : : : denote the 
onse
utive primes 2, 3, 5, : : : . We denote by �(x; a) the partial

sieve fun
tion whi
h 
ounts numbers n � x with all prime fa
tors > p

a

:

�(x; a) = #fn � x; p j n! p > p

a

g:

Let

P

k

(x; a) = #fn � x; n = q

1

q

2

� � � q

k

and q

1

; : : : ; q

k

> p

a

g;


ounting numbers � x with exa
tly k prime fa
tors, all larger than p

a

. We have the identity

�(x; a) = P

0

(x; a) + P

1

(x; a) + � � �+ P

k

(x; a) + � � �

where the sum has �nitely non zero terms.

We now �x an integer y su
h that x

1=3

� y � x

1=2

, and 
onsider a = �(y). We have P

1

(x; a) =

�(x) � a and P

k

(x; a) = 0 for k � 3, thus

�(x) = �(x; a) + a� 1� P

2

(x; a):

Computation of P

2

(x; a)

We easily �nd (see [1℄ or [2℄)

P

2

(x; a) =

X

y<p�

p

x

�

�

�

x

p

�

� �(p) + 1

�

:

Computation of the partial sieve fun
tion �(x; a)

We have the re
urren
e

�(x; b) = �(x; b� 1)� �

�

x

p

b

; b� 1

�

: (1)

This relation is the basi
 formula whi
h permits to de
rease the 
omplexity of the 
omputation.

For example, applying the re
urren
e (1) at two levels from the value �(x; a) leads to

�(x; a) = �(x; a� 2)� �

�

x

p

a�1

; a� 2

�

� �

�

x

p

a

; a� 2

�

+ �

�

x

p

a

p

a�1

; a� 2

�

:

This pro
ess 
an be 
ontinued until we get terms of the form �(u; 0), leading to the formula

�(x; a) =

X

1�n�x;
(n)�y

�(n)

h

x

n

i

;

sin
e �(u; 0) = [u℄, where �(n) denotes the M�obius fun
tion and 
(n) denotes the greatest prime

fa
tor of n.

Unfortunately, this sums 
ontains too many terms and to make the method e�e
tive, the

trun
ation rule is repla
ed by the following (see [1℄) :

Do not split a node �(n)�(

x

n

; b) if either of the following holds :

1. b = k and n � z

2. n > z

2



where k is a small �xed integer value (for example k = 1), and z is a �xed value whi
h

satisfy y � z < x

1=2

.

This rule gives the equality

�(x; a) = �

0

+ �

1

with

�

0

=

X

n�z;Æ(n)>p

k

;
(n)�y

�(n)�

�

x

n

; k

�

(2)

�

1

= �

X

p

k

<p<y

X

m:m�z<pm;Æ(m)>p;
(m)�y

�(m)�

�

x

pm

; �(p)� 1

�

: (3)

The value �

0

is easily 
omputed thanks to the formula

�(z; k) = [z=P

k

℄�(P

k

) + �(z mod P

k

; k); P

k

= p

1

� � � p

k

:

As for �

1

, we let x

�

= max(x

1=4

; x=y

2

) and we have

�

1

= S

1

+ S

2

;

where

S

1

= �

X

p

k

<p�x

�

X

m:m�z<pm;Æ(m)>p;
(m)�y

�(m)�

�

x

pm

; �(p)� 1

�

S

2

=

X

x

�

<p<y

X

q:p<q�y

�

�

x

pq

; �(p)� 1

�

:

This is true sin
e the value of m in (3) for whi
h p > x

�

satisfy p < m < z and Æ(m) > p, thus

Æ(m)

2

> p

2

> x

1=2

> z, thus m < Æ(m)

2

thus m = q is prime, and mp = pq > p

2

> z.

Computation of S

2

We rewrite S

2

in the form

S

2

= T

1

+ T

2

+ T

3

;

where

T

1

=

X

x

�

<p�(x=y)

1=2

X

p<q�y

�

�

x

pq

; �(p)� 1

�

;

T

2

=

X

(x=y)

1=2

<p�x

1=3

X

p<q�y

�

�

x

pq

; �(p)� 1

�

;

T

3

=

X

x

1=3

<p<y

X

p<q�y

�

�

x

pq

; �(p)� 1

�

;

In T

3

, we always have x=(pq) < p so �(x=(pq); �(p) � 1) = 1 and �nally

T

3

=

(�(y) � �(x

1=3

))(�(y) � �(x

1=3

)� 1)

2

:

As for T

2

, we distinguish its 
ontribution T

00

2

where x=p

2

< q � y, for whi
h x=(pq) < p thus

�(x=(pq); �(p) � 1) = 1. The 
orresponding value is

T

00

2

=

X

(x=y)

1=2

<p�x

1=3

�(y)� �

�

x

p

2

�

:

3



The 
omplementary value T

0

2

= T

2

� T

00

2

is

T

0

2

=

X

(x=y)

1=2

<p�x

1=3

X

p<q�x=p

2

�

�

x

pq

; �(p)� 1

�

:

We now 
on
entrate on the terms T

1

and T

0

2

. For both, we always have p � x=(pq) < p

2

thus

�

�

x

pq

; �(p)� 1

�

= �

�

x

pq

�

� �(p) + 2:

As a 
onsequen
e, we have

T

1

+ T

0

2

= U + V

1

+ V

2

;

where

U =

X

x

�

<p�x

1=3

X

p<q�min(y;x=p

2

)

2� �(p);

and

V

1

=

X

x

�

<p�(x=y)

1=2

X

p<q�y

�

�

x

pq

�

; V

2

=

X

(x=y)

1=2

<p�x

1=3

X

p<q�x=p

2

�

�

x

pq

�

:

De
reasing the number of terms

The V

1

and V

2

terms 
ontain a number of terms (p; q) whi
h is asymptoti
ally proportional to

(xy)

1=2

= log

2

x, whi
h is too mu
h. To de
rease this number of terms, we split the summations

again using the following result. (Note : this results also leads to a simpli�
ation of the method

presented in [1℄ to 
ompute W

3

.)

Lemma 1

X

�<q��

�

�

z

q

�

= �

�

z

�

�

�(�) � �

�

z

�

�

�(�) +

X

z=�<q�z=�

�

�

z

q

�

: (4)

Proof : Remember that p

j

is the j-th prime number. We have

�

�

z

q

�

= j i�

z

p

j+1

< q �

z

p

j

:

Now we de�ne a and b su
h that

z

p

a+1

< � �

z

p

a

<

z

p

a�1

< � � � <

z

p

b+2

<

z

p

b+1

< � �

z

p

b

:

Denoting by S the left side of (4) we have

S = b

�

�(�) � �

�

z

p

b+1

��

+

a�1

X

j=b+1

j

�

�

�

z

p

j

�

� �

�

z

p

j+1

��

+ a

�

�

�

z

p

a

�

� �(�)

�

thus

S = b�(�)� a�(�) +

a

X

j=b+1

�

�

z

p

j

�

:

The inversion equality (4) follows sin
e a = �(z=�) and b = �(z=�). �

We now use this equality to rewrite V

2

by splitting it for (x=p)

1=2

< q. The equality (4), used

with z = x=p, � = (x=p)

1=2

and � = x=p

2

writes as

X

(x=p)

1=2

<q�x=p

2

�

�

x

pq

�

= �(p)�

�

x

p

2

�

� �

�

x

1=2

p

1=2

�

2

+

X

p<q�(x=p)

1=2

�

�

x

pq

�

:

4



This implies

V

2

=W

2

+2

X

(x=y)

1=2

<p�x

1=3

X

p<q�(x=p)

1=2

�

�

x

pq

�

; W

2

=

X

(x=y)

1=2

<p�x

1=3

�(p)�

�

x

p

2

�

��

�

x

1=2

p

1=2

�

2

:

In the same vein, the use of (4) with z = x=p, � = (x=p)

1=2

and � = y leads to

V

1

=W

1

+

X

x

�

<p�(x=y)

1=2

X

p<q�(x=p)

1=2

�

�

x

pq

�

�

�

x

pq

�

; �

�

x

pq

�

=

�

2 if x=(pq) < y

1 if x=(pq) � y

with

W

1

=

X

x

�

<p�(x=y)

1=2

�

�

x

py

�

�(y)� �

�

x

1=2

p

1=2

�

2

:

Finally, this simpli�es to

V

1

+ V

2

= X � Y +W

0

1

+W

0

2

where

X =

X

x

�

<p�x

1=3

X

p<q�(x=p)

1=2

�

�

x

pq

�

�

�

x

pq

�

; Y =

X

x

�

<p�x

1=3

�

�

x

1=2

p

1=2

�

2

;

and

W

0

1

=

X

x

�

<p�(x=y)

1=2

�

�

x

py

�

�(y); W

0

2

=

X

(x=y)

1=2

<p�x

1=3

�(p)�

�

x

p

2

�

Now we go ba
k to U . We distinguish its 
ontribution U

1

for whi
h x

�

< p � (x=y)

1=2

and its


omplementary U

2

. We have

U = U

1

+ U

2

; U

1

=

X

x

�

<p�(x=y)

1=2

(�(y)� �(p))(2� �(p))

U

2

=

X

(x=y)

1=2

<p�x

1=3

�

�

�

x

p

2

�

� �(p)

�

(2� �(p)):

The prime p in W

0

2

runs on the same range than U

2

and T

00

2

, and we have

U

2

+W

0

2

+ T

00

2

=

X

(x=y)

1=2

<p�x

1=3

�

�

�

x

p

2

�

� 2�(p) + �(p)

2

+ �(y)

�

:

Summing this with U

1

+W

0

1

gives

U

1

+W

0

1

+ U

2

+W

0

2

+ T

00

2

=

X

x

�

<p�(x=y)

1=2

�(y)

�

2� �(p) + �

�

x

py

��

+

X

x

�

<p�x

1=3

�(p)

2

� 2�(p) +

X

(x=y)

1=2

<p�x

1=3

�

�

�

x

p

2

�

+ �(y)

�

:

5



This is also equal to

� = �(y)

�

�(x

1=3

)� �((x=y)

1=2

)�

�((x=y)

1=2

)(�((x=y)

1=2

)� 3)

2

+

�(x

�

)(�(x

�

)� 3)

2

�

+

�(x

1=3

)(�(x

1=3

)� 1)(2�(x

1=3

)� 1)

6

� �(x

1=3

)�

�(x

�

)(�(x

�

)� 1)(2�(x

�

)� 1)

6

+ �(x

�

)

+ �(y)

X

x

�

<p�(x=y)

1=2

�

�

x

py

�

+

X

(x=y)

1=2

<p�x

1=3

�

�

x

p

2

�

:

Theorem 1 Let y su
h that x

1=3

< y < x

1=2

, z su
h that y � z < x

1=2

and k a �xed small


onstant. Then we have

�(x) = A�B + ! + �

0

+�;

where, using the notation x

�

= max(x

1=4

; x=y

2

),

A =

X

x

�

<p�x

1=3

X

p<q�(x=p)

1=2

�

�

x

pq

�

�

�

x

pq

�

; �

�

x

pq

�

=

�

2 if x=(pq) < y

1 if x=(pq) � y

B =

X

y<p�x

1=2

�

�

x

p

�

! = �

X

p

k

<p�x

�

X

m:m�z<pm;Æ(m)>p;
(m)�y

�(m)�

�

x

pm

; �(p)� 1

�

�

0

=

X

n�y;Æ(n)>p

k

�(n)�

�

x

n

; k

�

and � =

P

6

i=0

�

i

is the auxilliary term, de�ned with the notations

a = �(y); b = �(x

1=3

); 
 = �((x=y)

1=2

); d = �(x

�

)

by

�

0

= a� 1 +

�(x

1=2

)(�(x

1=2

)� 1)

2

�

a(a� 1)

2

�

1

=

(a� b)(a� b� 1)

2

�

2

= a

�

b� 
�


(
� 3)

2

+

d(d� 3)

2

�

�

3

=

b(b� 1)(2b� 1)

6

� b�

d(d� 1)(2d� 1)

6

+ d

�

4

= �(y)

X

x

�

<p�(x=y)

1=2

�

�

x

py

�

�

5

=

X

(x=y)

1=2

<p�x

1=3

�

�

x

p

2

�

�

6

= �

X

x

�

<p�x

1=3

�

�

x

1=2

p

1=2

�

2

:

6



Algorithm

To a

elerate the 
omputation of !, we use the relation

p �

x

pm

< p

2

=) �

�

x

pm

; �(p)� 1

�

= �

�

x

pm

�

� �(m) + 2:

More pre
isely, we write ! = C +D where C 
ontains the terms of omega for whi
h x=(pm) < p

2

.

Finally, the algorithm 
omputes the value

�(x) = A�B + C +D + �

0

+�; (5)

where

A =

X

x

�

<p�x

1=3

X

p<q�(x=p)

1=2

�

�

x

pq

�

�

�

x

pq

�

; �

�

x

pq

�

=

�

2 if x=(pq) < y

1 if x=(pq) � y

B =

X

y<p�x

1=2

�

�

x

p

�

C = �

X

p

k

<p�x

�

X

m:m�z<pm;Æ(m)>p;
(m)�y;m>x=p

3

�(m)

�

�

�

x

pm

�

� �(p) + 2

�

D = �

X

p

k

<p�x

�

X

m:m�z<pm;Æ(m)>p;
(m)�y;m�x=p

3

�(m)�

�

x

pm

; �(p)� 1

�

�

0

=

X

n�y;Æ(n)>p

k

�(n)�

�

x

n

; k

�

The way these formulaes are used to get the algorithm is not easy and is widely presented in [2℄

and [1℄.

As shown in [1℄, the global resulting 
ost is optimal when y � 
x

1=3

log

3

x log logx, with 
 a

positive 
onstant, leading to a global 
ost of O(x

2=3

= log

2

x). The parameter z is an optimization

parameter whi
h is 
hoosen to be equal to dy in the pra
ti
e, with d > 1. Only A, B, C and D

are non negligeable parts of the 
omputation.

3 Improvements to the method

In this form, the formula is a little di�erent from the one resulting from [1℄ and a little easier to

implement (essentially due to the introdu
tion of the fun
tion � whi
h avoids the 
omputation of

W

3

in [1℄).

Now, two improvements were made in the implementation :

De
reasing the memory 
ost

One of the pra
ti
al problem arising while implementing the method to rea
h large values of �(x)

is the memory 
ost. In [1℄ and [2℄, the amount of memory needed is proportional to y, whi
h is a

little too big in the pra
ti
e, espe
ially for distributed 
omputations where the 
ontributors have

ma
hine with a small amount of memory. Our approa
h 
onsisted in using the same te
hnique

as presented in [2℄, �rst by sieving by blo
ks of size O((x=y)

1=2

) (instead of blo
ks of size O(y)).

The key problem was the ability to a

ess to the values of �(m), Æ(m) and 
(m) for m � z.

In [2℄ and [1℄, these values are stored, leading to a memory storage of O(y). To de
rease the

memory 
ost, we just stored those values until a value M = O((x=y)

1=2

), and we used di�erent

fast pro
esses to 
ompute the other values of �(m), Æ(m) and 
(m) when needed. A study 
an be

made whi
h shows that these values for m >M are not needed so often, so that the global 
ost is

asymptoti
ally identi
al.

7



Distributing the 
omputation

In [2℄, a method is presented whi
h permits to distribute the 
omputation of the algorithm.

Nevertheless, an ex
hange of memory of size O(x

1=3

) is needed between the ma
hines, making

the 
orresponding implementation nearly impossible for a web distributed proje
t. Following

the approa
h of [2℄, we found a solution to this problem, provided a pre
omputation of 
ost

O(x

5=9

= log

7

x) is made on ea
h ma
hine. In the 
ase of the 
omputation of the terms A, B and

C of (5), the only needed value for a 
ontribution is a starting value �(w) for w = x=n < x=y.

The 
orresponding pre
omputation 
ost is O(w

2=3

) = O(x

4=9

). The distributed 
omputation of

D is a little more diÆ
ult. The sum D is divided in 
ontributions 
orresponding to values (p;m)

for whi
h T < x=(pm) � U , where (T; U ℄ is the 
ontribution range (T < U � x=z). The key is to

be able to 
ompute the values �(T; i) for i � b = �(x

�

) in a 
heap pre
omputation. Applying the

re
urren
e formula (1), we have

�(T; k + 1) = �(T; k)� �(T=p

k

; k)

�(T; k + 2) = �(T; k + 1)� �(T=p

k+1

; k + 1)

: : : : : : : : :

�(T; b� 1) = �(T; b� 2)� �(T=p

b�2

; b� 2)

�(T; b) = �(T; b� 1)� �(T=p

b�1

; b� 1)

Thus we only need to 
ompute the values �(T=p

k

; k), �(T=p

k+1

; k+1), : : : , �(T=p

b�1

; b�1). Using

the Meissel, Lehmer, Lagarias, Miller, Odlyzko, Del�eglise and Rivat method again (one re
ursive

level), the 
ost to 
ompute these values is proportional to

1

log

2

(T )

�

(T=p

k

)

2=3

+ (T=p

k+1

)

2=3

+ � � �+ (T=p

b�1

)

2=3

�

=

T

2=3

log

2

T

b�1

X

i=k

1

p

2=3

i

= O

�

x

5=9

log

7

x

�

:

Referen
es

[1℄ M. Del�eglise and J. Rivat, Computing �(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko

method, Math. Comp., 65 (1996) 235-245

[2℄ J. C. Lagarias, V. S. Miller and A. M. Odlyzko, Computing �(x): the Meissel-Lehmer method,

Math. Comp., 44 (1985) 537-560.

[3℄ J. C. Lagarias and A. M. Odlyzko, Computing �(x): An Analyti
 Method, Journal of Algo-

rithms, 8:173-191, 1987.

8


