Raymond Séroul

Programming
for Mathematicians

Translated from the French
by Donal O’Shea

With 40 Figures

€ Springer

Raymond Séroul

Université Louis Pasteur

U.ER. de Mathématiques et d’Informatique
7, rue René Descartes

67084 Strasbourg, France

e-mail: seroul@math.u-strasbg.fr

Translator:

Donal O’Shea

Department of Mathematics
Mount Holyoke College

Clapp Laboratory

South Hadley, MA 01075-1461, USA

e-mail: doshea@mtholyoke.edu

Title of the French original edition:
math-info. Informatique pour mathématiciens. © InterEditions, Paris, 1995.

Library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Séroul, Raymond: Programming for mathematicians / Raymond Séroul. Transl. from
the French by Donal O’Shea. - Berlin; Heidelberg; New York; Barcelona; Hong Kong;
London; Milan; Paris; Singapore; Tokyo: Springer, 2000

(Universitext) ISBN 3-540-66422-X

Mathematics Subject Classification (1991): 04-04, 68-01

ISBN 3-540-66422-X Springer-Verlag Berlin Heidelberg New York

© Springer-Verlag Berlin Heidelberg 2000

Printed in Germany

Preface

We are as dwarves sitting on the shoulders of giants. We see things that
are deeper or further, not by the penetration of our own vision or by
our own height, but because they support us and lend us their height.

Bernard de Chartres (XII" century)

I became interested in computer science in the 1980’s after twenty years of
practicing mathematics when the first microcomputers appeared. At this time,
there was much hype about how easy programming was. Supposedly, one
could learn it in eight days!

I examined the available literature and became quite disillusioned. The books
through which I leafed were nothing but dismal treatments of syntax and those
containing programs did not explain how these programs were created. There
were several more ambitious books, very formal, which showed how one could
deduce an algorithm beginning with an invariant of some loop. I did not find
these books very convincing: their approach seemed too formal, too heavy,
and too cut off from reality. But perhaps I was too old? However, discussions
with my colleagues convinced me that professional programmers do not work
in this way.

There was a rift: I would have to leave a world which I knew well to find
my way, most of the time without a guide, in a universe with laws and values
that were foreign to me and that I needed to understand.'

After an apprenticeship of several years, I began to teach programming to
students in their third year of mathematics (which we call the Licence). I was
very surprised to find that many were frankly hostile to computer science.
After talking to them, I realized that their hostility was a reaction to the way
that they had been taught: how can one learn the subtleties of a language
or conduct a refined analysis of the performance of an algorithm when one
cannot even write a program? several lines in length? My goal became to entice
the students by showing them that they could very quickly write interesting
programs knowing only very few techniques from computer science.

" Any individual who has been exiled or who has radically changed profession will
know what I am talking about.

2 They reminded me of some of the unhappy practices of the “new mathematics”
which pretended to teach ring structures to students who had not yet mastered their
multiplication tables.

The modern mathematician is condemned to program. But how does one
learn to program? This is as difficult as learning how to do proofs! And, in
both cases, there is no method.

Little by little, my ideas became clearer and my background as a mathe-
matician began to help. This book is the fruit of that apprenticeship and that
synthesis. It is the book that I would have liked to have had when I began. It is
meant for those who want an introduction to programming without renouncing
their mathematical background and who want to harmoniously integrate this
new discipline into their way of thought.

However, a mathematician can rapidly convert the ability to create proofs
to the art of programming if the following two conditions are fullfilled:

« he or she has a clear idea of what a computer is, what it can do, and what
it cannot do.

« he or she learns to think dynamically.
Mathematical results can be roughly divided into two classes:

o static results: Cramer’s formula, “there exist x such that P(x)”, the defin-
ition of the greatest common divisor and the Bézout theorem | = au + bv, etc.

e dynamic results: Gaussian pivoting, an explicit construction of an ele-
ment x in a set E satisfying property P, Euclid’s and Blankinship’s algorithms
that compute the GCD and the numbers u, v in Bézout’s theorem, etc.

A traditional mathematician thinks statically; systematic dynamical thinking
is a new discipline whose development has coincided with that of computer
science. Converting from static to dynamical thinking is not easy (and some
will never make the transition).

Experience shows that writing a good program is even more difficult than
writing a proof because the objects that one considers are like tiny bars of
wet soap: they slide between one’s fingers. Programming is often synonymous
with “fooling around” which makes it distasteful and often paralyzing for
mathematicians acustomed to other standards.

We use a very stripped down programming language (assignments, tests and
loops) and three standard programming techniques:

« recycling and rewriting code
« descending analysis and successive refinement

« the use of sequences to allow one to transform a dynamical problem into
a static problem more familiar to mathematicians.

I place equal emphasis on the aesthetic side. A mathematician always ex-
periences profound satisfaction on studying a beautiful theory or proof. This
is why he or she practices mathematics. I want to convince mathematicians
that they will experience the same feelings upon analyzing and setting up an
algorithm, even a very simple one.

The use of computers creates new or, in some instances, resuscitates old
problems in mathematics (how much space should one reserve in memory
for the divisors of a given integer n?) and computer science (investigating
algorithms, proving programs). This book bears witness to this interaction:
to the pleasure there is in programming mathematics and to the pleasure of
reasoning when one programs.

Since for me programming does not mean denying my first love, the rigorous
side takes priority over a more detailed study of a programming language.
Whenever possible, I take the opportunity to present mathematics that my
students do not know. For this reason, one finds many mathematical results
and proofs in this book.

Most of all, this book is aimed at undergraduates with some mathematical
background. It will also be of interest to those with some mathematical training
who wish (or need) to begin programming.

For historical reasons, Pascal is the language used. But this book is absolutely
not a treatise on the Pascal language. Conversion to a more modern language
is instantaneous: one need only have assignments, tests and loops.

Acknowledgements

A book is like an iceberg. The author is the only part that emerges. Out of
sight are those who inspired and who helped in other ways. Among this latter
group are the following whom I would especially like to thank.

o The IREM at Strasbourg which allowed me access to the columns of the
review [’Ouvert, thereby allowing me to refine my ideas.

« All the colleagues and friends who have followed the courses in program-
ming that I have taught, those with whom I have discussed matters about
which I care deeply, and those who have given me advice about this book.

« The students majoring in mathematics at Strasbourg, on whom I tested and
refined my ideas for over ten years. Without their feedback this book would
never have seen the light of day.

« Finally, I would like to thank the translator, Donal O’Shea, of Mount
Holyoke College for his excellent work.

Raymond Séroul

Université Louis Pasteur,

UFR de Mathématiques et d’Informatique

7 rue René Descartes, 67084 Strasbourg CEDEX (France)
seroul @ math.u-strasbg.fr

Contents

1. Programming Proverbs 1
1.1. Above all, no tricks! 1
1.2. Do not chewing gum while climbing stalrs 2
1.3. Name that which you still don’t know 2
1.4. Tomorrow, things will be better; the day after, better still . . . 2
1.5. Never execute an order before it is given 3
1.6. Document today to avoid tears tomorrow 3
1.7. Descartes’ Discourse on the Method 3

2. Review of Arithmetic 5
2.1. Euclidean Division 5
2.2. Numeration Systems 6
2.3. Prime Numbers 7

2.3.1. The number of primes smaller than a given real number . 8
2.4. The Greatest Common Divisor 9

2.4.1. The Bézout Theorem 10

242 Gauss’sLemma 10
2.5. Congruenceso .o 11
2.6. The Chinese Remainder Theorem 12
2.7. The Euler phi Function 14
2.8. The Theorems of Fermat and Euler 15
2.9. Wilson’s Theorem 16
2.10. Quadratic Residues00 17
2.11. Prime Number and Sum of Two Squares 18
2.12. The Moebius Function 19
2.13. The Fibonacci Numbers 21
2.14. Reasoning by Induction 22
2.15. Solutions of the Exercises 25

3. An Algorithmic Description Language 29
3.1. Identifiers 30
3.2. Arithmetic Expressions 31

32.01.Numbers 31

3.2.2. Operationso e 31

323 Amrays o Lo e 32

3.2.4. Function calls and parentheses 32

3.3. Boolean Expressions 32
3.4. Statements and their Syntax 33
3.4.1. Assignments 34

3.4.2. Conditionals 34
343.Forloopso 35

344. Whileloopso L. 35
34.5.Repeatloops 35

3.4.6. Sequences of statements 36

3.4.7. Blocks of statements 36

3.4.8. Complex statements 37

3.4.9. Layout on page and control of syntax 38
3.4.10. To what does the else belong? 40
3.4.11. Semicolons: some classical errors 40

3.5. The Semantics of Statements 42
3.5.1. Assignments 42

3.5.2. Conditionals 42

3.5.3. First translations 43

3.5.4. The boustrophedon order 45

355. The forloop 47

3.5.6. The whileloop 48

35.7. Therepeat loop 50

3.5.8. Embedded loops 51

3.6. Which Loop to Choose? 51
3.6.1. Choosing aforloop 52

3.6.2. Choosing a whileloop 52

3.6.3. Choosing arepeat loop 52

3.6.4. Inspecting entrances and exits 52

3.6.5. Loops with accidents 54

3.6.6. Gaussian elimination 55

36.7. Howto grabdata 56

4. How to Create an Algorithm 59
4.1. The Trace of an Algorithm 59
4.2. First Method: Recycling Known Code 60
4.2.1. Postage stamps 60

4.2.2. How to determine whether a postage is realizable . . . 61

4.2.3. Calculating the threshold value 62

4.3. Second Method: Using Sequences 64
43.1. Creation of a simple algorithm 66

4.3.2. The exponential series 67
4.3.3. Decomposition into prime factors 69
4.3.4. The least divisor function 71

4.3.5. Cardinality of an intersection 71

4.3.6. The CORDIC Algorithm 74

4.4. Third Method: Defered Writing 78
44.1. Calculating two bizarre functions 80

4.4.2. Storage of the first N prime numbers 81

4.43. Last recommendations 84

4.5. Howto Prove an Algorithm 85
45.1.Crasheso 85

45.2. Infinite loops oL oL oL 85

4.5.3. Calculating the GCD of two numbers 86

4.5.4. A more complicated example 86

4.5.5. The validity of a result furnished by aloop 87

4.6. Solutions of the Exercises 88
. Algorithms and Classical Constructions 91
5.1. Exchanging the Contents of Two Variables 91
5.2, Diverse Sums L L. Lo 92
5.2.1. A very important convention 92
5.22.Double sumso oL oL 93

5.2.3. Sums with exceptions 94

5.3. Searching for a Maximum 95
5.4. Solving a Triangular Cramer System 96
5.5. Rapid Calculation of Powers 97
5.6. Calculation of the Fibonacci Numbers 98
5.7. The Notion ofa Stack 99
5.8. Linear Traversal of a Finite Set 101
5.9. The Lexicographic Order 102
5.9.1. Words of fixed length 102

5.9.2. Words of variable length 104

5.10. Solutions to the Exercises 105
. The Pascal Language 109
6.1. Storage of the Usual Objects 109
6.2. Integer Arithmetic in Pascal 110
6.2.1. Storage of integers in Pascal 110

6.3. Arraysin Pascal 113
6.4. Declaration of an Array 114
6.5. Product Sets and Types 115
6.5.1. Product of equal sets 115

6.5.2. Product of unequal sets 116

6.5.3. Composite types 116

6.6. TheRoleof Constants 117
6.7. Litter 119
6.8. Procedures 119

6.9.
6.10.

6.11.

6.12.

6.8.2. Procedure calls
6.8.3. Communication of a procedure with the exterior . . .
Visibility of the Variables in a Procedure
Context Effects oL
6.10.1. Functions
6.10.2. Procedure or function?
Procedures: What the Program Seems ToDo
6.11.1. Using the model
Solutions of the Exercises

. How to Write a Program

7.1.

7.2.

7.3.
1.4.

Inverse of an Order 4 Matrix
7.1.1. The problem
7.1.2. Theoretical study
7.1.3. Writing the program
7.1.4. The functiondet
7.1.5. How to type a program
Characteristic Polynomial of a Matrix
7.2.1. The program Leverrier
How to Write a Program
A Poorly Written Procedure

. The Integers

8.1.
8.2.
8.3.
8.4.

8.5.
8.6.

8.7.

8.8.

8.9.

The Euclidean Algorithm
8.1.1. Complexity of the Euclidean algorithm
The Blankinship Algorithm
Perfect Numbers
The Lowest Divisor Function
The Moebius Function
The Sieve of Eratosthenes
8.6.1. Formulation of the algorithm
8.6.2. Transforming the algorithm to a program
The Function pi(x)
8.7.1. Legendre’s formula
8.7.2. Implementation of Legendre’s formula
8.7.3. Meissel’s formula00 L.
Egyptian Fractions
8.8.1. The program
8.8.2. Numerical results
Operations on Large Integers
8.9.1. Addition oo
8.9.2. Subtraction oL
8.9.3. Multiplication L.
8.9.4. Declarations

8.10.

8.11.
8.12.
8.13.
8.14.

8.15.

8.16.

9.1.

9.2.

9.3.

89.5. The program
DivisioninBaseb o000
8.10.1. Description of the division algorithm
8.10.2. Justification of the division algorithm

8.10.3. Effective estimates of integer parts
8.10.4. A good division algorithm
Sums of Fibonacci Numbers
Odd Primes as a Sum of Two Squares
Sums of Four Squares
Highly Composite Numbers
8.14.1. Several properties of highly composite numbers . . .
8.14.2. Practical investigation of highly composite integers
Permutations: Johnson’s’ Algorithm
8.15.1. The program Johnson
The Countis Good C e e e
8.16.1. Syntactic trees

. The Complex Numbers

The Gaussian Integers
9.1.1. Euclidean division
9.1.2. Irreducibles
9.1.3. The program

Bases of Numeration in the Gaussian Integers
9.2.1. The modulobetamap
9.2.2. How to find an exact system of representatives
9.2.3. Numeration system in base beta
9.2.4. An algorithm for expression in base beta
Machin Formulas
9.3.1. Uniqueness of a Machin formula
9.3.2. Proof of Proposition 9.3.1
9.3.3. The Todd condition is necessary
9.3.4. The Todd condition is sufficient
9.3.5. Kern’s algorithm
9.3.6. How to get rid of the Arctangent function
937.Examples oL oo

10. Polynomials C e e e

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

Definitions oL oL oL oL
Degree of a Polynomial
How to Store a Polynomial
The Conventions we Adopt
Euclidean Division
Evaluation of Polynomials: Horner’s Method
Translation and Composition

10.7.1. Change of origin
10.7.2. Composing polynomials
10.8. Cyclotomic Polynomials
10.8.1. First formula
10.8.2. Second formula
10.9. Lagrange Interpolation
10.10. Basis Change
10.11. Differentiation and Discrete Taylor Formulas
10.11.1. Discrete differentiation
10.12. Newton-Girard Formulas
10.13. Stable Polynomials
10.14. Factoring a Polynomial with Integral Coefficients
10.14.1. Why integer (instead of rational) coefficients? . . .
10.14.2. Kronecker’s factorization algorithm
10.14.3. Use of stable polynomials
10.14.4. The program
10.14.5. Last remarks L.

11. Matrices

11.1. Z-Linear Algebra
11.1.1. The bordered matrix trick
11.1.2. Generators of a subgroup
11.1.3. The Blankinship algorithm
11.1.4. Hermite matrices
11.1.5. The program Hermite
11.1.6. The incomplete basis theorem
11.1.7. Finding a basis of a subgroup

11.2. Linear Systems with Integral Coefficients
11.2.1. Theoretical results
11.2.2. The case of a matrix in column echelon form
11.2.3. General case
11.2.4. Case of a single equation

11.3. Exponential of a Matrix: Putzer’s Algorithm

11.4. Jordan Reduction
11.4.1. Review
11.4.2. Reduction of a nilpotent endomorphism
11.4.3. The Pitttelkow-Runckel algorithm
11.4.4. Justification of the Pittelkow-Runckel algorithm . . .
11.4.5. A complete example
11.4.6. Programming

12. Recursion

12.1. Presentation
12.1.1. Two simple examples

12.1.2. Mutual recursion 339

12.1.3. Arborescence of recursive calls 340
12.1.4. Induction and recursion 340

12.2. The Ackermann function 343
12.3. The Towers of Hanoi 345
12.4. Baguenaudiero L. 348
12.5. The Hofstadter Function 351
12.6. How to Write a Recursive Code 352
12.6.1. Sorting by dichotomy 353

13. Elements of compiler theory 359
13.1. Pseudocodeo L 359
13.1.1. Description of pseudocode 360
13.1.2. How to compile a pseudocode program by hand . . 365
13.1.3. Translation of a conditional 366
13.1.4. Translation ofaloop 368
13.1.5. Function calls 369
13.1.6. A very efficient technique 372
13.1.7. Procedure calls 374
13.1.8. The factorial function 377
13.1.9. The Fibonacci numbers 379
13.1.10. The Hofstadter function 381
13.1.11. The Towers of Hanoi 382

13.2. A Pseudocode Interpreter 385
13.3. How to Analyze an Arithmetic Expression 400
13.3.1. Arithmetic expressions 401
13.3.2. How to recognize an arithmetic expression 404

13.4. How to Evaluate an Arithmetic Expression 410
13.5. How to Compile an Arithmetic Expression 415
13.5.1. Polish notation 415
13.5.2. A Compiler for arithmetic expressions 420
Referenceso 423
Index 425

1. Programming Proverbs

Programmers enjoy creating proverbs which reflect their professional experi-
ence.

1.1. Above all, no tricks!

This proverb, perhaps the most important of all, always shocks mathemati-
cians who have never programmed. It also shocks beginning programmers
who always have a tendency to be too clever by half.

You should not conclude from this that computer scientists are imbeciles.
You will understand the wisdom of this advice when you begin to write com-
plicated programs. What counts most is that a program be clear, that it function
immediately (or almost immediately) and be easy to maintain.

A computer scientist spends much time maintaining programs. This means
modifying programs which were written, in general, by another person who is
no longer around. Professional programs are very long: often several hundred
pages. Reading a program is very difficult (as is reading a proof reduced to
simple calculations with all explanations suppressed). Moreover, time counts:
a programmer who modifies a program simply cannot afford to spend hours
asking what the code under his or her eyes means.

The more brutish (that is, the more limpid and straightforward) the code,
the more certain it is, and the simpler it is to modify.

Another big objection to tricks is that most of the time they are useless. In
general, a program spends 80 % of the time in less than 20 % of the code.
Consequently, a trick has a very strong chance of appearing in a part of the
code where the machine is only waiting (as, for example, when one is entering
data via the keyboard). It is stupid and suicidal to jeopardize a program by
using a trick to gain a few milliseconds in a program which runs a thousand
or hundred thousand times slower because it is waiting for you.

Be brutal: always choose the most straightforward code, even if it requires
several supplementary lines. Modesty always pays in the long run.

This said, recourse to a trick is sometimes indispensible, for example in a
loop solicited at all hours in a program that is too slow. If this is the case,
document it! Call it to your reader’s attention, explain in detail what you did

and why (the machine is too slow, there is not enough memory, etc.). Do not
forget that this reader could be you in a couple of months with a different
machine and a different point of view.

Which would you prefer: a program easy to adjust and that you will have
the pleasure of optimizing, or an unreadable program, full of faults, which will
not work without hours and hours of debugging?

1.2. Do not chewing gum while climbing stairs

This proverb, inspired by an American presidential campaign, expresses an
idea full of good sense: it is better to do only one thing at a time. This is why
one breaks a program into procedures and independent modules.

1.3. Name that which you still don’t know

This proverb applies each time that you encounter a subproblem in the interior
of a problem. Refuse to solve the subproblem (the preceding proverb), leave
it to one side and advance. How? By giving a name to what you do not yet
know (a piece of code, a function). This allows you to end the work (i.e. the
problem). For the subproblem, see the following proverb.

1.4. Tomorrow, things will be better; the day after, better still

No, this is not a call to indolence! On the contrary, it is an extraordinarily ef-
fective technique. Apply this proverb each time that you encounter a blockage
caused by the appearance of a new problem inside the problem that you are
trying to solve: apply the preceding proverb, putting off the solution of the
new problem until tomorrow by giving it a name as a procedure or function,
the code for which you will write later.

Always separate what is urgent from what is not; learn to distinguish be-
tween essentials and accessories; do not drown prematurely in details. The
details you can handle tomorrow, which generally means several minutes or
hours; it is not a question of postponing all the work twenty-four hours, as the
truly lazy would like to believe!

This technique allows you to advance a little at a time. You certainly have
practiced this in mathematics: “I will first prove my theorem by provisionally
allowing lemmas 1, 2 and 3.”

This proverb also guards against a common beginner’s fault: the desire to
act immediately by prematurely writing very technical code. The right attitude
is to resist this: it is necessary to cultivate a certain nonchalance by giving
some orders today; the rest will keep until tomorrow. “Make haste slowly”
says another proverb.

1.5. Never execute an order before it is given

Beginners are always in a hurry: they write and they write. The result is
code that is too rich, too technical, and perforce incomprehensible. There will
always be errors in such a jumble!

This fault is easy to diagnose. If understanding the code requires you to
highlight and explain a piece of the code, you can be certain that you are
lacking a procedure (the order, if you will) at this point.

Replace this part of the code by a procedure call. You will “execute” this
order later, when you write the code for the procedure. You need to pace
yourself ...

1.6. Document today to avoid tears tomorrow

Imagine a proof reduced to calculations and some logical symbols: it is unread-
able, hence useless. When you program, take time to explain very precisely
what you are doing.

« First of all, you must understand what it is you want to do: what is well-
conceived can be clearly stated. If you cannot explain your code to a friend,
you can be certain that your ideas need sharpening and that your program
is probably incorrect. To be conscientious, to clarify your ideas, engage in a
dialogue with yourself. Discipline yourself to write comments as you go along;
do not wait until your program is finished. This will be too late. Mathematicians
have long understood this: they carefully write up up proofs before believing
them to be true.

o If your program is false, or if you must return to it after six months,
you will be happy to find explanations which indicate how the program was
conceived.

It is annoying that technology which would facilitate good documentation
has not appeared. The text editor that comes with a compiler falls far short of
a full featured word processor; it is so primitive and rustic that one could cry.
To be really lucid, one often needs to write formulae or include a sketch. When
will we have access to an editor in a compiler that is worthy of the name? I
dream of a compiler where one can make comments appear or disappear with
a simple click, as in hypertext.

1.7. Descartes’ Discourse on the Method

Descartes’ Discours de la méthode was published in 1637. This fascinating
text anticipates modern programming methods!

As the multiplicity of laws often furnishes excuses for vices, so that a state
is much better ruled when, not having but very few laws, these are very strictly
observed; so, in place of the large number of precepts of which logic is com-
posed, I believed that I would have enough with the following four, provided
that 1 were to make a firm and constant resolution not to fail, even a single
time, to observe them.

The first was never to accept anything as true that I did not evidently know
to be such: that is to say, carefully to avoid precipitation and prejudice; and
to include in my judgements nothing more than that which would present itself
to my mind so clearly and so distinctly that I were to have no occasion to put
it in doubt.

The second to divide each of the difficulties I would examine into as many
parts as would be possible and as would be required in order to better resolve
them.

The third, to conduct my thoughts in an orderly manner, by beginning with
those objects the most simple and the most easy to know, in order to ascend
little by little, as by degrees, to the knowledge of the most composite ones;
and by supposing an order even among those which do not naturally precede
one another.

And the last, everywhere to make enumerations so complete and reviews so
general that I were assured of omitting nothing.'

" Translation by George Hefferman, Discourse on the Method, Univ. of Notre Dame
Press, Notre Dame, 1994.

2. Review of Arithmetic

2.1. Euclidean Division

Let a,b € Z be two integers with b > 1. Using the order relation, one can
show that there exists a unique pair (g, r) € Z x N such that

a=bg+r and 0<r<b.

The integer q is called the quotient and r the remainder upon euclidean division
of a by b. Let [x] denote the integer part of the real number x (this means
that [x] is the integer defined by the conditions [x] < x < [x] 4+ 1). Then
we have g = [a/b]. One often wants small remainders to make an algorithm
“converge.” In this case, we use a variant of euclidean division with centered
remainder:

a=bqg+r, —%b<r§%b.

Here, again, the pair (g, r) is unique. If g and r are the quotient and remainder
upon ordinary euclidean division, then it is clear that

= Q2.1

{F if2r < b, q if 2r < b,
r= q
r—>bif2r > b; qg—1if2r>b.

We say that d divides n, written d |n, if n = dq for some g € Z. In
particular, any number divides 0!

Exercise 1 (Solution at the end of the chapter)

Removing all multiples of 2 and 3 from N gives the sequence:
u) =5, u2=7, Uz = 11, Ug = 13, Us = 17, Ug = 19, uy =23,

Show that this sequence satisfies a first order recurrence relation. Generalize
to the sequence of integers not divisible by 2, 3, or 5. Occasionally we can
use this sequence to speed up an algorithm (for example, the algorithm that
finds the smallest divisor of a given number).

2.2. Numeration Systems

No mathematician has ever seen an integer! When we read “1994”, we read
a word whose letters are called numerals. A very simple theorem asserts that
there is a bijection between these words and N.

Theorem 2.2.1 (Base b numeration). Let b > | be a fixed integer. To every
integer x > 0, one can associate a unique decomposition of the form

x=xb"+x,b" "+ ...+ bx; +x0 2.2)

where each x; satisfies the condition 0 < x; < b and where x, > 0.

Proof. Suppose that the decomposition exists. Upon putting, gy = x,b" "' +
Xuo1b" 2 + -~ + x,, we immediately obtain

x=qob+xy, 0=<ux0<b.

In other words, go and x, are the quotient and remainder upon euclidean
division of x by b, and are, therefore, uniquely determined. Reasoning by
induction, we see that x, is the remainder upon division of g, by b, and so on.

On the other hand, we can exhibit such a decomposition by dividing x and
its successive quotients by b. The algorithm terminates because the quotients
are a strictly decreasing sequence of integers bounded below by zero. O

The integer b is called the base of the numeration system. If b is not too
big, we can associate to each integer in the interval [0, b — 1] a typographical
symbol:

e When b is the number “ten”, the symbols are the arabic numerals 0, 1, 2,

3,4,5,6,7,8,9.

o When b is smaller than “ten”, one chooses the corresponding subset of

the arabic numerals.

« When b is the number “sixteen”, it is traditional to use the arabic numerals

and the first letters of the alphabet: 0, 1,2, ..., 9, A,B,C,D, E, F

Theorem 2.2.1 allows us to associate to each integer x the word X, -~ Xg
comprised of the numerals corresponding to the x; (the overline indicates that
numerals are juxtaposed, not multiplied).

This way of representing numbers is not the only one. We still use traces
of numeration systems that have been used since antiquity (for example, to
describe subdivisions of angles and time).

Theorem 2.2.2 (Numeration with multiple bases). Let (b;);>, be an infinite
sequence of integers greater than 1. Then every integer x > 0 can be written
uniquely in the form

X =x0+ x1by +x201b3 4+ -+ + x,by- - - by, (2.3)

where each x; satisfies the condition 0 < x; < b; 4.

The proof is an immediate generalization of the preceding.

Exercise 2 (Solution at the end of the chapter)

Let P and Q be two polynomials with integral coefficients. Show that if b > 1
is sufficiently large, then P(b) = Q(b) implies that P = Q.

2.3. Prime Numbers

The definition is often misstated or misunderstood.

Definition 2.3.1. An integer p € Z is called a prime number if it satisfies the
following two properties:

e it is different from +1;
e its only divisors are —p,—1, 1, p.

Contrary to widespread opinion, the numbers —1 and +1 are not prime
numbers.' (Algebraists call them units.)

We have known since antiquity how to prove (using the sequence n!+1) that
the set of prime numbers is infinite. We shall often use the ordered sequence
(pi)i>1 of prime numbers:

pr=2 py=3, p3=5, py=17, ps =11, etc.

Theorem 2.3.1 (The least divisor function). Let n > | be any integer and let
LD(n) be the least integer greater than | which divides n. Then

(a) LD(n) is a prime number;
(b) if n is not a prime number, then (LD(n))? < n.

Proof. We first note that LD(n) always exists: the integer d = n is greater
than | and divides n, so that the set of divisors of n which are greater than 1
is not empty and, thus, possesses a smallest element.

(a) If p = LD(n) is not prime, then we can write p = p'p” with | < p’ < p.
Since p’ divides n, we obtain a contradiction.

(b) If 1 is not prime and p = LD(n), thenn = pn’ with n’ > 1. By definition
of LD(n), we have p < n’ which implies that p> < pn’ < n. O

We now recall Bertrand’s postulate. This is an arithmetic result which we
shall sometimes need and whose proof is somewhat technical®> without be-
ing very difficult. This was conjectured by Bertrand in 1845 and proved by
Tchebycheff in 1850.

"If 1 were considered to be a prime number, we would lose the uniqueness of the
decomposition into primes.

2 An elementary proof is given in An Introduction to the Theory of Numbers, by
G.H. Hardy and E.M. Wright, Oxford Science Publications, 5th edition (1979),
pp. 343-344

Theorem 2.3.2 (Bertrand’s postulate). Let n > 1 be an integer. There always
exists a prime number p satisfying n < p < 2n.

Corollary 2.3.1.
o Let (pi)i>1 be the increasing sequence of prime numbers. For every i,
one has pi+ < 2p;.
o Let p be any prime number. There always exists a prime number q satis-
fing p < q < p°.
Proof. The first assertion follows from Bertrand’s postulate upon putting n =
pi; the second follows upon remarking that 2n < n? when n > 2. O

Exercise 3

(Solution at the end of the chapter.) Consider the doubly infinite table, called
the Sundaram sieve (1934), whose rows and columns are the following infinite
progressions:

4 7 10 13 16 <« difference 3
7 12 17 22 27 <« difference 5
10 17 24 31 38 <« difference 7
13 22 31 40 49 <« difference 9
16 27 38 49 60 --- <« difference 11

Show that 2n + 1 is prime if and only if n does not appear in the table above.
2.3.1. The number of primes smaller than a given real number
Let x be a positive real number. A celebrated arithmetic function is

w(x) = number of primes < x

= largest index i such that p; < n.

The table below displays some of its values:

X 10 20 30 40 50 60 70 8 90
7 (x) 4 8 10 12 15 17 19 22 24
X 100 200 300 400 500 600 700 800 900
7 (x) 25 46 62 78 95 109 125 139 154
x | 1000 2000 3000 4000 5000 6000 7000 8000 9000
w(x)| 168 303 430 550 669 783 900 1007 1117

This function has fascinated mathematicians for centuries. Here are some
fundamental results concerning it which are difficult to prove [Hardy and
Wright, op. cit.].

Theorem 2.3.3.

.« 7(n) <2log2 - —

logn

for every integer n > 2.

o As x tends to infinity, w(x) ~ .
log x

o There exist constants A, B > 0 such that for every integer n > 2,

Anlogn < p, < Bnlogn.

2.4. The Greatest Common Divisor

It is easy to show using euclidean division that every additive subgroup of Z
has the form dZ. Moreover, if we require that d > 0, then the subgroup
uniquely determines d.

Let a, b € Z be two integers and let aZ+bZ be the set of linear combinations
of a and b with integral coefficients. These combinations form an additive
subgroup of Z. We define the greatest common divisor (GCD) of a and b to
be the unique integer d > 0 satisfying:

dZ = aZ + bZ.

Here are several immediate consequences of the definition:

GCD(a, b) = GCD(+a, +b) (2.4)
GCD(a, b) = GCD(b, a) (2.5)
GCD(a,0) = |a| (2.6)
GCD(a + Ab, b) = GCD(a, b) (2.7)
GCD(Aa, Ab) = |A| GCD(a, b) (2.8)

Since a and b and d = GCD(a, b) are elements of aZ + bZ, both a and b
are multiples of d. That is, the GCD divides both a and b:

a=da', b=db, if d=GCD(a,b). (2.9)

When a is not zero, the equality a = da’ shows that the GCD is greater
than 0, and similarly if & # 0. On the other hand, the GCD is zero when
a=b=0

GCD(a,b) =0 < a=b=0.

2.4.1. The Bézout Theorem

Another consequence of the fact that a, b and GCD(a, b) belong to the sub-
group aZ + bZ is the following.

Theorem 2.4.1 (Bézout theorem — first version). Let a, b € Z be any two in-
tegers. There exist u, v € Z such that

au + bv = GCD(a, b) (2.10)

Corollary 2.4.1. Ifa # 0 or b # 0, then d = GCD(a, b) is the greatest integer
greater than or equal to 1 which simultaneously divides a and b.

Proof. If § is an integer which divides a and b, then § divides au + bv = d.
Since d is not zero, it follows that |§| < d. O

Thus, the GCD merits its name when a # 0 or b # 0; but doesn’t when
a = b =0, since any integer divides a and b.

Definition 2.4.1. Two numbers a and b are called relatively prime (or coprime
or strangers) when their GCD is 1.

« The classical terminology “relatively prime” is unfortunate because be-
ginners often confound the assertions “p is prime” and “p and g are relatively
prime”.

o Observe that 0 is not relatively prime to 0 because GCD(0, 0) = 0. So, if
a and b are relatively prime, at least one of them is nonzero.

When a # 0 or b # 0, we can divide (2.10) by d = GCD(a, b) > 0 and use
formula (2.8). This gives us

a=da', b=db, GCD@,b)=1 if d =GCD(a,b)>0. (2.11)

Theorem 2.4.2 (Bézout theorem — second version). Two integers a and b are
relatively prime if there exist u, v € Z such that

au + bv = 1. 2.12)

Proof. The first version of Bézout’s theorem shows that 4 and v exist when
a and b are relatively prime. Conversely, if au + bv = 1 then the number 1
belongs to the subgroup aZ + bZ. This shows that aZ + bZ = Z; that is,
d=1. O

Remark 2.4.1. We shall see in Chapter 8 (Blankinship’s algorithm) how to
effectively calculate u and v.
2.4.2. Gauss’s Lemma

Theorem 2.4.3 (Gauss’s lemma). Let a,b be any two integers and suppose
that d divides their product ab. If d is relatively prime to a, then d divides b.

Proof. Applying Bézout’s theorem to the pair (a, b) shows that au +dv = 1.
Multiplying both sides by b gives abu + bdv = b. But then d divides abu
because it divides ab, and it clearly divides bdv. Thus, it must divide their
sum b. O

Application: Bézout’s equation

Suppose that we want to solve for all integers x and y satisfying the equation:
ax+by=1, (a,b>1 relatively prime) (2.13)

Bézout’s theorem guarantees that u, v € Z exist such that
au +bv = 1. (2.14)

In other words, (u, v) is a particular solution of the equation. Suppose that
(x, y) is another solution. Subtracting equation (2.14) from (2.13) gives

alx —u) =bw —y),

which shows, in particular, that a divides b(v — y). Applying Gauss’s lemma
shows that v — y = ak for an appropriate k. One shows that b divides (x — u)
and obtains finally that

x=u+bk, y=v—ak, kel

The converse is immediate.

2.5. Congruences

Let n > 1 be any integer. We say that a and b are congruent modulo n, and
write @ = b (mod n) if a — b is divisible by n; that is, if there exists an
integer k € Z such that a — b = kn.

Congruence is an equivalence relation on Z. We let Z, denote the quotient
set. It contains n elements which we identify with the integers in the interval
[0, n — 1] when working with classical euclidean division and with the integers

between —%n and %n when working with centered remainders.

We denote the class of x by x. However, when the notation becomes too
cumbersome, we systematically omit the line over x. In this case, the context
will make clear what is meant.

Congruence mod »n is compatible with addition and multiplication:
ata=b+b,
aa' = bb'.

As a result, addition and multiplication on Z carry over to the quotient set Z,
which is then naturally endowed with the structure of a commutative ring.

a=bandd =b =

For beginners

We often use the locution “to lift an equality from Z, to Z”. This means that

if we are given an equation ¢ = 8 between two classes in Z,, we choose

Eepresenlatives of these classes, that is, integers ¢ and b with a = « and

b = B, and obtain an equality a = b + kn in Z. Since we systematically omit

the congruence symbol and the overbars above representatives, the sentence
“the congruence a = b (mod n) lifts to the equality a = b + kn”

translates into the lapidary (and, to a beginner, somewhat puzzling) expression

“lifting a = b, we obtain a = b + kn.”
One becomes rapidly accustomed to this sort of intellectual yoga which de-
pends very strongly on the context.

Proposition 2.5.1. The units of 7, are the classes of integers relatively prime
fo n.

Proof. Let € € Z, be such that there exists &' € Z, with g’ = 1 (notice the
absence of overbars, despite the fact that we are in Z,). Lifting this equality
to Z gives €&’ + kn = 1 which means that ¢ and n are relatively prime. The
converse is immediate. O

Corollary 2.5.1. The ring Z, is a field if and only if p is a prime number.

Proof. If Z,, is a field, all elements which are not equal to zero are invertible.
Lifting to Z, we see that all integers between 1 and p — | are relatively prime
to p. Thus, p s prime. The converse is immediate. O

2.6. The Chinese Remainder Theorem

This theorem was known to Chinese mathematicians in the first century our
era — it allowed them to solve certain problems involving conjunctions of stars.

Theorem 2.6.1 (Chinese remainder theorem — weak version). If n > 1 and
m > | are relatively prime integers, the system of congruences

x =« (mod n), x =8 (mod m),

possesses a unique solution x € [0, nm — 1].

Proof. 1t is clear that the map
S Zpmw —> Ly X Ly,

defined by x (mod nm) — (x (mod n), x (mod m)) is a ring homomorphism
(that is, it is compatible with addition and multiplication). Let x be an element
in the kernel of ®. If we lift to Z, the conditions x = 0 (mod n) and x =0
mod m) show that x is simultaneously divisible by n and m. Since n and m
are relatively prime, x must be divisible by nm. Descending to Z,,,, we obtain
that x = 0, which means that & is injective.

The sets Z,,, and Z, x Z,, both have nm elements. Thus, ¢ is surjecive and
the given system has a unique solution in Z,,,, which lifts to infinitely many
solutions in Z. o

We actually learn a little more from the proof: if xq is a particular solution,
the other solutions are of the form x = x¢ + knm with k € Z.

Exercise 4

Let u, v € Z be such that au + bv = 1. Show that the map Z, x Z,, = Z,m
defined by (r, s) — muvr + nvs is the isomorphism ®~'. Check directly that
®~! is compatible with multiplication, a fact that is not at all evident at first
glance.

Theorem 2.6.2 (Chinese remainder theorem — strong version).
Ifni,...,n¢ > 1 are pairwise relatively prime integers, the system of congru-
ences

x=o) (mod ny), ... ,x =a, (mod ny), (2.15)
possesses an infinite number of solutions. If xy is a particular solution, the

other solutions are the numbers x = xy + kn, - - -ny with k € Z.

Proof. We do not present the usual proof found in algebra books. Instead, we
give a more natural proof® which leads to a program which is very easy to
write. We expand x in a base of truncated multiples of the numbers n, ..., n,
(see 2.2.2):

x =ux9+xin +xny + - F Xeng -y, (2.16)

O<xy<ny, ..., 0<xy_y <ny, and x, € Z.

In order not to obscure the proof, let us suppose henceforth that £ = 3, in
which case we write

X = xg + xin1 + xon 0y + X3n1Ro0;3.

» By combining (2.16) with the first congruence (2.15) , we already get:
xo=c¢; (mod ny).

This shows that x;, exists and is unique. If we identify Z, with [0,n, — 1]
and if «; belongs to this interval, then xy = «,. Otherwise, xop = &y mod n;.

« Knowing the value of x,, we can then determine that of x, from the second
congruence in (2.15):

Xo + n1x; = op(mod n,).

3 H. Garner, The Residue Number System, IRE Trans, EC8 (1959), pp. 140-147.

We know that n, is invertible in Z,, because n, and n, are relatively prime. As
a result the first degree equation has a single unique solution x; € [0, ny — 1]

« Knowing now the values of xy and x|, we use the third congruence in
(2.15) to obtain

Xo+x1n +xnnp =« (mod }13).

The integers n; and n, define two elements of Z; since both are coprime to
to n3; their product is therefore invertible in Z; . As a result, the first degree
equation in x, defines a unique integer x, € [0, n3 — 1]

Conversely, if xg, x;, x, are defined by the preceding equations, all integers
of the form

X = Xxo + x1n + xX2n 10y + x3nhpng,
with x3 € Z arbitrary are solutions of the system (2.15). D

Example 2.6.1. Suppose that we want to solve the system
x =2 (mod 5), x =4 (mod 6), = —1 (mod 49).
We seek an x of the form
x = xo + 5x1 + 30x; + 1470x5.

We solve the congruences one after another:
o The first congruence immediately gives xo = 2.
e The equation 2 + 5x; = 4 in Z¢ has x; = 4 as its single solution.
« Finally, the equation 22 4 30x, = —1 has the solution x; = 27 in Z.
Thus, the solutions of the system are the numbers

x =832+ 1470x3 for all x3 € Z.

2.7. The Euler phi Function

The Euler phi function ¢ : N* — N* is defined by the formula:

¢(n) = Card Z,
= number of integers 1 < k < n such that GCD(k, n) = |

The first few values of ¢(n) are:

n |1 2 3 45 6 7 8 9 10 1l 12 13 14
em)y |1 1 2 2 4 2 6 4 6 4 10 4 12 6

If a and b are two relatively prime integers, the ring isomorphism Z,, >~
Z, % Z; induces a isomorphism of multiplicative groups Z}, ~ Z x Zj,.
Consequently, the Euler phi function is multiplicative which means that:

YaeZ, VbeZ, GCD(@a,b)=1 = @(ab) = ¢(a)p(b).

This property reduces the calculation of ¢(n) to that of ¢(p*) for p prime
and @ > 1. To evaluate ¢(p®) we first seek integers h € [1, p*] which are not
relatively prime to p. Since any such integer is necessarily divisible by p, it

is of the form
h=pg, 1<q=<p".

Thus, there are p*~' integers & which are relatively prime to p. This gives
_ « 1
o(p*)=p*—p*'=p (1——)-
p

If n = pi"---p® is the decomposition of n into distinct prime factors, we
obtain the formula:

pn) = (p = p) (p = p) =n(1 - ;}—I) S pl)

2.8. The Theorems of Fermat and Euler

Theorem 2.8.1 (The little Fermat theorem). If a is any integer and p any
prime number, then a” = a modulo p. If, moreover, a is not divisible by p,
then a?~' =1 (mod p).

Proof. Transported to Z,, this assertion becomes: “For all a € Z,, one has
a” =a and ifa # 0, then a”~' = 1.7

e This is evident if a = 0.

« If a # 0, consider the map x +— ax of Z, to itself. Since Z,, is a field, this
map is a bijection. That is, we have ax # 0 if x # 0. If we let x, ..., x,_;
denote the elements of Z;, we have

Z; ={xi,....xp}=f{ax;,...,ax,}.
Multiplying all elements of Z, together, we obtain
Xio o Xpoy = a” 'x, - “Xp_i.
The result now follows upon dividing both sides by x; ---x,_; # 0. O

This result generalises immediately using the Euler phi function (it suffices
to copy the proof above).

Theorem 2.8.2 (Euler). If a is any integer relatively prime to n, then

a®™ =1 (mod n).

2.9. Wilson’s Theorem

In the proof of Fermat’s theorem, the product P = (p — 1)! of all elements
of Z,, plays a role. Let us specify its value.

Theorem 2.9.1 (Wilson). An integer p > 1 is prime if and only if
(p—D!'=—1 (mod p).
Proof. First suppose that p is a prime: we must show that the product P =

Xy ---x,_ of all elements of Z; is equal to —1. Since Z,, is a field, we know

that each element x; € Z}, possesses an inverse x e Z;, such that xix, ' =1
By associating to each x; its inverse, we obtain | in the product P as many
times as there are pairs (x;, xi_') such that x; # xi". Regrouping, we see that
P is equal to the product of “orphans” in Z;; that is, P equals the product
of x € Zj, such that x = x~'. But then x2 = 1. That is, (x —)(x + 1) = 0.
Thus the orphans are precisely the elements 1 and —1, which shows that
P=1x—-1=-1.

To show the converse, suppose that p is not prime. The p possesses a divisor
d such that 1 <d < p. If (p — 1)! were congruent to —1 modulo p, since d
appears in the factorial, we would have 0 = —1 (mod d) which is absurd. O

Corollary 2.9.1. Let p be an odd prime. The equation
x241=0
possess roots in Z, if and only if p =1 (mod 4). In this case, the roots are
x'=¢€! and x" = —£! where £ = 3(p — 1).
Proof. An odd number is of the form 4n + 1 or 4n + 3.

« We first consider the case p = 2¢ + | with £ = 2n. Identify Z7, with the
set {—¢,...,—1,1,..., ¢} using centered remainders. Then, Wilson’s theorem
can be written:

XX —=Ix1-oxl=(=DiEN =~

Since £ = 2n is an even number, we see that x = ¢! is a root of the equation
x2+1=0in Z,. The other root is clearly — ¢! since x?+1 = (x +£€!)(x —¢€!).

» Now consider the case p = 4n -+ 3. Suppose that there exists x € Z, such

that x2 + 1 = 0. That is, x2 = —1. This allows us to write:
xp—l — x4n+2 — (x2)2"x2 — x2 — “‘l
On the other hand, by Fermat’s theorem we have x?~' = I. Thus, —1 =

1
in Z, which is absurd. m]

Remark

Calculating a factorial is not an efficient way of finding the roots of the equation
x2+1=0in Z,. We shall return to this subject later (Chapter 8).

Exercise 5 (Solution at the end of the chapter)

An old mathematical fantasy is that of finding a “simple formula” (in a sense
to be made precise) or a “function” whose values are only prime numbers.

 Prove (using Taylor’s formula) that a polynomial with integer coefficients
cannot take only prime values.

» Here is another try which seems promising a priori. Let x, y € N*. Put
Tx,y)=x(y+1)—(y'+1) and

2 if |T|>1,

Flxy) = y +1 if not.

Show that the function f : N* x N* — N takes its values in the set of prime
numbers and that each odd prime number is obtained exactly once. Write a
Pascal program which displays the values f(x, y) for I < x,y < 100. What
conclusion do you draw from this experience?

2.10. Quadratic Residues

An element a € Z, is said to be a quadratic residue modulo n if it is a square
2

in Z,; that is, if there exists an element x € Z, such that a = x*°.

Being a square depends on the ring in which one works: a complex number
is always a square; a real number is a square if and only if it is positive or
zero. The following result sharpens Fermat’s theorem and gives a very simple

criterion for an element of Z, to be a square when p is a prime number.

Theorem 2.10.1 (Euler). Let p = 2¢ + 1 be an odd prime. For every element
x #0in Z}, one has:

¢ +1 if x is a quadratic residue,
X =
—1 if x is not a quadratic residue.
Proof. Fermat’s theorem shows that (x¢)? = x”~' = 1. Since we are in a field,

it follows that x* = +1.

Consider the map « : x > x2 of Z* to itself. We have x> = y? if and only
if (x + y)(x —y) = 0; that is, if and only if y = £x since we are working in
a field. This reasoning shows that every nonzero quadratic residue has exactly
two preimages under «. The number of quadratic residues # 0 must therefore
equal %(p — 1) and the number of nonresidues is also equal to %(p - 1).

Let x = a® be a quadratic residue. Fermat’s theorem shows that x* =
a®* = 1, thereby showing that the roots of the polynomial X¢ — 1 are nonzero
quadratic residues (and that these are the only ones). If x is not a quadratic
residue, we therefore have x¢ # 1, which implies that xt = —1. m)

2.11. Prime Number and Sum of Two Squares

Let a be an integer of the form 4n + 3. Since x2 4 y2 =0, 1,2 (mod 4), one
sees that immediately that a cannot be a sum of two squares.

Theorem 2.11.1 (Fermat). Every prime number of the form 4n + 1 is a sum
of two squares.

Proof. Consider the set of triples*
S={(x.y.2) e N': x? +4yz = p}.

This set is nonempty because it contains the triple (1, n, 1).
Consider now the map ¥ : N> — N? defined by :

(x+2z,z,y—x—2) if x<y-—g,
Y,y ={ Qy—x,y,x—y+2) if y—z<x<2y
(x =2y, x—y+zy) if x>2y.

A simple verification shows that W(S) C S and that the restriction of W to S
is an involution that possess a fixed point that is unique. It follows first that
the cardinality of S is odd, and thus that every involution possesses at least
one fixed point. Considering now the involution (x, y, z) — (x,z,y), we see
that it possesses a fixed point (a, b, b) which gives a* + 4b* = p. O

Remarks

« This theorem, which is a little jewel of static mathematics, gives absolutely
no indication of how we might explicitly find a and b. We will see this in
Chapter 8 when studying Euler’s proof.

* We will prove in Chapter9 that if (a, b) is a particular solution of the
equation p = x2+ y?2, then all the other solutions are (fa, b) and (£b, +a).
Thus, the pair (a, b) is unique in a sense that one can easily make precise.

¢ One should not imagine that the condition » = 1(mod 4) guarantees that n
is a sum of two squares. A counterexample is 21. More generally, one has the
following result.

4 Following D. Zagier, A one-sentence proof that every prime p = 1 mod 4 is a sum
of two squares American Mathematical Monthly, 97 (1990), p. 144.

Theorem 2.11.2 (Jacobi, 1829). Let n > 1 be an integer and A(n) the num-
ber of pairs (x,y) € Z* which are solutions of the equation x* + y* =
If d\(n) is the number of divisors of n which are congruent to 1 modulo 4
and ds(n) is the number of divisors of n which are congruent to 3 modulo 4,
then

A(n) = 4[d\ (n) — d3(n)].
(The odd divisors are the only ones which occur in this decomposition.)

For enterprising readers, the proof is carried out in two steps: one begins by
checking that the formula holds when n is a power of a prime number. Then
one proves that the functions A and d, — d5 are multiplicative.

2.12. The Moebius Function

Let f : N* - M be any function with values in an abelian group M. We
write M additively. To f we can associate a function ¢ : N* — M defined by

p(n) =) f@). (2.17)

dln
For the first few values of n we have

e(l) = f(1),

e(2) = f()+ f(Q2),

e(3) = f()+ f(3),

@) = f()+ f2)+ f(4),

(5) = f()+ f(5),

@6) = f()+ f(2) + f3) + f(6), etc.

Conversely, we might ask whether it is possible to reconstruct f if we
know ¢. If we view the f(k) as unknowns, the equations above make up
a system of linear equations with integral coefficients whose matrix is trian-
gular with coefficients on the diagonal equal to 1. This is a Cramer system
which means that there is a unique function f. The inverse matrix T~' has
integral coefficients because det T = 1. The explicit solution of this system is
remarkable.

Theorem 2.12.1 (The Moebius inversion formula). For every integer n > 1,

one has
fm =Y u(3) e = Zu(d)<p() (2.18)

d|n

where i : N* — {—1,0, 1} is the Moebius function

1 if n=1,
umn)y=4¢0 if n is divisible by the square of a prime number,
(—=1)* if n is the product of k distinct prime numbers.

The first few values of the Moebius function are:

n |1 2 3 4 5 6 7 89 10 11 12 13 14
um)y(6 -1 -1 0 -1 1 -1001 -1 0 —1 1

Before proving the inversion formula (2.18), we give some immediate prop-
erties of the Moebius function that we will need in what follows.

Lemma 2.12.1. If a and b are relatively prime, then u(ab) = p(a)u(b). For

all n > 1, one has)_ u(d) = 0.
d|n

Proof. The first assertion is an immediate consequence of the definition. To
establish the second, consider a prime divisor p of n. We can write n = p*m
with ¢ > 1 and m not divisible by p.

o If m =1, we have
2 1d) = () + p(p) + u(p?) + - = u(l) + p(p) =0.
dln

e If m > 1, the divisors § of n are of the form d, pd, pzd, ..., p*d where
d is a divisor of m. Thus, we can write

2sin) = Xy (@) + 34, 1 (pd) + 3y, m(PPd) +
=2 yim @)+ 2y, 1(pd)
=2 yim @) +pn(p) 34, 1)
=0.

Proof of formula (2.18). We begin with the sum
S=) nn/ded) = un/d)}_ f).

dln dln HE]

If d divides n and if § divides d, we have n = dém. Therefore, we can
rearrange the sum:

S=) fOum) =" f©®) Y uim).

Sm|n Sln m|nd-

By the lemma, the sum of the w(m) is zero if n6~' > 1 and is equal to 1 if
né~' =1, that is, if § < n or 8§ = n. We are left with S = F(n).

Remarks

o If we write the group M multiplicatively, formulas (2.17) and (2.18) be-
come

o) =[] rd) = fon) = [To@) . (2.19)

d|n dln

This version will be very useful when we deal with cyclotomic polynomials
in Chapter 10.

« The Moebius function appears in many fascinating formulas. For example,
if s > 1, one has

o0

! . 1u(n)
() =) — = m) Z“"

The proof of this formula is easy. Because both series are absolutely convergent
for s > 1 we have the right to rearrange their product in the following way:

(i pl)(i M;?))= ,,; M) ; ni(; u(q))= 1.

= (pg)*

2.13. The Fibonacci Numbers

Fibonacci (filius Bonacci, 1180-1228), also known under the name of Leonardo
of Pisa, introduced the sequence which immortalized him while studying the
growth of rabbits on a desert island. This harmless sequence, of vital impor-
tance in computer science, is defined by the initial conditions

FO = 09 F] = 1
and the second order recurrence relation
Fy=F+ F,2 n>2.

The first few Fibonacci numbers are therefore

n|{O0O 123 456 7 8 9 10 Il 12
F, 10 11 2 3 5 8 13 21 34 55 89 144

The roots of the characteristic equation X2 = X + 1 are the golden numbers
y = 2(l ++/5) and § = 2(l — /5). Because the sequence satisfies the same
recurrence relation as the F,, we obtain Binet’s formula (which is not of much
interest when working over the integers):

h=glGo+v) - (30 -v9)')

Exercise 6
Show (by induction) that F, > y"~2 for n > 3.

2.14. Reasoning by Induction

We are going to recall and elaborate the basic principles of the technique of
mathematical induction which we use frequently (especially when dealing with
questions involving recurrence).

Theorem 2.14.1 (Principle of weak induction). Suppose that D is a subset
of N with the following two properties

(@) the integer 0 is in D;
(b) anytime that n is in D, one can show that n + 1 is in D.

Under these conditions, D = N.

Proof. Suppose that D # N. Then D = N—D is not empty and therefore has
a least element u. Condition (i) implies that u > 0. So we can consider the
integer ' = u — 1 > 0. The definition of u shows that ' belongs to . From
condition (ii), it follows that u’+ 1 = pu belongs to D which is a contradiction.

O

Theorem 2.14.2 (Principle of strong induction). Let D be a subset of N with
the following two properties:

(a) the integer 0 belongs to D;
(b) any time that the interval [0, n] is contained in D, one can demonstrate
that n + 1 belongs to D.

Under these conditions, D = N.

Proof. Tt suffices to copy the preceding proof replacing the sentence ‘“the
definition of u shows that u’ belongs to D’ by “the definition of u shows that
the integers < n are in D, which gives the inclusion [0, u'] C D”. O

Experience shows nevertheless that these two principles of proof do not
suffice because one is often obliged to induct on N? or on sets which are
much more baroque.

Definition 2.14.1. One says that an ordered nonempty set E is well-ordered
if every nonempty subset D C E possesses a least element; that is, an element
u € D less than or equal to all other elements of D.

Let us establish some immediate consequences of this definition.

o A well-ordered set is totally ordered. In fact, two elements x,y of E
are always comparable because D = {x, y} possesses a least element which
therefore must be comparable to the others.

« A well-ordered set always possesses a least element since D = E is
a nonempty subset of E. Unless explicitly stated otherwise, we will always
denote the least element by 0.

« The smallest element u of a nonempty subset D is unique. In what follows
we let © = min D denote the smallest element of .

 In an well-ordered set which is not bounded above, every element pos-
sesses a successor x'. This is defined as the unique element possessing the
following properties:

@) x < x’;

(b) there is no element between x and x’ (in other words, the inequalities

x <y <x'imply that y = x or y = x').

Proof. Since E is not bounded above, the set D — [0, x] is not empty. The
successor of x is then x’ = min D (this is immediate). O

Examples
o The set N is well-ordered.

» A nonempty interval of N is well-ordered — this shows that there exist
well-ordered finite sets.

» There are many other simple sets which are well-ordered as the following
result shows.

Theorem 2.14.3. For every integer k > 2, the lexicographic order on N¥ is a
well-ordering.

Proof. To simplify, we are going to prove the theorem in the case when k = 3.
Let D be a nonempty set of triples (x, y,z) € N°. Consider the set of first
coordinates of elements of ID. Since this is a subset of N, we know that it has
a least element:

£ =min {x e N: (x,y,2) € D}.

Consider in turn the elements
n=min{yeN; (&, y,z) €D} ¢=min{z € N;(,n, 2 €D}

(note the presence of £ in the definition of n and of &, n in the definition
of ¢). It is clear that (£, n, {) belongs to D. To show that it is the smallest
element, suppose that there exists (x, y, z) € D and that (x, y,2) < (£, 1,¢)
(the ordering being lexicographic). Then we have x < &, which implies that
x = & in view of the definition of £&. This implies that y < 5 and, thus,
that y = 7 in view of the definition of 7. Similarly, one shows thatz =¢. O

This result is very interesting. First of all, it allows us to reason by induction
on N? or N°. But it also shows that we should be wary of extrapolating from
the set of integers: in a well-ordered set, some elements may fail to have a
predecessor!

» u
i
7

—r—oe

Fig. 2.1.

In N? for example, the couple (1,0) has no predecessor (see Fig.2.1).
The smallest element of the set D of points in the grey region is the white
point (1,2) Each element of N? possesses a successor, but the points on the
horizontal axis do not have a predecessor.

Exercise 7

Show that in N? with the lexicographic ordering, the points with no predecessor
are the points on the horizontal axis. To understand the structure of the order
on N? a little better, consider the map ¢ : N> — R defined by

|
x,y)=x+1— ——.
P(x,y) oy
What does ¢(N) look like? Show that this is a strictly increasing bijection
between N? and its image.

Theorem 2.14.4 (Principle of transfinite induction). Let E be a well-ordered
set and D a subset with the following two properties:

(a) the set D contains the least element O of E;
(b) each time that one has (0, x) C D, one can show that x belongs to D.
Under these conditions, one has D = E.

Proof. We adapt the preceding proofs, sorting them out so as to make no
reference to predecessors. Suppose for a moment that D is not the set E. Then
D¢ = F — D is not empty and has a least element u > O after (i). From
the definition of w and (ii), one sees that the elements of E which satisfy
the inequality x < u are in D (this is the way we eliminate recourse to the
predecessor of). From the induction hypothesis, one concludes that u is an
element of I, which is a contradiction.]

Example

Here is a typical example of transfinite induction. Let u,v:N—>N and
w : N> - N be any three functions. Consider the function f : N> - N
defined by
u(x) if y=0,
flx,y) =1 vy if x =0,
flx—Lw)+ f,y—1) ifx, y>0.
(We suppose that u(0) = v(0) for this definition to be coherent.)

We call D the domain of definition of this function. We are going to demon-
strate that it is equal to N* with the aid of transfinite induction.

« First of all, £(0, 0) exists.

« Now let (x, y) be an element of N? and suppose that f(u, v) exists for
all pairs (u, v) satisfying the condition (u,v) < (x,y) with respect to the
lexicographic order. We must prove that f(x, y) exists.

> This is evident if x or y is zero.
> If x and y are not zero, since we have

(x—Lu(x,y) <&,y and (x,y—1) < (x,y)

for the lexicographic order, the induction hypotheses guarantees the
existence of the numbers f(x—1, u(x, y)) and f(x, y—1). Therefore,

fly = flx—=Lu@x,)+ fx,y—1)
is well-defined.

We will see another application of this principle in Chapter 12.

2.15. Solutions of the Exercises

Exercise 1

If we calculate the differences u;, | —u;, we see that we get a periodic sequence:

+2 42 42 42 42 42 42 42 42
5 7 9 11 13 15 17 19 21 23
B

—_— —~ T ~— ~ o ~_ >~
+2 +4 +2 +4 +2 +4

More formally, every integer is of the form 6g +r withr =0,...,5. If we
eliminate the multiples of 2 and 3, the only possible values of r are r = | or
r = 5. The terms of the sequence (u,) are thus

6+ 1, 6g+5 6(g+ D) +1, 6(g+1)+5 6(@+2)+1,...

As a result, we go from u; to u;,, by alternately adding 2 or 4, which gives:

u; +2 ifi =1 (mod 2),
= ! 2.20
Yl T w44 ifi=0 (mod 2). (2.20)

Exercise 2

Suppose first of all that the coefficients of P and Q are in N and strictly less
than b. Then P(b) = Q(b) expresses the fact that the numbers P(b) and Q(b)
have the same expression in terms of the base b. Therefore the coefficients are
equal. If the coefficients of P and Q have arbitrary sign, one can reduce to
the preceding case by adding a suitable multiple of X" + X"~ +... + X + 1
to both polynomials.

Exercise 3

The element in the x-th row and y-th column is:

N=3x+14+(p-DRx+1)=2xy+x+y.
o Let 2n 4+ 1 = pqg be a composite number. Since 2n + 1 is odd, we can put
p=2x+1and g =2y + 1 with x,y > 1. Then n = 2xy 4+ x + y figures in
the table.

e Conversely, if n = 2xy + x + y figures in the table, one has 2n + | =
(2x + 1)(2y + 1) which shows that 2n 4 1 is composite.

Write a Pascal program which calculates and displays the Sundaram sieve
up to n rows and n columns, and which uses it to obtain the corresponding
prime numbers.

Exercise 5

Suppose that there exists a polynomial F € Q[X] such that F(x) is a prime
number for all x € N greater than or equal to xy. Put F = G/d with G € Z[x]
and d € N* and let p = F(xo). Applying the Taylor formula gives:

(hd)?

Fxo+ phd) = F(xo) + p(hdF @) + p*(“5- F'(x0))
+ot p"(%F("’(xo)).

Since G®(xo)/k! is an integer for k > 1, so is (hd)*F® (x,)/k!. Hence
F(xo + hp) is an integer multiple of p strictly greater than p if one chooses h
sufficiently large. This is a contradiction.

Now let us see what happens with the second attempt.
o If |T| > 1, we have f(x, y) =2 which is a prime number.

« If T =0, we have x(y + 1) = (y! + 1) which implies that y!+ 1 =0
modulo (y + 1). Wilson’s theorem then assures us that f(x,y) = y + 1 is
indeed a prime number.

Now, suppose that we want to solve the equation f(x,y) = p when p is
an odd prime. We have

T=0= y+l=p = x=[(p—D'+1]/p,

and Wilson’s theorem guarantees that x is an integer. There is a unique such
pair. Conversely, computing f(x, y) gives again the prime p.

We have a magnificent reformulation of Wilson’s theorem and a “simple”
function which only takes prime values. It is annoying that this function almost
always takes the value 2 since T is almost never 0: for example, one has
T(x,10) = 0 iff x = xo = 329,891 which means that f(x,10) = 2 for
x # xo and f(xp, 10) = 11. This is not an efficient way to generate prime
numbers ...

3. An Algorithmic
Description Language

An algorithm is a “recipe”, a minute description of the operations that one
must perform to obtain a desired result. In order to avoid any ambiguity, this
description necessarily uses a very restricted language: two persons separated
by thousands of kilometers must perform exactly the same sequence of oper-
ations.

The language that we are going to present to describe algorithms will be
based on the computer language Pascal. However, we will stray from this
language without apology when necessary, because an algorithm must be un-
derstood by a person, and human beings absolutely do not function like com-
pilers!

The distinction between an algorithm and a program is important:

« An algorithm is a description, as clear and as vivid as possible, of a set of
actions which do not depend on a given machine; it is intended for our brain.

» A program is a painstakingly precise, punctilious text intended for a com-
piler. It is written in a specific language. A program written in Lisp cannot be
understood by a Pascal, or a C, or an Ada compiler.

An algorithm generally suppresses many details that one cannot ignore
when dealing with a compiler. In a manner of speaking, an algorithm is the
quintessence of a program. In contrast, a program is an implementation of one
or more algorithms.

Like any living language, a computer language consists of words that are
organised into sentences. The set of precise rules which govern how correct
words and sentences can be formed is called the synrax of the language. Syntax
is mechanical: it allows us to give orders to the compiler.

The word semantics refers to the meaning of the text that one writes. The
meaning exists only for (and in) our brain. By its very definition, it is inac-
cessible to a machine which is just a set of switches and a clock.

If you are a mathematician, you will easily grasp the distinction: haven’t
you ever been able to repeat a proof, without understanding it?

3.1. Identifiers

Calculating involves manipulating variables, each of which must be given a
name called an identifier. For ease of reading, mathematicians prefer to use
identifiers consisting of a single letter: the abcissa x, time ¢, etc, even to the
point of borrowing from several alphabets (roman, greek, hebrew, etc.).

As the complexity of the objects increases, however, they use more and
more identifiers consisting of several letters (SO, PSL, Hom, End, etc.).

A mathematical proof uses relatively few identifiers. By contrast, a program
can contain hundreds, or even thousands, of variables and uses words of ar-
bitrary length as identifiers. The convention used is very natural: an identifier
always begins with a letter (which can be upper or lower case); and is followed
by (unaccented) letters or numerals.

For example, “x”, “x17, “x12”, “x1y2z3” and “toto” are identifiers. In
contrast, “lx” and “déja” are not.

Suppose that we wish to call an identifier initial velocity. We cannot leave the
space between the two words, because a space is neither a letter nor a numeral.
We could avoid the difficulty by writing initialvelocity or InitialVelocity.

In order to improve the readability of programs, Pascal, and many other

computer languages, treat the symbol “_" (called the underscore or underline
or break symbol, and obtained by pressing the key combination SHIFT - on
a keyboard) as a letter. Consequently, “initial_velocity”, “_1”, “_x” and “x_"

are identifiers.

For beginners

Choosing good identifiers is crucial: they should inform the reader of their
meaning and are an important form of self-documentation of the program.
It is very easy to render an algorithm or program illegible by an awkward,
unitelligible, or bizarre choice of identifiers.

Consider, for instance, the statement:

distance = initial_distance + speed * time.

You have, of course, the right to rebaptize these identifiers and replace distance
everywhere in the program by acceleration, initial_distance by speed and
speed by initial_distance to obtain the bizarre statement:

acceleration := speed + initial_distance * time.

For a compiler, identifiers mean nothing: they are anonymous addresses and
cannot mislead. But it should not surprise you if your brain is led astray in a
sufficiently hostile context ...

3.2. Arithmetic Expressions

An arithmetic expression is a collection of identifiers, numbers, and symbols
such as “a—(bx(c+x/y)—cos(t+ 1)) or “axx[2xi+i+ 1]+ b”. There
is nothing special to say concerning their construction or syntax.'

3.2.1. Numbers

An arithmetic expression can contain numbers: “2 *xx + 3.14”. Since one does
not have access to the notation 10" on a keyboard, the numbers 3.56 x 10"?
and 1.7 x 10~* are denoted in Pascal by “3.56 E12” and “1.7E — 4”.

3.2.2. Operations

The operations “+, —, x, /” are left-associative, which means, for example,
that a computer will evaluate “x/y/z/t” as if it were written “((x/y)/z)/t”.
Be careful! The operation “/” manufactures real numbers. When you type
“4/2”, you obtain the real number 2.000... in Pascal, not the integer 2 (in
other words, the computer does not view Z as a subset of R).
Let a, b be integers with b > 0 and let g, r be the quotient and remainder
upon division of a by b:

a=bq+r, 0<r<hb.

The quotient g is denoted “a div b” and the remainder r by “amod b”. We
thus have two internal operations div ,mod :Z x Z — Z which have two
peculiarities of which you should be aware:

’

» The operations “ div ” and “mod ” have priority over addition and mul-
tiplication. This means that “a + bmod n” and “amod p * p” are interpreted
as if they were the expressions “a + (bmod n)” and “(amod p) * p”. Do not
forget the parentheses if what you want is “(a 4+ b)mod »” or “amod (p * p)”!

» Be very careful: when b is negative, “a div b and “amod b’ are not what
a mathematician means by the quotient or remainder: there is often a shift.
Experiment to find out what convention is being used.

For beginners

In mathematics, the product of two variables is generally denoted by con-
catenating the names of the variables: the product x x y is denoted by xy.
In computer science, the use of the symbol “x” is indispensable because a
program may very well contain the identifiers x, y and xy.

' You already learned about these constructions empirically. But what are the precise
rules? A beginning of a response will be given in Chapter 13. A rigorous description
of these rules uses the abstract concept of a grammar which we cannot take up here.

3.2.3. Arrays

In computer science, the indexed objects that mathematicians use (vectors, ma-
trices, etc.) are called arrays. Because indexes are not available on a keyboard,
they are placed in square brackets:
« instead of talking about a vector x = (x;, ..., x,), a computer scientist
considers an array x[1..n] whose elements are x[1], x[2], ..., x[n];
e a matrix is an array with two indexes of the form A[l..n, 1..m]; the
element A; ; is written A[i, j].
You can use arrays with three, four, etc. indexes.
An arithmetic expression can contain references to an array:

All, jl1+x[i + 11 % y[2% j + 2 *t{u, v+ w] — 4].

It is possible to replace an index by an arithmetic expression if the value of
the latter is a whole number.

3.2.4. Function calls and parentheses

An arithmetic expression can also contain function calls:
2xx +cos(3*yx*xy-+0.5)/log(Ali, j + 1] — sin(z)).

In mathematics, one suppresses redundant parentheses whenever possible in
order to reduce clutter. One writes, for example, “cos x” instead of “cos(x)”
and, hence, “y 4 cos x” rather than “cos x 4 y”. In contrast, one cannot forget
the parentheses in a program: one systematically writes “cos(x)”.

Square brackets and braces (curly brackets) are not allowed: “log[x +
cos(y)]” is incorrect, it is necessary to write “log(x 4cos(y))”: square brackets
are reserved for arrays and curly brackets enclose comments.

3.3. Boolean Expressions

Boolean expressions are arithmetic expressions which take the values true or
false. They are obtained as follows:

» by using a boolean variable which takes the values true or false;

o by comparing two arithmetic expressions: for example x +y #z —t+u
orx +yx*(@Z+x)>3—cos(x+y);

« by combining boolean expressions using the logical operations “or”, “and”
and “not”. For example,

not (x=y+1)or(a>>b)and (c+d=> z+ 1) or not finish

In an arithmetic expression, multiplication has priority over addition and
subtraction. In a similar manner, the operation “and” has priority over “or” as
well as the operations “+, —, %, /”. As a result of this convention, “(a < b)
or ((x =y) and (u > v))” has the same meaning as “(a < b) or (x = y) and
(u > v)”, thereby allowing us to suppress some parentheses.

For beginners

» The logical operations “and” and “or” do not at all corrrespond to the
way we use them when we speak! We have a tendency to give the operation
“or” an exclusive value (the computer scientist’s “xor”’). When we assert, for
example: “This is butter or margarine!” we understand that it is either one or
the other, but certainly not both. We also say “this property is true for i < 10
and { > 20” although the boolean expression “(i < 10) and (¢ > 20)” is
always false.

« Since the symbols <, >, and # are not available on a keyboard, they
are replaced in Pascal by the compound symbols <=, >=, and <> (without
a space between the characters). Having said this, we will continue to use
without further comment the classical mathematical symbols in the programs
and algorithms in this book. Reading and understanding a program is not the
same as typing the program!

» Do not forget to use parentheses systematically whenever the logical op-
erations “not”, “and”, and “or” occur: parentheses are indispensable in Pascal.
The operations “and” and “or” also have priority over arithmetic operations:
a Pascal compiler reads “a < b or x = y” as “a < (b or x) = y” which is

devoid of sense.

» The boolean expression “n mod 2 = 0” allows one to test the parity of n:
itis true if and only if n is even.

» Suppose that finish is a boolean variable (that is, a boolean expression
reduced to an identifier). Do not write “finish = true” in your tests; simply
use the identifier “finish”. The effect will be the same since these two boolean
expressions take the same values.

o If a and b are two integers, the boolean expressions “a x b = 0” and
“(a = 0) or (b = 0)” are mathematically equivalent. A programmer will
systematically use the latter because it is stupid to use a multiplication which
is much slower than a test.

3.4. Statements and their Syntax

We communicate with the help of sentences. In computer science, a statement
corresponds to a sentence; a program is a sequence of statements. Since our
goal is to content ourselves with a minimum of Pascal, we shall only use three
types of statements: assignments, conditionals, and loops.

o An assignment:
> (identifier) := (arithmetic expression)
> (element of an array) := (arithmetic expression)

e A conditional, with or without “else’:
> if (boolean expression) then (statement) else (statement)
> if (boolean expression) then (statement)

» A loop, of which there are three types:
> for (assignment) to (arithmetic expression) do (statement)
> for (assignment) downto (arithmetic expression) do (statement)
> while (boolean expression) do (statement)
> repeat (sequence of statements) until (boolean expression)

The angle brackets () indicate, for example, that (identifier) is to be replaced
by an identifier. Sometimes we will use a “case of” statement which generalises
and simplifies certain constructions made from “if then else”. Consult your
Pascal manual for details.

3.4.1. Assignments

These are the simplest statements to write:

x:=a+bxc, Ali,j+k]l:=loglx+y/x)+x*x+x+1.
The symbol “:”” which precedes the symbol “=" cannot be omitted. There is no
space between these two symbols: in other words, it is necessary to consider

“:=" as a new symbol, the assignment symbol.

3.4.2. Conditionals

Here are two simple examples.
if x=1) or (y > 0) then y := a + cos(x) else y := a — sin(x)
if x > u+ v then A[i, j] := x[i] + ylj]

For beginners
It is necessary to distinguish carefully between tests and assignments:
if x =1 ifx=1
theny=u+v theny :=u+v
The code on the left contains two syntax faults at the outset!
e “x := 1” is a statement which is forbidden after “if” (a statement does
not have a value: what value can one give to an action?);

« “y=u+v” is a boolean expression and is forbidden after “then”.

Computer scientists are more careful than mathematicians, for whom the
meaning of the equals sign depends strongly on the context. (However, this

situation is evolving: one encounters the assignment symbol “:=" more and

more frequently in recent books and papers on mathematics.)

3.4.3. For loops

Consider the “for” loop:

fori.=1ltonxn+ldox[2*i+1]:=axi+b

« The variable i on the left of the assignment symbol is called the control
variable of the loop. This name is reserved because a compiler uses it when
it diagnoses an error. It is necessarily an variable of integer type; it cannot be
an element of an array.

» The single statement that follows the “do” is called the body of the loop.

For beginners

From time to time, the following error
fori:=1to 10doxi:=ixi

is made when trying to effect the assignments x1 = | % 1, x2 := 2 % 2,
x3 := 3 % 3, etc. The compiler will refuse because it does not recognize the
variable “xi”. It is necessary to define an array x[1..10] and write x[i] := i *i.

3.4.4. While loops
Here are two very simple examples:
whilex > 0do x :=x+3
while x > 0) and (x < 10) do x :=x + 1
« The boolean expression is called the exit test of the loop.
» The single statement that follows the “do” is called the body of the loop.

3.4.5. Repeat loops

Here is an example, although we have not yet defined a sequence of statements:
repeat x .= x+1i; =i+ 1 until x > 100

In a loop of this type, the body of the loop is formed by all the statements
between “repeat” and “until”.

For beginners

 In a “while” loop, one first encounters the exit test, then the body of the
loop. In contrast, in a “repeat” loop, one encounters the body before the exit
test.

« The body of a “while” loop contains only a single statement while the
body of a “repeat” loop can contain as many as one wants. We will see a little
later how one can handle this apparent asymmetry using a block of statements.

3.4.6. Sequences of statements

In general, a novel is made up of many sentences, each ending in a period.
Similarly, an algorithm (or a program) contains many statements. A sequence
of statements consists of a finite (nonempty) set of statements.

Unlike sentences in a novel which end in a period, in Pascal, statements
in a sequence of statements are separated by a semicolon: that is, there must
be an statement on each side of the semicolon. If the letter S designates a
statement, a sequence of statements is as follows:

NN <« correct

S5 8 S3; <« the last semicolon is incorrect.

For beginners

Experience shows, alas, that adherence to this convention is not easy, because
we spontaneously tend to follow a statement by a semicolon, a reflex inspired,
no doubt, by the period that ends our sentences. Pascal compilers are tolerant,
and accept, whenever possible, redundant semicolons and the empty statements
that they evoke. We cite an instance a little later where this is not possible.

This said, there is nothing to be gained in maintaining that the syntax of
Pascal is difficult; the placement of semicolons is very simple, contrary to
what one sometimes reads. Teaching programming shows that a student who
has difficulty with semicolons is one who does not know by heart the list of
statements.’

3.4.7. Blocks of statements

It frequently happens that one must repeat several statements in a loop. For
example, consider
while x > 0 do
sum = sum + 2 * x
x:=x—1

2 To know by heart is to be capable of responding in a tenth of a second, without
reflection; as a reflex. Consequently, if you hesitate, if you have to mentally review
all possible statements, then you must learn and relearn the list of statements: several
minutes each day for a week will suffice.

where the vertical line indicates that we want to execute the two statements as
long as x is greater than 0. But a “while” loop accepts only a single statement
after the “do”; as a result, the Pascal compiler “sees” the following:

while x > 0 do sum :=sum + 2 x x ;
x:=x—1
Thus, we have created an infinite loop which repeatedly adds 2 x x to the
variable sum; the statement x := x — | is therefore never executed.
We need a mechanism for grouping statements, and making a sequence
of statements into a single statement. A block of statements, which is then

considered as a new statement, is a sequence of statements preceded by a
“begin” and followed by an “end”:

begin (sequence of instructions) end

a single instruction
Thus, the solution of our problem is as follows:

while x > 0 do begin
sum = sum+ 2 x x ;
x=x—1

end

For beginners

o We now understand better why a statement which follows the “do” in a
“for” loop or a “while” loop is called the body of the loop; most of the time
the body of a loop is a block of statements.

« If S is a statement, one can write “begin S end”, but this does not accom-
plish any more than writing S alone. Thus, one uses a “begin end” starting
with two or more statements.

« A “repeat until” by itself forms a statement block. Thus, there is no point
in typing
repeat begin S;; S;;...; S, end until ...

3.4.8. Complex statements

Now that we have learned how to write simple statements, we can assemble
and nest them to obtain more and more complex statements. Consider the
following two texts. The text on the left is a sequence of two statements;
the one on the right contains a single statement. We note therefore that it is
possible to write arbitrarily long statements.

forx'=a+btoakxa+b+1do forx:=a+btoaxa+b+1do
for y:=ctoaxc+ 1 do for z:=1ton*xn+1do

forz:=1tonxn+1 do while z > 0 do begin
Ulx,z,z2l i=x+y; .z:=x+y;

repeat ifz=20

X=x+y+z then u :==u+v

yi=y*xx—2 elseu::u—v;

u:=u-+cos(u-+v) z:=x+y-+zdiv2

until x > ¢ end

3.4.9. Layout on page and control of syntax

The layout of a program on a page is very important. If you neglect it, mas-
tering the syntax and understanding the text becomes very difficult. Which
would you prefer? To read a kilometer of text such as the following:

for x :=a+btoaxa-+b+1 do while x > 0 do begin
Z=x+y; repeat if z =0 then u := u + v else begin
u=u—v;v=vsxvenduntilz < —1;y:=y—2end

or to read the more structured text below?

forx:=a+btoaxa+b+1do
while x > 0 do begin

Z:=x+Yy;

repeat

ifz=20

then u :=u+v

else begin u :==u—v; v:i=vxvend
until z < —1

yi=y—2

end

They produce, however, exactly the same effect. A compiler “sees” no differ-
ence between the two because, from its standpoint, passing from one line to
another is nothing more than a single space; on the other hand, I challenge you
to tell me rapidly whether the three lines of the first text above are syntactically
correct, without some sort of preliminary layout.

Let us return to our kilometer of text and check its syntax.
« The text begins with a “for” loop which is the start of the statement:

forx =a+btoaxa+b+1do...

This loop is syntactically correct if its body is a statement.
o The text which follows the “do” begins with a new loop

while x > 0 do begin ... end

and we are led to checking whether the body of the “while” loop is a legal
statement, i.e. whether the text between the “begin” and “end” is a correctly
written sequence of statements.

» The body of the “while” loop contains three statements

Z=x+y;repeat... untilz < —1; y=y—-2

o We are thus led to checking whether the body of the “repeat ... until”
loop is correct, which one verifies easily:

if z=10then u := u + v else begin u == u — v; v := v * v end.

All that remains is to read a semicolon followed by a conditional. The text we
started with is therefore syntactically correct and consists of two statements.

Syntactic analysis proceeds like peeling an onion: one inspects the outside
layer first, and begins again with the inside layers. If the program is intelli-
gently laid out, the analysis can be made at a glance. Vertical bars, combined
with indentation, allow you to instantly see the extent of the different blocks
of statements; the “if then else” conditions are laid out vertically whenever
necessary.

For beginners

The ideal is to have one statement per line; however, when a statement is too
long, it must run over a line. Don’t be too rigid in the way you lay things out.
Use space harmoniously; you should be guided by aesthetic considerations,
that is, the comfort of the reader. It is quite all right, for example, to stack the
three pieces “if”’, “then”, “else” of a conditional vertically one on the other;
however, when each is very short, it will be easier to read if it is all on one
line.

Some individuals pass down to the line after each “begin”, so that they can
place the corresponding “end” vertically beneath; this is inconvenient as it
wastes a line. Also the screen of a computer monitor is small! You are looking
at a landscape through a keyhole

Here are two classic blunders that beginners make.

» Typing the whole text (or the reserved words) in capitals. This makes
reading very painful. (Capitals were not designed for rapid reading, keep them
for monuments.)

« Indenting your text too much. Don’t — three spaces suffice on a screen.
At the back of your eye, on the same axis as the lens, there is a tiny yellow
spot very rich in nerves called the fovea. This region is responsible for the
recognition of forms. Look directly in front of you: if someone approaches
you from the side, you will realize that a person is approaching, but you will
not be able to identify him or her because you are not facing the person and,
consequently, his or her image will not fall on your fovea.

It is for this reason that the eye moves ceaselessly. At normal reading dis-
tance, our brain only recognizes the contents of a disk about ten centimeters
in diameter. If the indentation is too large, it forces you to move your focus
instead of being able to grasp everything at a single glance, and this makes
syntactical analysis and comprehension much more difficult.

An important programming tip

First type “begin end”; then return and insert between “begin” and “end” the
sequence of statements that is to become a block. Do the same with “repeat
until” and with “case of end”. If you adhere to this discipline, you will never
have to worry about closing blocks; and you will not pass your time counting
on your fingers how many “begin”’s you still have to close.

When you write out a program by hand, always follow a “begin” with a
vertical line. This facilitates syntactic analysis; if you change a page, you will
know exactly how many “begin”s you have to close.

3.4.10. To what does the else belong?

When you nest “if then else” statements, the “else” always belongs to the
closest “then”. An intelligent layout (indentation and vertical lines) is very
useful in facilitating comprehension and analysis. Thus you write:

ifx>0
then y ==y + 1
elseif x=0
then z :=z — 1
else if x < —1
then u .= u+1
else u :=u—1
It is sometimes necessary — but very, very rarely — to detach an “else”” from
the closest “then”. This is done with a block, like this:

ifx <a)
then begin ifx>a

|if x mod 2 =0then y :=xdiv2 < then y :=x div 2 + 1
end else if x mod 2 =0

else y == x div 2 + | then y := x div 2

3.4.11. Semicolons: some classical errors

Let’s put ourselves in the place of a beginner who decides to simplify life once
and for all by ending each statement with a semicolon. Since an assignment
is a statement, he or she types

ifx>0
then x :=a ; <« incorrect semicolon!
else x ;= b

The compiler analyes the correct statement “if x > O then x := a”. It then
expects to find a statement after the first semicolon. But since an “else” can
never begin a statement, it protests.

Here is another classic fault. At the left is a beginner’s program; at the right
is what the compiler “understands”:

ifx>0 ifx>0

then x :=u then x :=u

elseif x=0 else if x =0
thenx:=v; y:=x*x then x :==v

else x ;= w y:=xxxelsex :=w

The placement on the left suggests that it is necessary to simultaneously
execute the two statements “x := v” and “y := x x x” when x is zero;
however, the block “begin end” which would make these two statements into
one is missing. As a result, the “else” appears in the middle of a legal arithmetic
expression. The compiler has good reason to protest.

For beginners

We end with a problem that worries many novice programmers who have not
learned (or understood) their definitions: when one nests blocks, is it necessary
to put semicolons between the “end”s?

Recall that semicolons separate statements. Since an statement never begins
with an “end”, we note that the two first semicolons are questionable.

begin

begin
egin

end ; <« superfluous semicolon but accepted

end ; <« superfluous semicolon but accepted

end ; <« correct semicolon

On the contrary, the last semicolon is indispensable when the last “end” is
followed by a statement. The reasoning becomes evident when the code is
written on a single line:

begin ... begin ... begin ... end; end; end;

3.5. The Semantics of Statements

Identifiers only exist for our intellectual comfort; a computer only recognizes
addresses, which are whole munbers, in its memory (we will return to this
subject in Chapter 6). The contents of the memory at the address corresponding
to the identifier is the value of this identifier.

To better understand what this means, imagine a letter box: the name on it
corresponds to the identifier and the letter that one slides into it corresponds
to its value.

Each day, your letter box receives letters; in an analogous manner, the pro-
gram (considered as a mailman) can modify the value of an identifier. In
mathematics, a variable does not change its value during a proof. In contrast,
the contents of a variable in a program can change thousands, or hundreds of
thousands, of times in a second!

The analogy with a letter box breaks down however. When a program needs
to transfer the value of a variable into a microprocessor, it “photocopies” the
letter, it does not withdraw it! In other words, reading is not destructive.

3.5.1. Assignments

An assignment describes a process. In order to execute the statement
x:=b+axx

the computer first calculates the value of the arithmetic expression b + a * x
by recopying in a suitable order (here, a, x, b) the contents of the variables
as it does its calculations. This done, it overwrites the value in the address
corresponding to the variable x; this has the effect of erasing the previous
contents. (Certain languages use the notation x < b 4 a x x to better indicate
this.)

One increments the variable x by writing “x := x 4+ 1” and decrements it
by writing “x :=x — 17,

For beginners

The type of a variable is very important: the assignment “u := v” is only
possible if u and v have the same type. In case of error, the compiler will
announce that there is a type mismatch. However, there is an exception: the
assignments (real) := (integer) are legal.

3.5.2. Conditionals

Consider the statement

ifx=0then y :=y+1

If the contents of the variable x is O, y is incremented; in the contrary case,
that is, if x # 0, nothing happens and the computer executes the next statement
(if there is one).

The conditional with an “else” is also easy to grasp:
ifx=0then y:=y+lelsez:=2z—-1

If the contents of x is zero, y is incremented and the program skips the rest
of the statement to execute the next statement in the program: thus, the value
of the variable z is not changed. On the contrary, if x is zero, the program
skips the beginning of the conditional and decrements z: thus, the variable y
does not change its value.

3.5.3. First translations

Before examining the semantics of loops, we first familiarize ourselves with
our algorithmic description language by translating several common mathe-
matical constructions into it.

1) To express whether or not x belongs to an interval, the result returned
being a boolean, we can write

(@ <x)and (x <b)

if we know that a < b. But if we don’t know this, we should be prudent and
write:
(@a<x)yand (x <b)or (b <x) and (x <a)
The priority of “and” over “or” ensures that the translation is not ambiguous.
Beginners should note that in order to reliably translate x € [a, b]U[c, d] it

is advisable to first write “(x € [a, b]) or (x € [c, d])”, then replace x € [a, b]
and x € [c, d] by the appropriate code.

2) In mathematics, a comma frequently plays the role of “and”. Thus, for
example, one translates the condition i < x < j, x # k by:

((<x)and (x < j) and (x # k)
3) The classical notation

R— R, if (condition),
“ | R, otherwise

is translated simply by

if (condition) then R := R, else R := R,

4) Mathematicians often write:

_ | R if (condition,),

R = . .
R, if (condition,).

There are two legitimate translations: one, on the left, using one statement, the
other, on the right, using two.

if (condition,) if (condition,) then R := R, ;
then R := R, if (condition;) then R := R,
else if (condition;)

then R .= R,

What happens if both conditions are true? The solution on the left gives R the
value R;, while that on the right gives R the value R,. This is not too serious:
if the original mathematical assignment was coherent, then one has R, = R,
when both conditions hold.

For beginners

Nevertheless, you should systematically use the solution on the left:
« it executes more rapidly (one test instead of two);
« the translation on the right is perilous, as we are going to see.

5) We can complicate the game (we suppose that i is an integer):

ifi >0
aifi >0 then X :=a
bifi=0 elseif i=0
X = o = 4 then X :=b
cifi=-1,-2 else if (= —1) or (i = —2)
d if not then X :=¢

else X :=d

There is only one statement!

For beginnners

Using the option “else” is indispensable for automatically obtaining reliable
code. If you don’t use it, you risk writing nonsense.
Consider, for example, the following translation proposed by a beginner,
who refuses to use “else” imagining that it will somehow simplify life:
X:=d;
ifi>0then X :=a;
ifi=0then X :=0b;
if i=—1)or (i=-2)then X :=c

First of all, this translation begins with the “trick” X := d, which is not
at all clear, especially for a beginner! Then, when i > 0, the algorithm still
executes the tests i =0, i = —1, and i = —2, which is idiotic.

To better see why this intellectual laziness is suicidal, consider the following
example, patterned on the above:

a iIf X>0, X:=d;

b if X=0, l=>lifX>OthenX:=a;

c if X=-1,-2, if X=0then X =0,

d otherwise. if (X=—1)or (X=-2)then X :=¢
This translation is flagrantly false! Because X is modified at the outset, the

tests that follow have nothing to do with the initial value of the variable X,

but pertain instead to the values of d,a, b and c. A good translation is very

natural and executes more rapidly:

if X>0then X :=a
else if X =0 then X :=b
else if (X =—1)or (X=—-2) then X :=¢
else X :=d

3.5.4. The boustrophedon order

In some ancient languages the direction in which one reads changes from line
to line; there is no “carriage return”. One reads, for example, the first line
from right to left, the second from left to right, the third from right to left, etc.
This serpentine writing is called boustrophedon writing.

Consider the rectangle R of points with integer coordinates (Fig. 3.1) satis-
fying0 <x <a,0<y <b witha >0and b > 0. Inspired by the serpentine
pattern of boustrephedon writing, we can endow R with a total order called
the boustrophedon order. One traverses R in the increasing direction by

« leaving the origin (0,0) and moving along the line y = 0 towards the right

until we get to (a, 0);

« then climbing to the line y = 1 and moving along it to the left starting

at (a, 1) and continuing to the point (0, 1), etc.

Fig. 3.1. Boustrophedon order

Thus, the smallest element of the rectangle R is the point (0, 0); the largest
is (a, b) if b is even and (0, b) otherwise.

The resulting total order is given by:

if x<x’ and y=y" =0 (mod?2),
(x,y) < x', y) if x>x" and y=y =1 (mod2),
if y<y
and the successor of an element (x, y), when it exists, is:

(x+1,y) ifx <aand y even,
(a,y+1) ifx =a and y even,
(x—1,y) if x >0 and y odd,
O,y+1) if x =0 and y odd.

succ(x,y) =

To translate the above into code, we argue according to the parity of y. Since
the largest element does not have a successor, we need a boolean variable
which we call exist.

exist := true ; else {now y is odd}
if ymod2=0 |y is even} if x>0
then if x < a then x :==x — 1
then x .= x + 1 elseif y <b {and x =0}
elseify <b {and x = a} then y :=y + 1
theny:=y+1 else exist := false
else exist := false

o If exist is true, the new values of x and y are those of the successor of
(x, y).
o If exist is false, the new values of x and y mean nothing.

Exercises 1

 Close this book and construct your own code to calculate the successor
of (x,y).

 Define a boustrephedon order on [0, a] x [0, 6] x [0, c] as follows: to
go in the increasing direction, augment x when y is even, and diminish it
if y is odd; similarly, augment y when z is even and diminish it otherwise.
In this way, the parity of y modifies the order relation for x and the parity
of z modifies it for y.

 Generalize to a product of » intervals.

3.5.5. The for loop

Let i, n, a be integer variables and consider the loop

fori . =n+atonxndox :=x +1i

. T2

Here the body of the loop reduces to a single statement; or, to be more precise,
we do not have a statement block. We call i the control variable.

To execute this loop:

« The progam evaluates for once and for all the bounds min = n + a and
max = n xn.

o If min < max, the variable i successively (and automatically) takes the
values min, min+1, . .., max. Each time, the program executes the statement(s)
in the body of the loop. What happens in our example is as if the program
executed the sequence of statements:

x=x4+a+1l; x:=x4+a+2, ... ;x:=x+4+ax*a.

(Exercise: how much is the value of x augmented in total?)

 If min > max nothing happens: the program skips to the statement that
follows (if it exists) and x does not change its value.

The downto variant
The loop

fori =n*xndownton—adox =x-+i
functions in a similar manner. In executing this loop,

« the program begins by evaluating once and for all the bounds max = nxn
and min = n — a (note the inversion of the bounds).

o If max < min, the program does nothing and skips to the statement that
follows the loop (if it exists).

o If max > min the program successively gives the control variable the
values max, max — 1, ..., min and executes each time the statement(s) in the
body of the loop.

For beginners

The language Pascal was conceived to teach good programming. Thus the
“for” loop is protected in a manner so as to resist attempts to branch out of it.

» There is no point typing
for i := 1 to n do begin

S=S+1i;
if S>0thenn:=0
end

in the hopes of leaving the loop as soon as S > 0. Recall that the bounds
min = 1 and max = n are evaluated once and for all before the body of the
loop is executed; since the program compares the value of i to the number
max, the program is not able to take account of the modified value of n.

o There is no point trying to modify the value of the control variable in
order to leave the loop prematurely by typing, for example,

for i := 1 to n do begin

S:=85+1i;
ifS>0theni:=n+1i
end

We will see a little later (when we discuss the “while” loop) how to realise
very simply what the attempts above unsuccessfully try to do.

Remark

Modern implementations of Pascal allow one to leave any type of loop using
special statements (such as “leave”, “break” or “exit”, depending on the dialect
used).

However, professional programmers are reluctant to use these statements
without good reason. In general, when they modify a large program, they
content themselves with examining the test 8 which controls the loop* without
reading the body of the loop. If the body of the loop does not contain the
statement “leave”, one knows that the condition “not 8” is true on exiting the
loop; but this need not be the case if one leaves the loop by some other means.
And rare is the programmer who signals this and carefully makes precise what
condition is satisfied on leaving the loop in a different way.

Nevertheless, these statements are used very sparingly in certain circum-
stances when they hugely simplify the programming task.

3.5.6. The while loop
Consider for example the loop

[:=a ; _)‘ no
while i < b do begin

¢\l\

x::x+i;i::i+l h,,d\,,[
end the /unp

next statement

' Programmers must work as quickly as possible!

which means “repeat the body of the loop as long as i < b”. To execute this
loop, the program:

» Begins by evaluating the boolean expression i < b.

o If the value of the expression is true, it penetrates into the body of the
loop and executes the statements found there.

 This done, it returns to before the test and repeats the same sequence of
actions, as suggested by the arrow.

o When the boolean expression becomes false, it skips to the statement
immediately following the body of the loop (if such exists): we say that it
leaves the loop.

In our example, the program does not modify the value of x if a > b since
it does not penetrate into the interior of the loop. In contrast, when a < b,
what occurs is as if program executed the statements

X =x4+a x:=x+4+a+1;...; x:=x+b.

In a “while” loop, the test comes first. Thus it is entirely possible not to
penetrate into the loop.

Example

If we wish to calculate the sum S of the even numbers less than some fixed
number n, it suffices to use one of the following two loops:

S:=0;i=1,; S:=0; i:=2;
while 2 x i < n do begin while i < n do begin
|S=S+2%i; i=i+1 |S:=S+2%i; i=i+2
end end

Why is the loop on the right better?

For beginners

1) A “for” loop is an abbreviation of the following “while” loop:

i:=min;
while i < max do begin
=i+ 1

for i := min to maxdo § < {
end

Similarly, the “downto” variant is translated using a “while” loop as follows:

I :=max ;
while i > min do begin
|S; i=i—1

for i := max downto min do S <
end

Recall that a “for” loop functions all alone: incrementation (or decrementa-
tion) of the control variable is automatic.

2) We can now explain how the “for” loop is protected. When a compiler
encounters the loop

fori:=n+1ltonxn* doS

it creates three special variables (inaccessible to the programmer) which we
call here o, w and «. The compiler then translates the following loop into
binary.

a:=n+1; w:=n*xn; «k =a,;

while ¥ < w do begin

S; <« body of the original “for” loop

Kk:=x+1;
=«
end

3.5.7. The repeat loop

The statement “repeat until” means “repeat the body of the loop until the exit
test becomes true.” When the program encounters the two statements

¥

Li=a; body of
repeat the loo,

¥

xi=x+i;i=i+1 o res
until i > b @ l

next stuatement

it first gives i the value a (the first statement), then penetrates unconditionally
into the body of the loop where it executes the assignments “x := x 4 i and
“i == i+1”. Only then, does it compare for the first time the values of i and b.
If i > b, the program leaves the loop and executes the statements that follow
(if there are any); otherwise, it returns to beginning of the loop and repeats
the same sequence of operations. If we are interested in the variable x, what
happens is the same as if one executed the sequence of statements

x'=x+a;, x=x4+a+1,...; x:=x+b.

always onlyifa <b

For beginners

One always enters at least once into the body of a “repeat” loop. We have the
equivalence :

. o;
repeat o« until 8 < { while not 8 do

3.5.8. Embedded loops
Two embedded “for” loops can work minor miracles. Consider, for example,
the loop

fori:=1toado {external loop}
for j :== 1 to b do write(i,j) {internal loop}

The body of the external loop “for i :=1toa do ... ” is the internal loop
“for j .= 11to b do ...”. The external loop successively gives i the values
1,2,...,a. Each time that i takes a new value, the variable j sweeps out the

integers in the interval [1, b]. The result of these two loops is to write on the
screen the pairs

(1,1 (1,2) ... (1,b)
2, 1) (2,2) ... (2,b)

(a, 1) (a,2) ... (a,b)

in the order in which we read them. Mathematically, writing the couples (i, j)
one after the other defines a total order on the couples. In this case, the order
is the lexicographic order. That is, one compares the first coordinates: if they
are different, the couple with the larger first coordinate is the larger; if they
are equal, one compares the second coordinate.

Remark

One cannot measure the difficulty of an algorithm by the number of embedded
loops that it contains because one can translate embedded loops into single
loops. In the last example, observe that Euclidean division sets up a bijection
between integers n = bi +j € [0,ab— 1] and couples (i, j) € [1, a]l x[[1, b]:
for n:=0toaxb— | do begin
i=ndivb+1;
ji=nmod b+ 1;
write(i,)
end

3.6. Which Loop to Choose?

We need a loop any time that one deals with repetition of a given process. In
order to select the right loop, keep in mind the following:

» Can the process be controlled by an integral variable which runs over an
interval whose bounds are known in advance? If yes, use a “for” loop.

« Is the process to be effected n > 0O times? If yes, use a “while” loop.
« Is the process to be effected n > 1 times? If yes, use a “repeat” loop.

3.6.1. Choosing a for loop

Is the vector x = (x;,...,x,) zero? To answer, we examine X, Xo, ..., X,
successively. This amounts to letting the index i run over the interval [1, n]:
place == —1; place .= —1;
fori:=1tondo for i := n downto |1 do
if x[i] # O then place :=i if x[i] # O then place :=i

The variable place remains equal to —1 when the vector x is zero (because
it is necessary to take everything into consideration'). Otherwise it equals the
largest index i such that x; % O in the solution on the left, and the smallest
such index in the right.

3.6.2. Choosing a while loop

Here are two examples which would be difficult to handle using a “for” loop:

S=0; i=0; x = abs(a) ; y = abs(b) ;
while i x i ¥ i + i < N do begin while (x > 0) and (y > 0) do
S =S+1i; ifx>y

i=i+1 then x :=x—y

end elsey:=y—x

The loop on the left is controlled by an integer which runs over an interval
whose upper limit is not explicitly known. In the loop on the right, the pair
(x, y) controls the process.

3.6.3. Choosing a repeat loop

To pick an integer n between 1 and 10, one uses a “ repeat ” loop (because
there is at least one such):

repeat
| readln(n)
until (1 < n) and (n < 10)

For beginners

In a “for” loop, the control variable is incremented (or decremented) automat-
ically. By contrast, in a “repeat ” or “while ” loop, one needs a “motor”. If
you forget, you create an infinite loop ...

3.6.4. Inspecting entrances and exits

Each time that you write a loop, stop and reread what you have written and
try to mentally execute the code. Carefully inspect the entrance and exit to a
loop, for these are the places where one most often goes astray.

Suppose that for some integer n > 1, one wants to execute a sequence of
statements,

process(l); process(2); ... ; process(n).

The best solution is, of course, the program
fori:= 1 to n do process(i)

and one scarcely needs to simulate this because of the simplicity of the pro-
gram.

Now, consider a solution which uses “while” loop. Beginners often write:
while i < n do process(i)

Let us try to enter the loop. We must compare i and n. But the value of i
does not exist.* Thus, the test will function in an unforseeable manner. Thus,
we must initialize the variable i:

i:=1; while i < n do process(i)

Now that the problem of entering the loop is settled, let us begin anew and
try to execute this new code. We leave i = 1 and are authorized to enter the
body of the loop which has us effect process(1). After this, we return to the
entrance of the loop with the same value i = 1. We have just detected an
infinite loop!

The diagnosis is simple: the loop does not contain a “motor”.

For the sake of demonstration, we correct this in an exceedingly clumsy
manner.

i=1;

while i < n do begin
i=i4+1;
process(i)

end

Let us begin again our mental execution of the code: we enter the loop with
the value i = 1 (recall that » > 1). The variable i is immediately incremented,
then we execute process(2). We detect our first fault: we have forgotten to
execute process(l) and risk a crash if process(2) needs to be preceded by
process(1). We return again to the entrance of the loop, increment i, then
execute process(3), etc.

To test the exit of the loop, suppose that i has the value i = n — 1. This
authorizes us to re-enter the loop. The variable i takes the value n, we execute
process(n), and then return to the entrance to the loop. But since the boolean
expression i < n takes the value false, we leave the loop since we no longer
have the right to enter. We exit the loop correctly.

¢ More precisely, the value exists, but it must be considered as aleatory — see the
discussion on “litter” in Chapter 6.

This simulation shows that the initialization of the variable i is incorrect.

We should have written i := 0 or changed the placement of the motor and
modified the test.

i=0; i:=0;

while i < n do begin while i < n do begin

ir=i+1; process(i) |

process(i) i=i+1

end end
Remark

It is quite legitimate to pass to a “repeat” loop here because the process is done
n > 1 times. Passing from a “while” loop to a “repeat” loop is mechanical: it
suffices to take the negation of the entrance test to the first loop to obtain the
exit test for the second loop:

i:=0; i=1;
repeat repeat
i=i+1; process(i) ;
process(i) i=i+1
until i > n until i > n

For beginners

This painstaking inspection should become a reflex: never dispense with it.
You will detect lots of faults of the sort found above: non-initialized variables,
incorrect initialization, poorly chosen loops, missing motors. The minute that
you “lose” in inspection will save hours of debugging. Your choice.

3.6.5. Loops with accidents

Let x[1---n] be any sequence of integers. The code that follows was intended
to answer to the question: is the number a in this sequence?

for i := 1 to n do present := (a = x[i])

Alas, the code is faulty as the following counter-example shows: x[1] = 1,
x[2] =2, x[3] = 3 and a = 2. The variable present successively takes the
values false, true and false. Here we must interrupt the “for”” loop as soon as
we detect the presence of the number a.

Knowing that it is not possible to interrupt a “for” loop in standard Pascal
(we refuse here to allow ourselves to take refuge in the modern statements
“exit” or “break”), we first transform the loop into a while loop:

i=1;

while | < n do begin
present = (a = x[i]) ;
i=i+1

end

We can now insert the boolean present in the exit test to interrupt the loop
at the appropriate moment. We also do not forget to initialize the boolean.

i:=1; present .= false ;

while (i < n) and not present do begin

present == (a = x[i]) ;

i=i+1
end
A number of loops will handle the general case in which a process is ter-

minated by (one or more) specific cases. When the situation is sufficiently
complicated, it is preferable to use the general case; we will introduce excep-
tions afterwards.

3.6.6. Gaussian elimination

Suppose that we want to implement the Gaussian elimination algorithm on

a square matrix of dimension n > 1 (perhaps we wish to invert the matrix

or calculate its determinant). In order to do this, we successively process the

columns 1, ..., n. We deliberately stay at a relatively high level of generality

by not detailing what is involved in processing a column. The constraints are:
« if the current column is not zero, we process it;

« if the current column is zero, we halt (because we know that the matrix
is not invertible or that its determinant is zero).

First Approximation. Let us go down the wrong road in order that we may
understand the right one. If the matrix is invertible, the loop

for k .= 1 to n do process_column(k)

does the job perfectly. However, this solution is incorrect if the matrix is not
invertible, because it does not respect the constraint “stop processing as soon
as we encounter a column that is zero”.

Second Approximation. Thus, we must inquire before acting. To do this, sup-
pose that we introduce a boolean function zero_column which takes the value
true when the current column is zero and modify the preceding loop.

for k .= 1 to n do begin
if zero_column(k)
then «interruption»
else process_column(k)
end

Third Approximation. Since interrupting a “for” loop is not allowed in standard
Pascal, we transform it to a “while” loop by introducing a boolean which
manages the interruption (and we don’t forget the motor!).

k=1, finish := false ;
while (k < n) and not finish do begin
if zero_column(k)
then finish := true
else process_column(k) ;
k=k+1
end

Remarks
1) Another solution is

k:=1; finish := false ;
while not finish do begin
if zero_column(k) or (k > n)
then finish := true
else process_column(k) ;
k:=k+1
end

2) We could have used a “repeat” loop since we at least have to explore the
first column, if only to determine whether it is zero and we have to interrupt
the processing right away.

k:=0; finish := false ; k:=0; finish := false ;
repeat repeat

k=k+1; if zero_column(k)

if zero_column(k) then finish .= true

then finish := true else process_column(k)
else process_column(k) ; k=k+1;
until (k > n) or finish until (k > n) or finish

For beginners

To set up a delicate loop, proceed by successive approximations and ruthlessly
criticize your own code. First set up the external shell of your loop, and then
fill in the body of the loop.

k =1 finish := false ;

while (k < n) not finish do begin
... < part to fill in eventually
k:=k+1

end

3.6.7. How to grab data

Suppose that we want to write a program that repeats the following sequence
a variable number of times:

« choose two integers a and b;

« process the data and display the results (for example, a curve that depends
on the parameters a and b).

Suppose moreover that the modules for processing and displaying are reli-
able only if a and b are both > 0. Thus we require that the program terminate
as soon as one of the integers a or b is < 0.

Here are two solutions typical of beginners. The solution on the left functions
correctly. Nevertheless, repeating the statement “choose(a, b)” is a blunder
arising from the wrong choice of loop.

choose(a, b) ;

while (@ > 0) and (b > 0) do begin
process(a, b) ;

choose(a, b) ;

end

repeat

choose(a, b) ;
process(a, b) ;

until (a <0)or (b <0)

The solution on the right, although it does not have this defect, is danger-
ous! To leave the program, we could for example enter a = 0, b = —3. The
program, however, performs processing with incorrect values of the parame-
ters: we risk an infinite loop or a crash. We might unwittingly provoke this
catastrophe the moment the values are read.’

After this avalanche of criticism, our beginner decides to protect him or
herself with a test:

repeat

choose(a, b) ,

if (a > 0) and (b > 0) then process(a, b)
until (@ <0)or (b <0)

“This will work for sure!” our beginner says. This is true, but the code
has an esthetic defect: when we want to stop, the program first evaluates the
boolean expression “(a > 0) and (b > 0)”, then its negation “(a < 0) or
(b < 0)” which is superfluous. Here are two more elegant solutions which use
a boolean variable to control the loop:

finished := false ;

repeat repeat
choose(a, b) ; choose(a, b) ;
if (a>0)and (b > 0) begin_again == (a > 0) and (b > 0) ;
then process(a, b) if begin_again then process(a, b)
else finished = true until not begin_again

until finished

This code is still not satisfatory because it is not ergonomic! When we
want to leave the program we first respond a = 0 when it prompts us. But

5 Another proverb: “Even the first time, it is necessary to know how to protect one-
self...”

this does not stop it from asking subsequently for the value of b (imagine the
exasperation® of a user who had to pointlessly enter the values of ten variables
instead of two). It is necessary to dissociate the prompt for a from that of b:

finish := false ;

repeat

choose(a) ;

ifa=0

then finish := true

else begin

choose(b) ;

if b = 0 then finish := true else process(a, b)
end

until finish

Laziness on the part of the programmer is no excuse. Never forget that it is
the program that must adapt to human beings.

For beginners

From this discussion, you should especially retain the two schemas

finish := false ;

repeat repeat
if condition begin_again := (boolean expression) ;
then finish := true e
else --- until not begin_again

until finish

which you will often have occasion to use.

Exercise 2

Imagine another solution using a procedure choose(a, finish).

6 I sometimes find student complaints on exams such as “Too long! Not enough time!”
when they invoke a procedure such as choose(a, b, c, u, v, w) which contains the
same code six times in succession. What is to stop them from defining a procedure
choose(x) with a single argument, then writing: choose(a); . . . ; choose(w)? Let us
make this into a proverb: “You have forgotten a procedure if you are writing the
same code more than three times!”

4. How to Create an Algorithm

Do you remember how you learned to write proofs? It took several years.
First you were presented with simple models which you learned by heart, then
imitated. These became more and more complex, until one day you discovered
that you could do it on your own.

This apprenticeship resembles the way an infant learns a language: he or
she listens, reproduces sounds, words, simple sentences, changes a word here
and there. The length and complexity of the sentences increase over time and
the child winds up capable of coherent discourse.

To learn to write a program, we will follow the same path: contemplate and
understand simple models, learn them by heart, modify them lightly, etc. First
of all you will write little programs by copying then modifying' those given in
the text or in other books. Since you have already undergone an apprenticeship
in writing proofs, your progress will be very rapid.

You should, however, not be under any illusions. Writing algorithms is also
difficult, often more difficult than writing proofs. A ten line algorithm can take
many hours? of effort.

We will present and use three methods:

o manipulation and enrichment of existing code (for example, transforming

“for” loops into “while” loops);

o use of recurrent sequences, which allow us to reduce to static thought

when a problem becomes truly delicate;

e deferral of code writing, in order to deal with one difficulty at a time.
As we shall see in the examples that follow, these three methods are not
independent and tend to interact with one another.

4.1. The Trace of an Algorithm

To obtain the trace of an algorithm, you assign reasonable values to the inputs
and “run it by hand”. That is, you execute the statements one by one as a

' Recopying then reconstructing is a very effective way of learning by heart.
2 We are talking here about serious algorithms — in practice, 90 % of programs consist
of trivial algorithms.

computer would do. Consider the algorithm

min:=1+bdiva; max := (2%*b) diva;

for x| := min to max do begin

a =x1*a—b; by =bxx,;

if by mod a; = 0 then x; := b, div a
end

If a=2and b =9, then min =5, max =9, which gives the trace:

X a b x

5 1 45 45
6 3 54 18
7 5 63 -
8 7 72 -
9 9 81 9

The dash represents a value that has not changed. The layout on the page is
important: present your calculations in tabular form, as in the example.

For beginners

This technique is the best way to familiarize yourself with the sequential
thought foreign to most mathematicians who are more familiar with static
thought. Do not kid yourself: step-by-step simulation of the functioning of a
computer is of capital importance. Dedicate a number of hours to this activity
and practice it systematically: it will become second nature to you!

4.2. First Method: Recycling Known Code

It often happens that a problem resembles one that has already been solved.
Then, you can recycle old code.

4.2.1. Postage stamps

Let 1 < a < b < c be three relatively prime integers that we imagine to be
the price in cents of three postage stamps. One can show that there exists® a
threshold x = x(a, b, ¢) < (a — 1)(c — 1) above which the equation

ax+by+cz=n

% This result generalizes to n stamps such that GCD(a,, ..., a,) = 1. When n = 2, it
is easy to prove that the threshold is x(a, b) = (a —1)(b—1). No formula is known
for n > 3, but there are very effective algorithms for determining the threshold
x(a,,...,a,). If we suppose that | < a, < --- < a,, one can prove the inequality
X(alv . --wan) S (al - l)(an - l)

admits at least* one solution (x, y,z) € N3. In other words every amount
n > x of postage is realizable with our three stamps. In contrast, we cannot
supply the exact postage if n = x — 1.

When a =5, b = 6 and ¢ = 16, the first realizable amounts are:

X y z|nh X y z |n Xy z|n

1 0 0|5 1 2 0 (17 5 0 0|25

010 0 3 0118 2 0 1|2

2 0 0|10 4 0 0120 1 1 1 (27

1 1 0|l 1 0 1 |21 0 2 1 |28

0 2 0|12 0 1 1|22 1 4 01|29

3 0 01|15 1 3 0 (23 0 5 0|30

0 0 1116 0 4 0 (24 3 0 1 131
When n, is realizable, so is n = ny + ka for k > 0. As a result,
if no,no+1,..., np +a — 1 are realizable, so is every amount n > ny.

This remark, and an examination of the table above shows that we have

x (5, 6, 16) = 20.

4.2.2. How to determine whether a postage is realizable

If x, y, z are solutions, we have 0 < x < n/a and two similar inequalities
involving y and z. Since our goal is only to acquaint ourselves with the
problem, we employ brute force and test all possible triples (x, y, z). To do
this, we recycle three nested loops:

realizable := false ;

for x := 0 to n div a do

for y :=0 to n div b do

for z:=0 to n div ¢ do
ifaxx+bxy+cxz=n
then realizable := true

This code functions very well, but there is no reason to continue to test other
triples (x, y, z) after we have found a solution. This brings up the problem of
interrupting a loop. We apply our method: that is, we replace “for” loops with
“while” loops and put motors “x := x + 17, etc. at the head of the loops.

4 Uniqueness is of no interest because the equation under consideration always has
solutions (x, y, z) € Z' of which many will be > 0 as soon as n is sufficiently large

realizable := false ; x:= —1;
na:=ndiva;, nb:=ndivb; nc:=ndivc;
while not realizable and (x < na) do begin

x:=x+1; y=-1;
while not realizable and (y < nb) do begin
y=y+1; z:=-1;
while not realizable and (z < nc) do begin 4.1)
z=z+1;
ifaxx+bx*xy+ cx*xz=n then realizable := true
end
end
end ;

if realizable then writeln(x, y, 7)

As long as realizable remains false, the three loops test the triples (x, y, z)
in lexicographic order. When realizable becomes true for the first time, the
three loops are interrupted one after the other without x, y, z changing value
because the motors are at the head of the loops. Verifying the correctness of
the result is then very easy.

4.2.3. Calculating the threshold value

It is clear that n < a is not realizable (recall that a < b < ¢). In order to
find x, we successively examine n = a,a+ 1, a+ 2, ... and stop when we
detect a consecutive realizable postages.

realizable x x X X X X X X X X X X X X
nsS 67891011 1213141516 17 18 19 20 21 22 23 24
num_succ 1 20001 2 3 0 01 2 3 4 01 2 3 4 5

Since we do not have any code to recycle, we experiment. A few tries will
show that generating the third line above will allow us to determine x. Call
num_successive the value of an integer on the last line; the value of the next
integer on the same line is calculated according to the rule:

if realizable
then num_successive .= num_successive + 1 4.2)
else num_successive := 0

The entire line is obtained by repeating this operation; it terminates when
num_successive takes the value a. It is most natural to use a “repeat” loop
here because the number of attempts is greater than or equal to a > 1.

ni=a-1;

repeat
n:=n+1; (4.3)
«calculate num_successive »

until num_successive = a

It remains to assemble our fragments of code by inserting (4.1) and (4.2)
into (4.3) to obtain the definitive code:

n:=a—1; num_successive =0 ;

repeat

n:=n+1;
«insert here the code (4.1) which defines realizable »
if realizable
then num_successive := num_successive + |
else num_successive == 0

until num_successive > a ;

X =n—a+1

Remark

We have just used two techniques for rewriting code:
» we have refined a trivial code (three nested loops) and adapted it to our
needs;
« we have assembled fragments of code.

Read carefully the warning at the end of Section 4: it is necessary to use the
second technique with moderation to avoid writing incomprehensible code.

Exercise 1 (Solution at the end of the chapter)

A celebrated theorem of Lagrange states that any integer is a sum of four
squares (Chapter 8). This result is best possible in the sense that there exist
integers which are not a sum of three squares. Write an algorithm that finds
integers n € [0, 2000] which are not sums of three squares.

To verify the algorithm that you have just created, we avail ourselves of the
following result.
Theorem 4.2.1 (Gauss). An integer n is not a sum of three squares if and
only if it is of the form n = 4“(8q + 7).
For example, here are the numbers < 311 which are not sums of three
squares:
7 15 23 28 31 39 47 55 60 63
71 79 87 92 95 103 111 112 119 124
127 135 143 151 156 159 167 175 183 188
191 199 207 215 220 223 231 239 240 247
252 255 263 271 279 284 287 295 303 311

Let EE be the set of integers of the form n = 4%(8g +7). How are we going to
be able to write the elements < N of E? Let S denote the arithmetic sequence

{8¢ + 7, g > 0} and notice that
E=SU4E (4.4)
Put Ey = EN[O, N] and apply (4.4) repeatedly to get
Ev CE=SU4SU4*SU...U4"SU4"'E. (4.5)

Choose N = 2000. Since 4° = 1024, we conclude from (4.5) that all integers
in 4°E are greater than or equal to 4° x 7 = 7168, which gives the inclusion

Ey C SU4SU42SU4SU4*S. 4.6)

Suppose that we have already listed the first few elements of Ey. Let x, denote
the smallest number in 4¢S which has not yet been listed. The inclusion relation
(4.6) shows that the next number we should list is

x = min{xo, X1, X2, X3, x4}.

To easily find the value of x we retain the values of the auxiliary variables

Xo, X1, - - ., X4. When we write x,, we replace it by its successor x, + 8 - 4¢
in 4¢S. Thus, the desired code is

Xo:=T; x1:=4x%xx0; x2:=4%x;

X3 :=4xx; X4 :=4%x3;

repeat

x = min(xop, X1, X2, X3, X4) ; write(x) ;
if x =x(then xo :=x9 + 8 ;

if x = x, then x| :=x, + 32 ;

if x =x, then x, :=x, + 128 ;

if x = x5 then x; :=x3 + 512

if x = x4 then x4 := x4 + 2048 ;

until x > 2000

Exercise 2 (Solution at the end of the chapter)

Let E be the set of integers which are a sum of two squares. Using the cover
of Ey = EN [0, N] by the sets C; = {£?> + x? : x > k}, write an algorithm
which lists the elements of E in increasing order. Do the same with sums of
cubes.

4.3. Second Method: Using Sequences

For a mathematician, the value of a variable is immutable. In contrast, the
variables in a program often change value during its execution. Imagine a
program that calculates fol f(x)dx by dividing the interval [0,1] into 103
subintervals. Then the variable x would take a thousand values, and it is

inconceivable to tie up a thousand places in memory for a single variable. It is
for this reason that a variable x in a program represents an adddress in the
memory of the computer, the value of x corresponds to the contents of this
address (we will return to this in Chapter 6). Thus the variable x is a dynamic
object which we cannot manipulate as we would in a proof, where everything
is static. Happily, one can reconcile mathematics and computer science very
simply by introducing time.> If we let x, denote the contents of the variable
x at the instant 7, then we obtain a number which does not change. From this
point of view, we can associate to each variable x in a program the sequence
(x,) of succcessive values® taken by x:

identifier x in a program = mathematical sequence (x,)

An algorithm carries out a sequence of operations and stops when it reads
the final result. As a result, to write an algorithm, most of the time it suffices
to ask yourself what are the sequences whose last term must be calculated. 1t
happens, but very rarely, that the desired solution consists in calculating all
terms in a sequence. In good cases (the ones that we can handle . . .), the value
of a sequence at instant ¢ + | can be obtained relatively simply from the value
at the instant ¢ (if not, one does not have an algorithm). In other words, we
can write a first order recurrence relation

X = f(x) 4.7)

Once we have the recurrence, the algorithm is not much further. It suffices
to replace (4.7) by the assignment:

x = f(x) 4.8)

Example
Let n be an integer > | and suppose that we want to calculate the sum

n

S=Zu,.

i=
Here the notation means that S is the last term of the recurrent sequence:
So=0, $=S+u, S=8+uy ..., S =S8+ u,.

We begin by replacing the three dots (which are the rustic loops that math-
ematicians use) by a “for” loop

Sp:=0;

fori:=1tondo S, :=S8_,+u (4.9)

% Time here is not clock time, but conceptual time resulting from mental subdivision
of the task.
® This is the idea of a stroboscope.

Note that we are still dealing with mathematics here; we have only improved
the presentation of the sequence (S;) by using the more precise language
borrowed from computer science.

To transform (4.9) into an algorithm, we can consider S; as the contents of
the memory S at the instant i. Having made this choice, we suppress the time
index i, which automatically gives us the algorithm:

=0, fori:=1tondo S : =S+ uli] (4.10)

The last value of S contains the desired sum.

Remark

We cannot suppress the index i in the ¥; because uy, ..., u, are not the succes-
sive contents of the variable u, but the data that existed before our fantasizing
about time.

4.3.1. Creation of a simple algorithm
The underlying idea is very simple:
Build up to the algorithm by starting with the trace that you imagine.

In other words, you need to know the algorithm that you are looking for.

This seems paradoxical, but experience shows that this method succeeds
very often. Proceed in steps:

1) Try to obtain the result you want using a sequence of calculations. Do not
be preoccupied by rigor, but let your imagination roam. Experiment with
simple, but not stupid, examples. Present your calculations in tabular
form, as if it were a trace.

2) When you are sufficiently at ease with your “recipe”, systematize the
methods by becoming a mathematician. That is, introduce sequences
and indexes. Precisely define the objects that you are manipulating (this
helps comprehension enormously). Do not yet introduce loops because
one can only do one thing well at a time;’ content yourself instead with
the three dots “...” of the mathematician. Try to handle the general
case. The introduction of indices will usually result in one or more first
order recurrences.

3) When you are at ease with the mathematical description, refine and re-
place the mathematician’s three dots “...” by the appropriate loops.
Note that you are still in the realm of mathematics, but it is expressed
in a more modern language.

7 One should not climb stairs while chewing gum.

4) Choose a time index in each recurrence; replace the recurrence x; ;| =
f(x;) by the assignment x := f(x) and replace equalities that are not
tests by assignments.

5) Check the algorithm obtained by executing several traces. Eventually

you will want to prove it. (The technique will be presented at the end of
the chapter.)

4.3.2. The exponential series
Let x be a real number and N > 0 an integer. We want to calculate
N k

Snx) =2 o7

k=0

As we have already remarked, the number Sy is the last term of the recurrent
sequence:

¥2 S S N
2 S =St

Since we can’t type x* and k! directly into our program, we name the
objects that inconvenience us by introducing the auxiliary sequences P, = x*
and F, = k! and then transform them into recurrent sequences:

x
So =1, Sl=So+F» S, =8+

Ph=1, Po=xx*xP_,; F():l, Fk=k*Fk_|.
We now present the calculation of Sy(x) as a trace:

Py=1 Fo=1 So=1
Pi=xx*Py Fi=1xF S =S80+ Pi/F
P=xxP, F =2xF $ =8+ P/F

Py=uxx*Py_y Fy =N * Fy_y Sy = Sv—1 + Pn/Fn.

We can condense this trace using a “for” loop (this description remains
correct when N is zero):

Po:=1; Fp=1; So:=1;

for k := 1 to N do begin

Py=x%Py;

Fo=k*Fp 4.11)
Sk = Sk—1 + P/ F

end

Note that we are still in the domain of mathematics: (4.11) is nothing but a
more modern preentation of (4.10).

Now, let the index k be the time in (4.11). If we suppress it and replace the
equalities by assignments, we obtain without effort the algorithm
P=1; Fi=1,; S:=1;
for k :== 1 to N do begin
|P=xxP; F=kxF; S=S+P/F
end

Remark

The initialization is delicate. If you start from the table:

So=l P=x F|=1
S|=S()+P|/F| P,=xx P Fi=2xF

82=S|+P2/F2 P3=.X*P2 F3=3*F2

Sv—1 = Snv-2+ Pv_1/Fnot Ph =x%x Py Fy =N *x Fy_,

you wind up with a much clumsier algorithm because you are obliged to repeat
the statement “S := S + P/ F” outside the loop

S=1; P=x; F=1;

for k:=1to N — | do begin

|S=S+P/F; P=x*P; F=kxF;

end ;

S=S+P/F
Think of this each time that you encounter a schema like that on the right;
choose the one on the left instead.

Good temporal breaks Bad temporal breaks
(12) 34 (56) (78 (910) |(I) 23) 45 ©7 89 (10

Exercise 3

« Improve this algorithm by supposing that x = a/b is a rational number.
The result Sy = Numy/Deny must be a rational number (that is, a pair of
integers).

« Write an algorithm which calculates the sum

Sy = i(llv)x'

. N .
using first order recurrences for the sequences (,) and x'.

» The Bernoulli numbers (B,), are defined as follows:

n—1

1 1 1 2n + 1 .
B'=6’ B"=2n+l[n_§_z<)y)B,—] if n>2.

Write an algorithm which calculates the first N such numbers, the calcu-
lations taking place over the field of rational numbers. (The first Bernoulli
numbers are By =, By = —3> By = 35 Bi=—5 Bs=)

4.3.3. Decomposition into prime factors

Let n > | be a given number. To decompose 7 into prime factors, we all know
the following method: look for a prime divisor, divide, then begin again with
the quotient. When n = 60,900, this gives

60,900 2 1,015 5

30,450 2 203 7
15225 3 29 29
5075 5 | <« stop

We enrich this presentation by passing to trace mode; that is, by introducing
identifiers and indices (the exchange of the columns n and d is to facilitate
presentation of the algorithm).

no = 60,900 dy=5 n4=1,0I5
dy =2 n;=130,450 ds=5 ns =203
d, =2 np,=15,225 de=7T ne=29
dy =3 n3=5,075 d7=29 n;=1 <« stop

Now that we have sequences, we write down first order recurrences which
indicate how to pass from one line to the next.

« This is simple for the sequence (n;) because n; = n;_,/d;.

« In contrast, we cannot find a recurrence relation® for the sequence (d;). In
order to get around this obstacle, two solutions present themselves.

The first consists in supposing that we have access to an array p[l.. N]
which contains the sequence of prime numbers: p[l] = 2, p[2] = 3,
p[3] = 5, This “static” solution, which beginners often propose, is not
very appetizing because it raises more problems than it solves: which value
should we give N? how should we fill out our table? how should we choose
the next prime divisor (that is, how can we choose the index k; in the formula
d; = plki])?

8 If you could, you would become as famous as Euclid because letting n be the product
of the N first prime numbers would then give a recurrence for prime numbers.

Since we can’t advance further, we turn to the proverb “tomorrow things will
be better, ...”, and avoid solving the problem right away which is easily done
by giving a name to the smallest divisor which we do not know. In fact, we
already have a name since we have seen in Chapter 2 that the LD(n) = {least
divisor > 1| of n} is always a prime number. Let us again resume our trace:

ng = given integer > 1;
d] = LD(l’lo); ny = no/dl;
d, =LD(ny); ny=n/dy;
dy = LD(ng—1); g = my—1/dis

stop because n;, = 1.

The three dots indicate the presence of a loop? Which type? The index of
d, is tempting because it takes the values 1, 2, 3,.... But since do not know
the value of k in advance, we cannot use a “for” loop. Knowing that we must
always seek at least once the LD of n, (if only to learn whether n is prime),
we settle on a “repeat” loop:

ng := given integer > 1 ; t:=1;

n = given integer > 1 ;
repeat

. - rite(d) - repeat

d, = LD(”’T') ; write(d,) ; = |d :=LD(n); write(d) ;
n, =N, div d, 5 n:=ndivd

ti=t+1 until n = |

until n, = 1

The left is a mathematical description of the sequences (n,) and (d,) which
manages the time index ¢ “by hand” using the motor “s := t 4+ 1”. The index ¢
and the useless statement “z :=t + 1” drop out on the right when we pass to
the algorithm by suppressing time.

Exercise 4

Improve this algorithm to take account of repeated prime factors: if p® di-
vides n, it is stupid to call the function LD three times in a row.

Exercise 5

Let n = p}'--- pi* be the decomposition of n into prime factors. Modify the
algorithm so that it stores the prime divisors and their exponents as vectors
p[l..N] and [l .. N].

4.34. The least divisor function

We briefly sketch how to calculate the value of the least divisor function.
Suppose, for example, that we want to find the LD of 323. For lack of other
ideas, we divide n = 323 by 2, 3, 4, ... until we get a divisor. To determine
if d divides n, we turn naturally to the remainder r = n mod d which gives
the two lines:

d|2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
ril 2335138 3 4 11 1 1 8 3 0

Naming the two sequences, we have:

d=2|d=3|d=4|d=5]| - |die=17

r,=l r2=2 r3=3 r4=3 r|6=0

Having arrived at this stage, the temptation not to seek a recurrence relation
is enormous because we have:

d=i+1 and r,=n mod d;.
But this strategy leads to a dead end because this option gives rise to the
following incomplete code

ford .=2to 7?? dor := n mod d

On the other hand, if we introduce the recurrence d; := d;_; + 1, we immedi-
ately obtain an explicit loop which we polish slightly

d:=l;

d=1;
repeat repeat

r:=n mod d

until r =0 until . mod d =0

Remark

In Chapter 8 we present some more sophisticated algorithms for calculating
this vital arithmetic function.

4.3.5. Cardinality of an intersection

Leta <a; <--- <a, and b) < b, < --- < b, be two strictly increasing
sequences of integers. We want to find the number of integers common to both
sets; that is, the cardinality of the set {a),...,a,} N {by,..., by}

Consider the particular case of the sequences 2,3,5,9 and 3, 4, 5, 8,9, 10.

We compare a; = 2 and b, = 3. Since a; < b, we know that our inter-
section is equal to {3,5,9} N {3,4,5, 8 9, 10}. We now compare a, = 3 and
by = 3. This reduces the problem to calculating the cardinality of the set
{5,9) N {4,5,8 9, 10}. We stop when we compare a, and b,,. The variable
num contains the number of common elements that we have found.

t=1 a,=2 by=3 num; =0

=2 a=3 b =3 num; = |

t=3 aa=5 by=4 numz=1

t=4 a3=5 b3:5 numy =2 4.12)

t=S5 as =9 by =28 num5=2

r=6 as =9 bs=9 nume = 3

t=17 as,=9 be=10 num; =3

When we examine the table (4.12), we see that row r does not contain
a,, b, and num,, but rather the sequences a;,, b; and num, whose indices are
themselves sequences (this phenomenon is very frequent). Once the the biggest
obstacle is overcome (by introducing the auxiliary sequences i, and j,), the
passage from one line to the next is child’s play:

if a;, = b then begin
|i,+. =i +1; j=Jj+1; numy, =num, + 1
end
else if a;, < bj, then begin
S = |i,+| =i +1; j,, =Jj; num = num, (4.13)
end
else begin
|ir+l =145 ji=J, + 1 num = num,
end

The first order recurrences require initial conditions:
i =1, j|=l, num, = 0.
Since we stop as soon as i, > n or j, > m, we can condense (4.12) as:
=1 ji =1, num =0;

S(; SQ); ... 5 S@); (4.14)

stop as soon as i, > n or j, > m

Now we refine the above by introducing a loop. Since we do not know the
last value of k in advance and since it is always necessary to make at least
one comparison, we choose a “repeat” loop.

h=1;j,=1; num:=0; t:=1;
repeat
S@) ; (4.15)
t:=1t+1
until ({, > n) or (j, > m)
Substituting (4.13) into (4.15) gives
h=1,;j,=1; num =0; t:=1,;
repeat
if a, = bj[then
begin i, =i, +1; j,, =j +1; numyy =num, + 1 end
else if g;, < b; then
begin i,y =i, + 1, j,,, =J,; num, = num, end
else
begin i, =i, ; j,,, =j,+1; num,, = num, end ;
ti=t+1
until (i, > n) or (j, > m)

We suppress the indices ¢ and r + 1 and replace the equality signs which
are not tests by assignments:
i=1;j=1; num:=0,
repeat
if ali] = b[j] then begin i :=i+1; j:=j+1; num:=num+ 1 end
else if a[i] < b[j] then begin i .= i+ 1; j:=j; num := num end
else begin i :=i; j:=j4+ | ; num:= num end ;
ti=t+1
until ({ > n) or (j > m)

In this draft, we see that there are superfluous statements such as num :=
num. We suppress them together with the now superfluous “begin end” blocks
they had necessitated. After tidying up a little, the final algorithm is then:

ii=1;j:=1; num:=0;

repeat

if ali] = blj]

thenbegini =i+ 1; j:=j+1; num:=num+ | end

else if ali] < b[j]
theni =i+ 1|
elsej:=j+1;

until ({ > n) or (j > m)

When the algorithm terminates, the value of the variable num is the cardi-
nality of the intersection.

4.3.6. The CORDIC Algorithm

The CORDIC (COordinate Rotation on a DIgital Computer) algorithm was
published in 1959 by J. Volder.

We want to compute the value of the function tana of an prescribed angle
a € |0, 1r[. The starting idea is simple: suppose that we have a sequence

o) =7y, 0 =1+, a3 =1+ 71+ 73, ...

of progressively finer approximations of . The continuity of the tangent func-
tion implies that tan o, tan o, tan s, . . . are better and better approximations
to tan c. It suffices to express «,,; using ¢, and 7,4 to have first order recur-
rences appear. But how can we find the approximations «,?

How to “weigh” a real number. To weigh an object using a scale with two
platforms, we put the object to be weighed on one platform, the left, say, and
add weights on the right, beginning with the heavier ones. The platform on
the right remains lower that the one on the right — it is only at the very end
that the two platforms come into equilibrium.

Fig. 4.1.

We suppose that we have a decreasing sequence (7,),>0 of weights tending
zero. We suppose, moreover, that for each integer n, we have as many weights
in the category m, as we desire. Imagine, now, a weighing in which we suc-
cessively put the weights my, 7o, 7, 72, 72, 2 on the right hand platform:

o) = Ty

ay = Mo + 7o

o3 =T + 7o + M)

o4 = o + 7o + Ty + T2

os = 1 + my + T + T2+ 72

0 = o + Mo + 7T + T2 + 72 + T2

At the instant #, we put a weight on the right hand platform if it does
not make the platform descend; otherwise, we simply change the category of
weights. If we deem that each of these two actions is performed in a unit of
time, we will have introduced two sequences:

» The sequence (c,) represents the sum of the weights found on the right
hand platform at the instant 7. This is an increasing sequence whose value
necessarily approaches .

« The second sequence is more subtle: at an instant ¢, we do not necessarily
put the weight 7, on the right hand platform. Thus it is necessary to introduce
the sequence (k,) of indices of the weights m; placed on the platform at time .

These sequences specify the table above and oblige us to renumber the a’s:

ko=0 ay=0
t=1 ki = ko o) = ag + 7y,
t=2 k, =k) = oy + my,
tr=3 ks=k+1 a3=a
t=4 ky = ks g = a3 + 7y,
t=5 ks=ks+1 as=ay
r=6 ke = ks s = Q5 + T,
t=17 k7 = ks o7 = o + T4,
t=28 kg = ks g = o7 + Ty,

We now seek to understand how to pass from one line to the next:

e If v — 0, > m,, at instant 7 + 1 we place the weight 7r;, on the right hand
platform, so that:

Oy = O + 7Ty, ki = k.

o If « — a, < m,, we change the category of weights at the instant ¢ 4 1
and, as agreed, put nothing on the right hand platform:

O =0, ko =k + 1.
To simplify, we put:
ifo —a, > my,
S(t) = { then begin o) =, + 71, ; k1 =k, end
else begin o, ., =, ; k41 =k + 1 end
The weighing terminates when the approximation ¢ is sufficiently good, by
which we mean that @« — «, < €, where ¢ > 0 is given in advance. Thus, we
can write our weighing succinctly as:
o) =0; kop:=0;
SO); S(y; ... ; SO (4.16)
stop when o — o, < €

Knowing that we have to place at least one weight on the right hand platform
and that we do not know in advance the length of the weighing, we choose a

“repeat” loop to replace the three dots in (4.19). As in the preceeding example,
we are obliged to explicitly introduce time because a loop of this type needs
a motor:
ap =03 kp:=0; t:=0;
repeat
NORE 4.17)
t:=t+1
untilx — o, < ¢

We emphasize once more: we are still in the domain of mathematics, but
profiting from a more precise language.

Now let us turn to the calculation of the tan k. The equality o, = o, + 7y,

shows that
tan, + tan my,

tan a1 = | — tan o, - tan 7y,

If we use this formula, we must perform a division each time that ¢ changes
value. Since division is a long and complicated operation, Volder suggested
calculating the numerator and denominator of tan ¢ separately, thereby making
do with a single division at the end of the loop. In addition, Volder proposed
choosing® weights

7, = Arctan 107%.

Put

Num, 1
tano, = D ’ tanm:l—ok-
en,

Since
Num, + Den, x 10~%

Den, — Num, * 10—k

tano, 4 =

we can choose the recurrences

Num, ;| = Num, + Den, * 107
(4.18)
Den,,, = Den, — Num, x 1075

Remarks

« For reasons of numerical stability, it is preferable to use multiplication by
107% rather than multiplication by 10%.

o The reason for choosing m; = Arctg 107 is clear: one passes from Num,
to Num, | by adding to Num, a number obtained from Den, by a truncation
which supresses the last k digits, an instantaneous operation on a computer.

° In binary, one clearly should choose the weights 7, = Arctan 2.

 In the era when Volder created the CORDIC algorithm, memory was
expensive. Since the difference between m, = Arctg 107% and 107 rapidly
becomes negligible, one can store the first few m;, in memory and replace the
rest by 107 at the price of lengthening the code with several tests.

If we incorporate (4.19) into the loop (4.18) we obtain the following math-
ematical description of the weighing algorithm:

og=0; kg=0; t:=0; Numy=0; Deny=1;
repeat

ifa —a, > my,

then begin
=0+, 5 ki =k
Num,,, = Num, + Den, x 107% ;
Den, ., = Den, — Num, x 10™%
end

else begin

o=, ; kyy =k +1end;
ti=t+1

untild — o, < ¢

Having arrived at this stage, we see that it is preferable to replace ¢ by
B = t, which represents what remains to weigh.

We abandon mathematics by supressing the ¢ and ¢ 4+ 1 in the indices, and
by replacing the equalities by assignments. But it is necessary to be prudent
and retain the value of Num, (by introduction of an auxiliary variable temp)
because we need this number to calculate Den,,,:

B:=a; k:=0; Num:=0; Den:=1;
repeat

if B > m; then begin

B=B-m; k=k;

temp := Num ;

Num = Num + Den x 107% ;

Den := Den — temp x 107%

end

else begin 8 .= 8; k:=k+ 1 end

until 8 < ¢ ;

{one has tan o >~ Num/Den at the end of the loop}

This code contains the superfluous statements k := k and 8 := B8, which we
suppress. The definitive CORDIC algorithm is then:

B=a; k:=0; Num:=0; Den:=1;
repeat
if 8 > m; then begin

|.33=ﬂ—7Tk;

temp := Num ;
Num = Num + Den x 107% ;
Den := Den — temp * 107*

end
else k .= k+1
until 8 < ¢ ;

{one has tana >~ Num/Den at the end of the loop}

Remark

This algorithm has been enthusiastically studied since its creation; improve-
ments of it were still being published in 1994! It has been generalised to all
elementary functions. For more information, see J.-M. Muller, Arithmétique
des ordinateurs, Masson, 1989.

4.4. Third Method: Defered Writing

An algorithm is often an assemblage of delicate elementary algorithms car-
ried out with the aid of sequences. But when an algorithm contains many
loops, it becomes very difficult to assemble all the sequences and recurrences.
Let us try, for example, to calculate the number of divisors of an integer
n=p{"py?---pe* > 1 with the aid of the formula

d(n) = (a; + Doz + 1) -+~ (o + D).

If we employ the factorization algorithm that we have detailed, we obtain the
array in Table 4.1. This array is very complex because we see two different
calculations superimposed, each with their own rythm:

« the calculation of the divisors p;;

« for each p;, the calculation of the corresponding exponent i.

We draw the following lesson from this example: one does not contem-
plate a landscape (algorithm) with a microscope (a sequence). In other words,
we should avoid nesting one sequence inside another. To do this, we mask
undesirable sequences by sentences that we subsequently transform into code.

It follows that developing a complex algorithm is like peeling an onion:
we take care of the external layer (the first loop) by introducing a sequence
if necessary. The other loops (if there are any) are masked by sentences.

We then make precise the sentences or statements which remain follow-
ing the same method and taking care to never introduce more than one loop
at a time.

An attentive reader will have noticed that we already used this technique
without explicitly calling attention to it when we grafted the caluclation of the
tangent into the weighing algorithm to end the CORDIC algorithm.

ng = prescribed integer > 1 dy =1
p1 = LD(no) ny = no/p 1
p1 = LD(ny) n, =ny/p 2
p1 = LD(ng, 1) Na, = Ng,—1/ P a
p2 = LD(ny,) Mg 41 = Ng, /P2 1 dy = (a) + Ddp
p2=LD(na|+|) nOl|+2 :n0l|+|/p2 2
p2= LD(ncx|+ag—|) Ny o, = na|+a3—l/p2 o)
Py = LD(ny, o) Roytar+1 = Nayvay/ P3 I dy = (ay + 1)d|
p3 = LD("a,+cx:+l) No +ar+2 = ”a|+az+l/p3 2
PS = LD(na|+a2+al—|) na|+a3+ax = "a|+a2+m—l/p3 a3
pPa = LD(na|+a3+(x—3) Ny +artar+1 = "a|+a3+az/p4 1 d3 = ((13 + l)dZ

Table 4.1. Trace of the calculation of d(n).

Let us put this advice into practice by calculating d(n).

« We put in place the external loop by recycling the factorization algorithm
which we know well by now:

n := prescribed integer > 1 ; d =1
repeat

p = LD(n);

«calculate o and n := n/p® knowing p» ;
d=dx*(l +a)
until n =1

« We develop the internal loop to “calculate « and n := n/p® knowing p”:
a:=0;
while n mod p = 0 do begin
e =a+1; n:=ndivp
end

» We nest the two loops to obtain the definitive version:

n := prescribed integer > 1 ; d =1,
repeat

p :=LD(n) ;

a:=0;

while n mod p = 0 do begin
a:=a+1;

n:=ndivp

end ;

d=dx*(l+a)

until n =1

4.4.1. Calculating two bizarre functions

Let n = p{'--- p;* be the decomposition of n > 1 into prime factors. Put

ol {JT|+"'+7T5 ifa:yr,k'---n;’>l,
o =

0 ifa=1;

el {)»|H|+"'+)»e7fe ifa:nlk'---n?’>l,
al =
ifa=1.

The values |1| = ||1|| = O are not gratuitous: they are the result of general
conventions regarding “empty” sums. So, for example, we have:

6] =24+3=5, 72| =2>x3% =24+3=35;
6l =2+3=5, |72 =12 x3?| =2+2+2+3+3=14.

We wish to calulate the functions

W(n) =[](1+lel) and ACn)=]](1+ lleill).

Here are some values:

n W(n) | A(n)
58320=2*x3%x5 18 30
67500 = 2% x 3% x 5* 36 60
600000 = 2% x 3 x 5° 36 36
8890560 = 26 x 3* x 5 x 73 72 120

Consider first the computation of the function W. We first set up the main
loop, masking the most difficult parts (that is, the other loops) with sentences:

vi=1;
while n > | do begin

p=LD(n);
«calculate ¢ and n := n/p* knowing p » ;
«calculate S := || knowing p » ;
Vi=(1+S5*x¥
end

o The prime factor p being chosen, the calculation of the exponent « and
the division of n by p® are easy to write:

a:=0;
while 7 mod p = 0 do begin
p =1LD(n);

n:=ndivp;

a=a+1

end

 The calculation of S = || is added naturally to the interior of the decom-
position of « into prime factors. Since we know a prime divisor p of «, we
add o to S and then “purge” « from its prime factor:
S:=0;
while @ > 1 do begin
p = LD() ;
=S8S+p;
repeat o ;= « div p until @ mod p > 0
end

It remains to assemble the fragments of the code. The final code (Figure 4.2)
contains four loops. If we replace the calculation of S = || by the simpler
calculation of T = ||| we obtain code which calculates A (n).

4.4.2. Storage of the first N prime numbers

This last example is rather difficult. We do not, as a result, recommend it for
beginners; wait until you are at ease before beginning! Suppose that we know
that

[)|=2, p2=3, p3:5, p4:7

We want to store the first N > 4 prime numbers in an array: we search
through the odd integers beginning with 9. To determine if n is prime, we
divide it by odd prime numbers smaller than /a. If n is divisible by none of
the numbers, we know that it is prime and store it. Otherwise, we end the tests
and move to the next odd integer (see the trace of this algorithm in Figure 4.3).

¥o=1;

while n > 1 do begin
p=LDMn); a:=0;

while » mod p = 0 do begin

p = LD(n);
n:=ndivp;
oa:=ua+1
end ;
S:=0;

while ¢ > 1 do begin

p=LD); S=S+p;

repeat o := & div p until @ mod p > 0
end ;

V:=>0+9S*w

end

Calculation of W (n)

Fig. 4.2.

A=1;

while n > | do begin
p=LDn); a:=0;
while n mod p = 0 do begin
p =LD(n) ;

n:=ndivp;
o =a+1
end ;
T:=0;

while « > 1 do begin
p=LD@); T=T+p
o :=advp,;

end ;

A=0+T=x*A

end

Calculation of A(n)

o The first draft of our algorithm is very natural:
pll]=2; p[2]=3; pl3]1=5; pl4]l=7; n:=T7;

for £ := 5 to N do begin

ple] :=n
end

«n := the smallest prime number > n» ;

« The code that follows finds the prime number which follows n:

repeat
n:=n+2;

until prime

prime := «n is a prime number» ;

« To calculate the boolean prime, we respect the constraints: we divide n

by the prime numbers < \/n, which requires that we introduce the index k of
the smallest prime numbers > |/n.

«find the smallest k such that p} > n» ;
i:=2; prime .= true ;
while (i < k) and prime do

if n mod pli] =0

then prime = false

elsei:=i+1

square £ n attempts primes
1 2 pr=2
2 3 P2 =3
3 5 p3 = 5
4 7 Pa =17
25 5 9 3
11 3 ps =11
6 13 3 pe =13
7 15 3
17 3 pr =17
8 19 3 ps =19
9 21 3
23 3 Py =23
49 10 25 3,5
27 3
29 3,5 pio =29
11 31 3,5 pun =31
12 33 3
35 3,5
37 3,5 pi2 =37
39 3
13 41 3,5 piz =41
14 43 3,5 pia =43
15 45 3,5
47 3,5 pis =47
121 1649 3,5,7
51 3
53 3,57 pi=53
17 55 3,5
57 3
59 3,57 pir=59
1861 3,57 p;g=6l
19 63 3
65 3,5

Fig. 4.3. Search and storage of the first 18 prime numbers. The column artempts
enumerates the prime numbers used to obtain a response: the current integer n is
prime or composite.

o The determination of k requires that we introduce an auxiliary variable
square = plk]*. Ifn < pf and n +2 > p?, |, thenn < p? +2 < p?,:

if n > square then begin
|k :=k+1; square := p[k]?
end

« It remains only to assemble the fragments of code (Fig. 4.4). But this can’t
be done too mechanically because the variables k and square make reference
to an old value, so that the initialization must be imposed outside the principal
loop.

pll1=2; pl2]=3; pl3]1=5; pl4] =17,
n:=7; k:=3; square :=25;
for £ := 5 to N do begin
repeat
n=n+2;
if n > square then begin k := k + 1 ; square := p[k)? end ;
i:=12; prime := true;
while (i < k) and prime do
if n mod p[i] = 0 then prime := false else i := i+ |

until prime ;
pll] :=n
end

Fig. 44. Search and storage of the first N prime numbers

Remark

The method that we we have just practiced will be reprised and amply com-
mented on in Chapter 7.

4.4.3. Last recommendations

We have just presented three techniques which frequently facilitate the writing
and development of an algorithm.

« Experience shows that they tend to be used simultaneously. For example,
the preceding section began by recycling the code (the first technique) for
factoring an integer. We introduce recurrent sequences (the second technique)
and provisionally mask the internal loops by sentences (the third technique).

« In closing, we remark on a trap which one should avoid. It is — too easy —
to create a one or two page monster by nesting too many little alorithms.
The result is illegible, hence difficult to control. If one of the subalgorithms

is defective, we must throw out the whole chain of deductions because the
results are so interwoven. The same holds if we want to modify the algorithm.

An algorithm must be, insofar as possible, a brief text. One does not really
know very well what is going on beyond a dozen lines. ... Divide your task
into independent subalgorithms which can be treated as procedures or distinct
functions when your code becomes too long.

4.5. How to Prove an Algorithm

To show that an algorithm is correct we must assure ourselves of the following:
« that it never crashes;
« that there are no infinite loops;
« that it always furnishes the desired result.

4.5.1. Crashes

The list is endless! In general, the program crashes when it tries an impossible
operation. The most classical cases are the following.
« Division by zero or, more generally, calling a function or a procedure with
an inappropriate value of the parameter (for example, calling sqrt(—1)).
« Attempting to access an object which does not exist, for example'?, the
element ¢[0] or t[n + 1] in the array ¢[l..n].

4.5.2. Infinite loops

We clearly do not have to worry about “for”” loops not ending. On the contrary,
“while” and “repeat” loops are often a cause for worry: how can one be sure
that they will terminate? The most celebrated loop is, without doubt, the “3n+1
loop™:

while n > |1 do n := T (n),

where n > 1 is a given integer and T : N — N is the function
%n if n is even,

T(n) = ,
1@+ 1) if n is odd.

It is still not known'' whether this loop terminates for any value of n!

Most of the time, one shows that a loop terminates by using the technique
of infinite descent. This technique was developed by Fermat and is based on
the following innocuous remark:

19 The R+ option (range error) on the compiler allows one to detect this type of error.
" To get an idea of the irregularity of the values of n calculated by this loop, show
by induction that one has T*(2¢n — 1) = 3*n — 1 for all k, n > 0.

There does not exist a strictly decreasing infinite sequence in N,

We try to find an N-valued function whose values, when calculated at the
moment of the exit test of the loop, are strictly decreasing. If we can find
such a function, it is clear that there cannot be an infinite loop. Here are two
examples.

4.5.3. Calculating the GCD of two numbers
Let a and b be two integers > 0. Consider the loop

while (@ > 0) and (b > 0) do <« evaluate f(a, b) here
ifa>bthena:=a—belseb:=b—a

Here, it is clear that the function f(a, b) =a+ b > 0 is strictly decreasing
on each passage through the loop. As result, the loop must terminate after
finite time.

4.5.4. A more complicated example

Suppose that we are given integers t,...,1, > 0 and that L C [1,n] is a
nonempty set of integers to start. Consider the algorithm

while L # (J do begin <« evaluate the function g here
«withdraw any element £ from L » ;
«calculate t > 0 and k € [1, n]] using € (it doesn’t matter how)» ;
if 1, > t then begin t, :=t; «add k to L» end

end

Here the function Card L does not suffice because, when one withdraws an

element ¢, one can add k to L which does not decrease Card L. One must also
use the #;, which leads very naturally to the function

n

g=CardL+Zti-

i=1

We check what happens to its value on passing through the loop. Let L’
and ¢, ...,t, denote the new values of the parameters after passage through
the loop.
« If one does not add k£ to L, we know that the ¢; are intact. Thus, Card L' =
Card L — 1 and # = t; which shows that the value of g diminishes by 1.
o If one adds k to L, then 1y < 1 and 1} = t; for j # k. Consequently,
Card L' = Card L and)1/ <) t; — 1 which shows that the value of g
diminishes by at least 1.
As a result, the loop terminates after a finite time, which is not evident at
first glance.

Remark

When N does not suffice, one can use the technique of infinite descent on any
well-ordered set (for example, N* with the lexicographic order).

4.5.5. The validity of a result furnished by a loop

We use a variant of reasoning by induction.

Definition 4.5.1. Suppose that f is a function that we evaluate at the same
time as the exit test from a loop. If we can show that these values are equal
to those taken by the function just before the entry into the loop, we will say
that f is an invariant of the loop.

We demonstrate the use of loop invariants using two simple examples.

Calculating a sum
n
We want to calculate the sum S =) u;. Consider the two loops:
i=l
§=0:i=0; S=0; i=1;
evaluate — while i < n do begin —> while i < n do begin

the;}wariqnt i=i+1; S:=S+u;
at this point S:=8+u i=i+1
end end

An invariant of the left hand loop is the function

f=S—- ’Zuk.
k=1

In effect, when we present ourselves for the first time at the entry of the loop,
we have S =i = 0, whence f = 0, in view of the usual conventions regarding
sums on an empty set of indices. Now, suppose that at a given moment we
have f = 0, and consider the new value f’ of f when we come to the exit
test after having executed the body of the loop. If S,i are the old values
and S, i’ the new, we clearly have ' = S + u;;,; and i’ =i + | and, hence,
the implication

i i
s=Yu = =Y u
k=1 k=1

Knowing that f continues to take the value 0, we still have f = 0 when
we leave the loop. At this moment, i = n which gives S =)/ _, uy, and the
algorithm calculates the sum correctly.

Similarly, one shows that the function g = § — Z;(_:', u; is an invariant of
the right hand loop which always equals 0.

Remark

Recall that a “for” loop is an abbreviation for a “while” loop similar to the
right hand loop in which the control variable is incremented at the end of the
loop. Thus, the invariant should be evaluated at the entrance to the loop.

Calculation of the GCD of two numbers

We want to calculate the greatest common divisor of a,b > 0 using the
algorithm

«evaluate the invariant just before entry to the loop »

repeat

|ifa>bthena:=a—belseb:=b—a

until (a =0) or (b =0); <« evaluate the invariant here

if b =0 then GCD :=a else GCD :=b
Since we are dealing with a “repeat” loop, which moves the test, we must also
calculate the value of the invariant just before the entrance to the loop.

Consider the function f = GCD(a, b). Its properties show immediately that
it is an invariant. Consequently, if a,, and b,, are the final values taken by the
variables a and b, we have

a, ifb,=0,

GCD(aou ba) = GCD(awv bw) = { .
b, if not.

Thus, the algorithm correctly calculates the GCD.

4.6. Solutions of the Exercises

Exercise 1

In view of the symmetry of the unknowns, we can content ourselves with
listing the solutions of the equation

n=x>+y"+7%, 0<x<y<z

We certainly have x < (%n)'/2 and y < (3n)'/2. We do not seek to majorize z
because we can do better: as soon as x2 + y? + z? exceeds n, it is useless to
continue to increment z; thus we interrupt the loop which handles z using an
“interrupter” next_y.

for n := 0 to N do begin
nx =ndiv3; xemax =0;
while sgr(x_max + 1) < n_x do x_max := x_max + 1 ;
n.y:=ndiv2; ymax:=0;
while sqr(y_max + 1) < n_y do y_max :=y_max+ 1 ;

sum_three_squares := false ; x == —1;

while not sum_three_squares and (x < x_max) do begin
x=x4+1; y=x—-1;

while not sum_three_squares and (y < y_max) do begin
y=y+1; z:=y—1; next_y:= false ;

while not sum_three_squares and not next_y do begin
z=z+1;

S 1= sqr(x) + sqr(y) + sqr(z) ;

if S = n then sum_three_squares := true else

if S > n then next_y := true ;

end

end

end ;

if sum_three_squares then writeln(x, y, 7)

end

Exercise 2

Let Ey be the set of integers n < N which are of the form n = x? + y?.
Cover Ey with the subsets C, = {€2 + y%; y > ¢}. If we choose the index
k_max so that N < min Cy_,,..+1, W€ can be certain that the covering is finite:

Ev C CoU...U Ci_max-

We are thus reduced to the preceding technique. Because there are many sets
Cy, we use an array instead of independent variables to store the integers that
have still not been written.

If we define y[£] > € by the property “the least element not already written
from Cy is x, = €2 + y[€]?”, then it is clear that the element that we should
write is x = min(xo, ..., X;_max). Once x is written, we need to remember to
increment y[£] each time that x = x,.

The algorithm then consists simply of bringing to light y[0...k_max]; the
function £ = where_is(x) returns an index ¢ which satisfies x € C,. Since £ is
not always unique, the auxiliary variable old_x avoids repeated listings of the
same number.

oldx=-1; x=0; £:=0; k_max:=0;
while 2 x sqr(k_max + 1) < N do k_max := k_max + 1 ;
for k := 0 to k_max do y[k] .=k ;
while x < N do begin

£ .= where_is(x) ;

if old_x < x then begin writeln(x, £, y[€]) ; old_x := x end ;

el =yl + 15

x := min(y, k_max) {i.e. the minimum of k* + Yo k=0, ..., k_max}
end

One proceeds similarly with the sum of the two cubes.

5. Algorithms and
Classical Constructions

You must learn the material in this chapter by heart, because we will encounter
it frequently in many different forms.

5.1. Exchanging the Contents of Two Variables

To exchange the contents of two variables, a beginner will often suggest

y = x; x = y. This is incorrect because the value of y is destroyed by
the assignment y := x. Therefore, we safeguard the value in a temporary
variable:

temp:=x; X:=Yy; y:=temp

Along the same lines, suppose that we try to encode a planar iteration as
follows:

(x,y) = (ulx, y), v(x, y)).

If we naively write x := u(x, y); y := v(x,y) we make the same error
because the value of x used in the satement y := wv(x, y) is destroyed by
the first assignment. Once again, we need to safeguard the value of x in an
auxiliary variable:

temp = x; x:= u(temp,y); y = v(temp,y)

(We have already encountered this difficulty in dissecting the CORDIC algo-
rhm in Chapter 4.)

Exercise 1 (Solution at the end of the chapter)

Let A be a 2 x 2 matrix. Translate the statement

()=4()

into code.

5.2. Diverse Sums

5.2.1. A very important convention

Apprentice mathematicians often protest when one writes the formula
S =ao+aMy+aMM, + - +a,MM,---M,_,

in the condensed form
n k—1
S = Z ay l—[M;.
o] k=0 =0

They will argue that [] does not mean anything when £ = 0 and that you

should write i=0
n k—1
Sy =ay + Zakl—[Mi-
k=1 =0

The initial way of writing the sum is nevertheless correct thanks to a very
useful convention which is vital to assimilate. To explain it, suppose that
I is a finite set. Then the associativity and commutativity of addition and
multiplication allow one to define the symbols

Zu,- and l_l u;.
iel iel
Consider the partition / = [, U I, of I into two disjoint subsets. We can write
Zui=2ui+2u,~ ILNhL=w.
iel iel i€l
When I = I, and I, =, this formula becomes
Y= u+ T
iel iel iel

If we wish to avoid interminable (and parasitic) discussions in our proofs, it is
necessary to accept “sums or products over the empty set” and to adopt the

conventions
» u;=0 and [Jui=1
i€ iel
k=1

When we write [] u;, we understand [u; where
i=0 iel

I={ieZ i>0 andi<k-—1}.

-1
When k = 0, the index set I is empty, so that the formula [] »; = 1 with
which we began this discussion is correct! =0

It is important to respect the conventions employed by mathematicians and
to adapt one’s code as a consequence. The code on the left, which calculates

S=Z":M,‘ and Pzﬁui,
i=l1 i=l1

respects these conventions, while that on the right does not.

S=0; <« good S:=ull]; <« very bad
fori:=1tondo S :=S+ uli]; fori:=2tondoS:=S+ uli];
P=1; P:=ull];

fori:=1tondo P:=Pxuli] fori:=2tondo P:= P x*uli]
Correct code Incorrect code

5.2.2. Double sums

To calculate the double sum

S =

4
i=

Z Ui j,
1 j=I
we can run through the matrix line after line starting with the first (the so-
called relevision scanning order, after the way the pixels on a television screen
are refreshed). Since the control variable is the couple (i, j), a translation with
the aid of a first order recurrence must have the form

Siirjry = Sijy + uirjrs

where (i’, j') is the successor of (i, j) with respect to the television scanning
order; that is, the lexicographic order. But this order is easily realized by
nesting two “for” loops:
for i:=1tondo
forj.=1tondo...

If we take the precaution of beginning with § = O in order that the cases
p =0 and g = 0 are correctly treated, the algorithm is
S:=0;
for i:= 1 to n do
forj:=1tondo
S =S+ uli,]j]

We will generalize this to run through any product set using the lexicographic
order.

Exercise 2
Calculate this sum using the boustrophedon order.

5.2.3. Sums with exceptions

Suppose we want to calculate the sum with an “exception”:

S = Z u; (k is an integer).

o First solution: We run through the integers in the interval [0, n] being
careful not to add ay:

Py S:=0;
S,', + u; if k, K ’
S,-={ T l¢_ = for i :=0tondo
Si-y otherwise if i # n then S := S + uli]

This solution is very clear, hence very certain.

e Second solution: We can calculate the sum of all the u;, then cut out i,
when it is necessary:

S:=0;
for i:=0tondoS:=85+uli];
if (0 < k) and (k < n) then S := S — ulk]

This solution is more doubtful. When one works over the integers, the
computer will give the correct result; on the contrary, over the reals a +x —a
is only approximately equal to x. We have increased the speed (there is only
one test), but at the cost of precision.

o Third solution: We set u; equal to zero, then calculate the sum of all the
u;. But we must remember to re-establish the initial value of the u,, because
the code that we write could very well wind up being inserted in a program
which might perhaps need u,:

if (0 < k) and (k < n) then begin temp := ulk] ; ulk] :=0 end
S=0;

fori:=0tondoS:=S5+uli];

if (0 < k) and (k < n) then ulk] := temp

This solution is more rapid than the first (there are fewer tests). But it is long
and uses a trick which is not within reach of a beginner.

o Fourth solution: We calculate the subsums corresponding to the intervals
[0,k — 1] and [k + 1, n]:
S:=0;
if (0 < k) and (k < n) then begin
fori =0tok—1doS =S4 uli];
fori:=k+1tondoS: =8+ uli];
end
else for i = 0tondoS =S+ uli]

This is correct, but too long to write.

For beginners

The best code is always the simplest: the first solution is preferable. When you
program, never forget that the first priority is a code that functions the first
time. If it is too slow, you can always improve the critical parts of the code.
It serves no purpose to write rapid and clever code which is very difficult to
debug. Which would you prefer: to refine an exact code to speed it up or make
it more elegant or to lose hours (or perhaps days) debugging a program which
obstinately refuses to function?

5.3. Searching for a Maximum

Let x;, ..., x, be a vector of real numbers > 0. To find the largest of the x;,
it suffices to compare x; and x,, and to retain the largest, then to compare this
to x3, etc. We can use this procedure to store the position of the maximum

max = x[1]; place_max =1 ;
fori :=2 ton do
if x[i{] > max then begin max := x[i] ; place_max := i end

The problem becomes more complicated when we need to find the maximum
of a sub-family of the x; satisfying a given property P. In fact, the preceding
code is incorrect if P(x;) is not true.

o If we know that the x; are greater than 0O, for example, we give the
maximum a value smaller than all the x, (for example max = 0) and we begin
with i = |:

max =0 ;
fori:=1tondo
if (x[i] > max) and P(x[i]) then
begin max := x[i] ; place_max := i end

If max retains the initial value 0, then we know that the set of x; which satisfy
the property P is empty; in this case, place_max means nothing (the value is
indefinite).

« If we do not have any hypotheses on the x;, the safest course is to make
a preliminary reconnaisance.

max_exists := false ;

fori:= 1 tondo

if P(x[i{]) then begin

|max_exists = true ; max := x|[i]

end ;

if max_exists then for i := 1 to n do
if (x[{] > max) and P(x[i]) then begin
|max = x(i] ; place_max =i

end

If you find this code too “industrial” and not very intelligent, reread the end
of the preceding section

5.4. Solving a Triangular Cramer System

Consider the triangular Cramer linear system where the diagonal coefficients
a; ; are all different from zero.

ajax) + aiaxy + -+ ajux, = by,

a22%y + -+ + appxy = by,

AppXp = bn s

To solve this system, beginners tend to think in terms of formulas (that is,
they think in a static manner). They write

by

Xn = ’ (5.1)
An.n
1
Xn—1 = (bn—l - an.n-xn)
Ap—1,n-1
1 b,
= (bn—l —Ap—1.n)» (52)
an—l,n—l an‘n
1
Xn-2 = (bp—2 — An-2.n-1Xn-1 — an—Z,nxn)s (5.3)
Ap_2n-2

then give up, because x,_, is much too complicated a function of the a; ; and
the b,. But do we really need a formula to create an algorithm?
Think dynamically: (5.1) allows us to calculate the value of x,, then (5.2)

that of x, _,, etc. If we know the values of x,, ..., x,.|, we can find the value
of x, thanks to the formula:
1
Xe = —(by — Qpg41Xe41 — -+ — Qe pXn). (54)
e

Thus, a first draft of an algorithm to solve the system might be:

x[n] == bln]/aln] ;
for £ := n— 1 downto 1 do
«calculate x[€] using(5.4)»

To obtain x, we calculate a sum:
temp :=0;
for j ;=€ + 1 to n do temp := temp + al¥, j] * x[j] ;
x[€] := (b[€] — temp)/all, €]

Inserting this fragment of code into the preceding code gives

x[n] == b[n)/aln] ;
for £ .= n — | downto | do begin
temp =0
for j:= €+ | to n do temp := temp + all, j] * x[j] ;
x[€] := (bl£] — temp)/all, €]
end

Exercise 3

Explain why one can, without danger, incorporate the first line into the prin-
cipal loop by letting ¢ vary from » to 1:

for £ := n downto | do begin

temp :=0;

for j := £+ 1 to n do temp := temp + all, j] * x[j] ;
x[€] := (b[€] — temp)/al¥, €]
end

5.5. Rapid Calculation of Powers

Suppose that we wish to calculate

X59:X*X*X*X*"'*X*X*X.

58 multiplications
It is possible to do better because x*° = x x (x?)?° which shows that 30
multiplications will suffice at the cost of storing y = x?:

yi=x*X; x59=x*y*y*y-~-y*y*y.

28 multiplications
But, we can do the same thing again and introduce z = y?. Then x*° = xxy*z'?
shows that 17 multiplications suffice:

YyI=XkX, Z=yky, XP =XkykZkIkZ---TkZ*Z.

13 multiplications

Systematizing with the help of a formula,

W?)"? x v if n is even,
u" xv =
u?)"=/2 % (u % v) otherwise.

(The factor v is indispensible because the exponents are not always even.) We
can then calculate x> with only 10 multiplications:

n0=59 Ug=Xx U()=1
n =29 wu = ué V| = Ugly
Il2=14 U = u) Uy = U
ny =717 Uz =u; U3 =y
}’l4=3 Ug = Usg Vg = U3VU3
ns =1 Us = Uy Us = U4V4

result = usvs

The transformation into an algorihm is immediate:
u=x,v=1;
repeat
ifnmod2=1thenv:=ux*xv,
U:=uxu; n:=ndiv?2
until n=1;
result ;== uxv

Exercise 4 (Solution at end of chapter)

Justify this algorithm and show that the number of multiplications is O (log, n).
To do this, one shows that 4" % v is an invariant of the loop and notes that n
diminishes by half after each passage through the loop.

5.6. Calculation of the Fibonacci Numbers

How can one calculate the N-th Fibonacci number? We have learned how
to transform a recurrence relation of order 1 into an algorithm. Annoyingly,
however, the Fibonnaci series is defined by a second order recurrence relation.

Mathematicians have known for a long time that one can arbitrarily decrease
the order of a recurrence relation or a differential equation by working in a
larger dimensional space. In our case, we lower the order by putting:

(+")
X, = .
Fn—l

Then, by replacing F, by F,_; + F,_,, we can write

X_<Fn)_<Fn—l+Fn—2)_<l 1) Fn—l)
" Fn—l B Fn—l B 10 Fn—2 '

which is a first order recurrence relation:

. (11 _(FRY _ (1
wine a=(1) 5 (5)-(2)

The transformation to an algorithm is a piece of cake' once one has solved
and understood Exercise 1. If the coordinates of the vector X are x and y, the
N-th Fibonacci number is calculated as follows:

x=1; y:=0;

for i := | to N do begin

|temp =x+y; y=x; x.=temp
end ;

FN =X

Exercise 5 (Solution at end of the chapter)
Write a program to rapidly calculate the N-th Fibonacci number by raising the

matrix A = (: (l)) to the N-th power.

5.7. The Notion of a Stack

Computer scientists love stacks. The picture you should have in mind is that
of a stack of plates. You can do the following to a stack.

» You can put a new plate on top of the stack — this is often call the push

operation.

» You can remove the top plate from the stack — this is often called the pop

operation.

A stack is manipulated with the aid of a number of very simple primitives:

 push(stack, x) puts the object x on top of the stack;

* x = pop(stack) removes the top element from the stack and stores its value

in the variable x;

» empty(stack) prepares an empty stack: that is, one without plates;
is_full(stack) is a boolean which informs us that the stack is saturated,

« is_empty(stack) is a boolean which tells us that the stack is empty.

The Pascal procedures that follow and that implement a stack will proba-
bly surprise you and appear unnecessarily ponderous. However, professional
programmers abide these gymnastics because they know from experience that
this is the price one pays for maximum security (that is, a code that is easy to
adjust, that functions the first time and that is independent of the rest of the
program).

In this book, we will implement our stacks using arrays:

! This phrase means that there is no difficulty: it suffices to let one’s hand do the
writing.

const ht_max_stack = 100 ;

type stack_integers = record

|t0p : integer ; plate : array[1..ht_max_stack] of integer
end ;

var stack : stack_integers ;

The variable top is the height of the stack.

procedure push(var stack : stack_integers ; x : integer) ;
begin

if is_full(stack) then writeln('full stack’)

else with stack do begin

|t0p =top + | ; plate[top] = x

end
end ;

function pop(var stack : stack_integers) : integer ;
begin

if is_empty(stack) then writeln('empty stack’)
else with stack do begin

| pop := plateltop] ; top := top — |

end
end ;

procedure empty(var stack : stack_integers) ;
begin

| stack.top == 0
end ;
function is_full(var stack : stack_integers)
begin

if stack.top = ht_max_stack

then is_full = true

else is_full .= false
end ;
function is_empty(var stack : stack_integers) ;
begin

if stack.top = 0

then is_empty := true

else is_empty := false
end ;

This manner of proceeding is very efficient: one lays out a set of statements
(with tests attached) which one can then forget.? It suffices to use the primi-
tives: no error is possible, and there is no need to remember how the stack is
implemented.

2 A good program is made up of independent modules. Remember: one cannot climb
stairs while chewing gum.

Another advantage is the independence of this module: if we need to modify
the implementation of our stack, it suffies to redefine the type stack and to
rewrite the primitives. We do not need to touch the rest of the program.

For beginners

One should not think that using an array is the only way of implementing a
stack. For example:

« If we wanted to stack characters, we could consider stacks consisting of
strings of characters.

« If we want to stack integers between O and b — 1, it may be useful to
consider the stack as an integer n and the plates as numerals in base b. To
push (that is, pile on) the number ¢ we replace n by b xn + c; to pop (that is,
remove) the number, we divide n by the base b.

» Very frequently, one uses cells and pointers.

5.8. Linear Traversal of a Finite Set

Some problems require that one linearly traverse a finite set £; mathematically
speaking, this amounts to giving E a total order. The traverse is realized by
repeated calls to the successor function.

x = first_element(E) ; x := first_element(E) ; finish := false ;
repeat while not finish do begin

successor(x, finish) successor(x, finish)

until finish end

If the set E possesses at least one element, the two codes are equivalent. The
boolean finish permits one to interrupt the loop at the appropriate moment.
The procedure successor assigns to x the successor of x when this is not the
greatest element of E; otherwise, it gives finish the value true.

For beginners

It is not particularly necessary to put the motor successor(x, finish) at the
beginning of the loop. Why?

Exercise 6

What is the boutrophedon order good for? Not a whole lot! There is, how-
ever, an interesting instance where its use is natural. Let n = p®g? be the
decomposition of n into prime factors (and suppose that we know p, g, «, B
explicitly). Imagine that we want to write the (o 4+ 1)(8 + 1) possible divisors

of n. Writing the divisors d of » in single file amounts to using a total order.
But which total order should we use?

o First solution: we can use the natural order on N and run through the
integers in the interval [1, n].

ford .= 1 tondo
if n mod d = 0 then writeln(d)

* Second solution: to be given a divisor d of n is to be given a pair (i, j)
satisfying d = p'q’. We can order the pairs lexicographically, which leads to
two nested “for” loops

for i :=0to o do
for j ;=0 to S do
write(power(p, i) ¥ power(q, j))

o Third solution: we can order the pairs (i, j) with the boustrephedon order,
which gives the list

Lp.p* . % p%q. 0% 'q,....q.9% pa*, ... p°q" p* g, .

where we pass from one divisor to the following with a single operation
(multiplication or division).

What to conclude?

 The first solution is the simplest (and, therefore, the most robust). This is
what we should think of first.

» The second solution is a Penelope code because when we pass from d =
piq? to d = p*q?, we forget that we have already calculated p® and ¢?; it
also generalizes poorly when n has more than two prime divisors.

« The third solution is the most delicate to implement. Nevertheless, it is the
most attractive because it generalizes to the case of any integer n and because
it is the most rapid.

5.9. The Lexicographic Order

5.9.1. Words of fixed length

Consider the set M,, of words with n letters (or » numerals). We have known
since we were children how to arrange these words using the lexicographic
order.

Two embedded “for” loops realise this order on pairs of integers and allow
us to linearly traverse the set M,. If we want to linearly traverse the set Ms,
we use three nested “for” loops. But would we find it acceptable to nest one
hundred “for” loops to traverse M po? Would our compiler support it? Even

more seriously, if we don’t know the value of » when we are entering the
code, we are helpless.

Let us return to our problem and ask ourseles how we find the successor of

a word w given in a dictionary. To simplify, suppose that our “words” have
five letters.

« The successor of the word “amies” is the word “amier”, which is obtained
by augmenting the last letter of the first word; that is, by replacing the letter
“s” by the following letter “t”.

« If the word is “rasez”’, we cannot augment the last letter; we augment the
second to last and the word that follows is “rasfa”.

« Similarly, the successor of “buzzz” is “bvaaa”.

Thus, the algorithm that we use is the following:

« The word “zzzzz” does not have a successor.

« Otherwise, the word w contains a letter different from “z”, and we seek
the largest index k such that

W=Wp- w222, W <2
If w, is the letter following wy, the desired successor is the word:
Wy W Wy ad - -a.

More precisely, we can calculate the successor of the word w using the
following code:

finish := false ; k:=—1;
fori:=1tondoifwli] <’z thenk:=i,
if kK = —1 then finish := true

else begin

wlk] = next_letter(w[k]) ;

for i:=k+ 1 tondowli] :="d
end

Generalization

The generalization to other types of words is immediate. Consider, for example,
the set of n-tuples of integers:

M, =1, max|]| x [1, max,]} x --- x [1, max,] C N".

Since each interval [1, max;] is totally ordered, we can endow the product set
M, with the associated lexicographic order.

This amounts to considering an element x = (x,, ..., x,) of M, as a word
whose letters are x|, ..., x,. The smallest word is (1,..., 1), the greatest is

(max,, ..., max,), and the passage from x to its successor x’ is effected as

follows:
finish := false ; k = —1;
for i ;=1 to n do if x[i] < max[i] then k ==,
if Kk = —1 then finish := true
else begin
x[k] = x[k]+1;
fori:=k+1 tondox[i]:=1
end

5.9.2. Words of variable length

Consider now the set N, of words containing at most »n letters, and let
explore how one computes the successor of a given word:

« the successor of the word w = “raz” is the word w’' = “raza”,
« the successor of the word w = “mise” is the word w’ = “misea”,
o the successor of the word w = “misez” is the word w’' = “misf”,
« the successor of the word w = “buzzz” is the word w’' = “bv”,

The process is analogous to the preceding algorithm:

« If the word contains less than n letters, we follow it by the letter “a”.

us

« If the word contains n letters, we try to augment the last letter. If this is
not possible, we remove all the “z”’s at the end; if the word that remains

is not empty (that is, w # “zz---z”), we augment its last letter.

A linear traverse of the set N,, is accomplished using a stack of characters.

Sfinish .= false ; empty(stack) ;

push(stack,’a’) ; {because the smallest word is w ="a’}
repeat

if not is_full(stack)

then push(stack,’a’)

else begin

while not is_empty(stack) and (topval(stack) ='7') do
garbage = pop(stack) ;

if is_empty(stack)

then finish == true

else begin

character := pop(stack) ;

push(stack, next_letter(character))

end

end

until finish ;

Here, we need a supplementary primitive, the function fopval which returns the
value of the plate at the top of the pile without modifying it. (If this primitive
is not available, one can simulate it by popping the top plate, then pushing it

back.) Note also, the use of the auxiliary variable garbage, which allows us
to get rid of useless plates.

Exercices 7

1) For every integer n > 1, one has at least one equality of the form
n=x1"+2"+... £4k% (5.5)
where the integer k depends on n.
Proof. The assertion is true for n = 1,2, 3, 4 since
1 =12 2=—12-22-32 442,
3=—12422 4=—12-2243%

We continue using strong induction. Let n > 4 and suppose that the property
is true for all integers < n. By induction, we can write

n—4=+1"+2"%... k%
Moreover, we always have
4=+ 1D’ —*hk+27 = (k+3)7+ *k+47°
which immediately gives
n=21£22+ . £+ k+ D=k +2)2 = (k+3)°+ (k+4)°

Write a program which writes all decompositions (5.5) of an integer n with
k as small as possible.

2) Find all ways of placing eight queens on a chessboard so that no one can
take any other.

5.10. Solutions to the Exercises

Exercise 1
Let A = (a b
c

d)' The desired translation is then:

temp:=axx—+bxy;
yi=cxx+d=xy;
X 1= temp

Exercise 4

Let ny be the initial value of n and ny, n,, ..., n, the values following n.
Since nyy < %nk, the function f(n) = n strictly decreases each time through
the loop. It follows that this algorithm never loops. From the inequalites, one
deduces that n,, < 27“n,. Since n, = 1, the number of passages through the
loop satisfies w < log, no.

Let n’, u’” and v’ be the values taken by n, u and v after a passage through the
loop. If n = 2m is even, we have ' = m,u' = u? and vV = v; if n = 2m + |
is odd, we have n' = m,u’ = u? and v = uv. Since u™v' = u"v, it follows
that u"v is an invariant of the loop. Thus, x™ % 1 = u"* x v = u % v since
n, = 1.

Exercise 5
We have:

Fv \ _ _ L _ AN-ly _ N—I(l
(FN_I)_XN_AXN_|_ = Avx = AV).
The desired Fibonacci number is the (1,1) element of the matrix AV~'. We
can rapidly calculate AV~! using the algorithm:

ni=N—-1;, U=A; V=105,

repeat
ifnmod2=1thenV =VxU;
U=UxU; n:=ndiv?2
until n=1;
ANVl =UxV

u, u v .
Put U = (! 2) and V = (v. 2) To translate the assignments
us Uy Uz U4

V=VxU and U :=U=x*U

use a temporary matrix:

temp : =V xU; V := temp;
temp :=U x U; U := temp;

Then, this gives the algorithm:

n:=N-—1;

up:=1; up:=1; us:=1; us:=0; {U:=A}

vii=1; vy:=0; vi:=0; vy:=1; {(V:=1}

repeat

if n mod 2 = 1 then

begin { preliminary calculation of the matrix temp =V x U} ;
temp, = v xu; + vy kU3 ; temp, == v x Uy + vy ¥ Uy ;

temps = V3 x Uj + Va kU3 1emPy 1= V3 *x Uy + V4 * Uy ;

V| 1= temp, ; vy 1= temp, ; V3 = tlemp,; v = temp, ; {V = temp)
end ;

{ preliminary calculation of the matrix temp := U x U} ;

temp, ;= uy x U; + Uy x U3z ; temp, ;= U| * Uy + Uy * Uy ;

tempy 1= Uz * U| + Ug * U3 5 TeMPy = U3 * Uy + Ug * Uy |

u) = temp, ; up ‘= temp, ; uz:=temps; us = temp,; {U := temp)
n:=ndiv 2
until n=1;

Fy i =u xvi+uy xvs

Remarks

1) Sequences of the type temp := U x V; V := temp can be avoided using
the procedure of matrix multiplication. As we shall see in Chapter 6, if we set

procedure mult_mat(var Z : matrix ; X,Y : matrix) ;
{return in Z the product X * Y}

we can write mult_mat(V, U, V).

2) Modern Pascal languages allow the better solution
function mult_mat(X, Y : matrix) : matrix

now we can write the more natural instruction V := mult_mat(U, V).

6. The Pascal Language

The goal of this chapter is not to describe the language Pascal in detail —
there are excellent books which do this — rather, the goal is to clarify the
functioning of a computer and to introduce several programming devices.

6.1. Storage of the Usual Objects

The main memory of a computer (also called the random access memory
or RAM can be represented as a very long tape partitioned into equal sized
compartments numbered from' 0 to a very large number (these days, the
number is usually between 10° and 10°). Each memory compartment contains
eight minuscule condensers (each about as large as a microbe!) which are
either charged or discharged. The information contained in a condenser is
called a bit (short for binary digit). A memory compartment using eight bits
is called, quite naturally, an octet. Since these microscopic condensers charge
and discharge very rapidly: a computer can recharge them at least 50 times a
second. Computer scientists speak of a computer refreshing its memory — in
reality, it heats up because of Joule effects! A break in electrical current, even
if fleeting, has catastrophic repercussions because the contents of the RAM
memory are erased, much like a message written on a luminous screen which
is extinguished.

If we associated to each bit an integer equal to O or 1, we can consider an
octet as an element (by, . . ., b7) of the set {0, 1}®. Thus we can store 2% = 256
integers in an octet because the number

x=by+2b+2%by+---+27b;

takes all values between 0 and 2* — | = 255.

We will say in what follows that an octet contains an integer between 0
and 255. But we shouldn’t fool ourselves — this is an illusion, nothing more.
More generally, when we specify the type of a variable, we are deciding that the
contents of one or more variables can be interpreted as a letter, a real number,
a boolean, etc. Suppose, for example, that an octet contains the number 65: if

" Indexes always start from O in a computer.

this octet is supposed to contain an integer, we will say that it contains “65”;
if it is supposed to contain a letter, we will say that it contains the letter “A”.
It is good to know how octets use the objects under discussion:
« A boolean occupies an octet (a bit would suffice, but could not be sepa-
rately managed.)
« A integer occupies two consecutive octets if it is of integer type and four
consecutive integers if it is of longint type.
» A real number occupies six consecutive octets.

6.2. Integer Arithmetic in Pascal

This surprises many beginners! Knowing that we can store 2* = 256 integers
in an octet, we see that:

« the type integer permits us to store 2562 = 2'® = 65, 536 distinct integers;

o the type longint, which uses four octets, permits us to store 256* = 2% =
4,294,967, 296 distinct integers.

Since we work in Z, these integers are divided evenly about the origin.
Consequently,

« one can store the integers in the interval / = [—2'%, +2'[in a variable
of type integer;

« one can store the integers in the interval / = [—23', +2*'[in a variable
of type longint.

In practice, one remembers that the type integer allows one to work in
Pascal with integers between —32000 and +32000 and the type longint allows
one to work with ten digit integers which do not exceed 2 x 10'® in absolute
value.

6.2.1. Storage of integers in Pascal

Let N > | be any integer, and b > | an even integer. Put:
Q=>b", J=1[09r.

In Pascal, one has b = 28 = 256, N = 2 for the integer type and N = 4 for
the longint type.

To store an integer y in the interval J = [0, Q[[, we can use its base b
representation

y=yn_ib" '+ yb+y, 0<y <b, 6.1

by placing each y; in a compartment in memory capable of storing an integer
between 0 and (b— 1); in Pascal, where b = 28, the number y then occupies N
octets. But there are two serious criticisms of this scheme:

« What does one do with negative integers? It is inadmissible to use a whole
octet, that is 256 bits, to store a sign which should only require a single bit.

» Do we need two algorithms for addition and subtraction?

Computer scientists, who never lack for imagination, have found better
ways’ to store the integers. An elegant and well-known solution is to use
a bijection

p:l=0-32 +1Q1 — J =100,

and store the representation (6.1) of p(x). If we agree to send the positive
integers of / to those of J using the condition p(x) = x for x > 0, we obtain
very naturally the bijection:

X if0§x<%§2,

el (6.2)
x+Q if 32 <x<0.

p(x) = {
In effect, knowing that the positive integers in / fill up the first half of J, we
are forced to send the negative integers x to the second half by translation.
From this definition, we note the following.

« The bijection p~' is given by the formula:

4 y if0<y< %Q,
p ()= o
y—Q if;Q=<y<Q
» The sign of x is easily read off p(x): an integer x is positive when p(x) is
small (that is when p(x) < %Q) and it is negative when p(x) is large (that is,
when p(x) > %Q).

(6.3)

« In particular, it suffices to remember the congruence
px)=x (mod 2). 6.4)

Definition 6.2.1. The bijection (6.2) is called the representation complemen-
tary to the base.

We can now define an addition, denoted &, on the set of integers that we
can store. To do this, we demand that the following diagram be commutative:

(521
[—3Q +5Q0 x [- 3Q, +3Q0—— [- 32, +3QI

| |

+mod

[0, 21 x [0, 2 > [[0, [

2 If this subject interests you, I highly recommend J.-M. Muller’s book Arithmétique
des ordinateurs, Masson (1989). This book, which is very easy to read and as
engaging as a crime novel, explains in detail how one constructs algorithms and
circuits which implement the four arithmetic operations.

Equivalently, we put
a®b=p"'((p(a) + p(b)) mod Q)). (6.5)

Since p(a) + p(b) lies between 0 and 22, it is easy to be more precise:

p~' (p(a) + p(b)) if p(a)+pb) <Q,
a®b= (6.6)

p~'(p(@) + p(b) = Q) if pla)+pb) = Q.

Definition 6.2.2. The operation @ is called addition complementary to the
base.

We demystify this addition: to calculate x @ y, first calculate x + y, then add
the approriate multiple of € so that x + y + kS lies between —32 and 1.

Examples
Suppose to begin that we have b = 10 and N = 2, so that 2 = 100
and 1Q = 50.

 Since 17 4+ 31 = 48, we have 17 @ 31 = 48.

o Since —43 4+ 31 = —12, we have —43 @ 31 = —12.

 Since 23 4 31 = 54, we subtract €2 and get 23 @ 31 = —46.

« Since —22 + —33 = —55, we add 2 and find that —22 @ —33 = 45.
Now suppose that we are working with an integer in Pascal where Q = 2'6 =
65 536.

e Since we have 27856+ 15 831 = 43687 > %Q, we subtract 2 and obtain

27856 @ 15831 = —21 849.
Finally, suppose that we are working with the longint in Pascal so that 2 =
232 = 4294 967 296.
« Since —2101234456 + —199999999 = —2301234455 < —1, we add Q
and find that —2 101 234456 @& —1999 999 999 = 1993732841.

As we have just established, addition complemetary to the base does not at
all coincide with ordinary addition! But this is the price we pay if we want the
same algorithm for addition and subtraction. What we have is a particularly
elegant implementation of the additive group Zgq since (6.4) and (6.5) show
that

a®b=a+b (mod Q).
The principle is the same for multiplication. In summary,

The integers in Pascal are not those of Z, but those of Zyw
or, in the case of long integers, those of Zy». The results
obtained are, therefore, only certain modulo 2'® or 2.

For beginners

« This peculiarity of Pascal can cause errors that are difficult to detect®
when the capacity is exceeded in an intermediate calculation. We frequently
encounter this problem when we want to work modulo an integer n: we must
be very careful not to leave the interval [—%Q, %Q] so that the machine does
not introduce a congruence modulo 2 which could interfere in a disastrous
way with our congruence modulo » (since x + k2 # x modulo n).

« Since the result of a calculation with integers using addition, subtraction,
and multiplication is only valid modulo 2'® or 2°2, one might hope to accom-
pany a program with a theoretical study which assures one that that the results
otained are exact provided that one enters integers within some predetermined
good intervals. But this is often just a dream ...

6.3. Arrays in Pascal

Consider the array of booleans roto[0..100]. To have room to fill up this array,
the program reserves a segment (that is, consecutive memory compartments)
which is 101 octets long in RAM in which it will successively put the contents
of roto[0], then toro[1], and so on until roro[100]. The program knows the
address, which we will call the base of the first element of the array. When
the program encounters the statement

x = totoli],

it first calculates the offset of the memory compartment containing toto[i]; that
is, the amount of the displacement needed to reach it starting from toro[0]

address = base + offset = base + i.

This done, it effects the assignment. (Exercise: what is the offset for rotola..b]?)

The array of booleans ror0[0..100, 0..100] occupies a memory segment con-
sisting of 101 x 101 = 10, 201 octets. This segment starts with the first line,
then the second, and so on (television scanning). The offset of the element
(i, j) is 101 x i + j and, so, its address is:

address = base + offset = base + 101 x i + j.

(Exercise: what is the offset for the array torola..b, c..d]?)

The situation is more complicated when we are not dealing with booleans.
Suppose, for example, that toro[0..100, 0..100] is an array of real numbers.
Knowing that a real number occupies 6 octets, the program reserves a segment

* However, the V+ option in compiling does permit detection of this type of error (at
the expense of speed of execution).

of memory 61206 = 6 x 10201 octets in length for the array. The first of the
six octets where toro[i, j] is lodged then has the address:

address = base + offset = base + 606 x i + 6 x j.

There is now an extra multiplication.

Observe that accessing elements of an array induces hidden additions and
multiplications and these slow the execution of a program. A programmer who
is unaware of this peculiarity might imagine, for example, that the statement

x = totoli, j] + totolk, €]

requires a single addition, whereas in reality the program executes five addi-
tions and four multiplications!

For beginners

If you have assimilated the above, the following code will dismay you:
X[k] :==0; for i:=1 to n do X[k] := X[k] + ali]

Although it takes a little longer to type, a good code is:

temp :=0;
for i := 1 to n do temp := temp + ali] ;
X[k] := temp

When a program runs too slowly, it can be helpful to replace some small arrays
of fixed size by variables.

Exercise 1 (Solution at end of chapter)

Consider the array with k£ + 1 indices toto[ming..maxo, . .., min,..max;]). What
is the length of the segment of memory that is used? What is the offset of the
element rotoliy, ..., ix]? (Use the expansion in a variable base explained in
Chapter 2 to generalize television scanning.)

6.4. Declaration of an Array

One particularly disagreeable feature of Pascal is that an array can never
change size during the execution of a program. If we want to work with
matrices with real coefficients, we must know in advance the largest dimension
and declare it:

const dim_max = 10 ;

type matrix = array[l..dim_max, 1..dim_max] of real ;
var A : matrix

nb_rows, nb_col : integer ;

Thus, in Pascal, a matrix is a triple (A, nb_rows, nb_col). There is, unfortu-
nately, no other way to handle this if one desires the comfort of the declaration
array.

Pascal is an old language; its modern successors do not have this limitation.
The reason for this limitation has much to do with the expressed goal of Pascal:
it is above all a language designed to inculcate good programming reflexes. It
was never designed for the industrial world.*

6.5. Product Sets and Types

A mathematical problem often contains complicated objects. Happily, the ma-
jority of such objects belong to product sets. When we wish to store such
product sets, we must first ask ourselves whether or not the sets are equal.

6.5.1. Product of equal sets
We need the set M = E". If E_type is the type of the elements of E, we write:

type power_of _E = array[1..n] of E_type ;
var M : power_of _E ;

The element with “coordinates” (iy, ..., {,) is then written as M[i,, ..., i,].

Examples

1) If we want to use the vectors U, V, W and matrices A, B, C with integer
coordinates, we write:

type vector = array[l..n] of integer ;
matrix = array(l..n, 1..n] of integer ;
var U, V, W : vector ;

A, B, C : matrix ;

The i-th coordinate of U is U[i] and the element (i, j) of A is A[i, j].

2) If a program manipulates the columns of a p x n matrix, it can be useful
to use the type:

type column = array|l..n] of integer ;

matrix = array(1..n] of column ;

var A, B, C : matrix ;
The j-th column of the matrix A is A[j] and the i-th element of the j-th
column is A[j][{]. The compiler will not take offense if you type A[j,] (but
pay attention to the interchange of indices!).

4 A conference delegate from a multinational corporation told to a friend the fol-
lowing: “When [want to certain of an algorithm, I program it in Pascal because I
know that the compiler will let nothing pass. If I want something that runs quickly,
I program it in C. Finally, when I have three lines of code to write, I use Basic.”

6.5.2. Product of unequal sets

We often need the product of unequal sets, say M = E% x F3 x G. If E_type,
F_type, G_type are the types of the elements of E, F, G, we will write:

type product_E2_F3_G = record
prl,pr2 : E_type ;

pr3, prd, prS : F_type ;

pr6 . G_type ;

end ;

var M : product_E2_F3_G ;

To store the element (el, €2, f1, 3, 3, g) of M, we write indifferently:
with M do begin

M.prl :=el ; M.pr2 .= e2; prl ==el; pr2 :=e2;

M.pr3:=f1; M.pr4d:=f2; <+ pr3:=f1; prd :=f2;

M.pr5:=f3; M.pr6 :==g prS:=f3; pro: =g
end

6.5.3. Composite types

Beginners are often troubled by composite types. Consider, for example, the
following impressive declaration:

type toto = record

whole : integer ;

exist : boolean ;

re, im : real
end ;
tata = array(1..n, 1..n] of toto ;
titi = record

u: toto;

v tata ;
end ;
var X : titi ;

How can one use the the impossible object that we are calling X? To see
how, imagine that we are a compiler:

» X.u is an object of type toro. As aresult X. u. whole is an integer, X. u. exist
is a boolean, and X. u. re, X. u. im are two reals;

» X.visof type tata, whence X. v[i] is of type toto. As a result, X. v[i]. whole
is an integer. so that X. v[i]. exist is a boolean and X. v[i]. x, X. v[{]. y are reals.

Remark

Pascal allows assignments between two objects of the same type:
X:=Y; <« allowable assignment

But, you should not conclude that tests of equality between two objects of the
same type are permissible — they aren’t:

if X =Y <« illegal equality test
then ...

For example, if your program manipulates polynomials, you can use a vari-
able of polynomial type which you might call poly_zero and in which you
store the zero polynomial. Each time that you want to zero out a polynomial,
it suffices to type P := poly_zero.

6.6. The Role of Constants

Suppose that we want to translate the statement ¢ := r 4 s into Pascal where
r and s are two fractions. We must teach our program fractions because the
language Pascal does not contain this type (the only types available are integers
and reals). Knowing that a fraction is a pair (numerator, denominator) we use
an array, which leads to the following declaration:

type fraction = array[0..1] of integer ;
var r, s, t : fraction ;
procedure add_frac(var t : fraction ; r, s : fraction) ;

begin
t[0] := r[O] x s[1] + r[1] * (0] ; {calculation of the numerator of t}
1) :=r[1] xs[1]; {calculation of the denominator of t}
simplify(r)

end ;

But this is the clumsy programming of a beginner! When we write this
code, we must constantly remember that ¢[0] designates the numerator of the
fraction ¢ and ¢[1] its denominator. Sooner or later, aided by fatigue, we will
make a mistake® because part of our energy is devoted to remembering these
conventions.

This is why decent programming languages allow one to name constants so
that one can remember to what they refer. The following code

const tlnum] := r[num]) x s(den] + r(den] x s[numy];
num =0 ;
den=1: tlden] := r(den] x s[den];

5 One cannot climb stairs while chewing gum.

is better because it makes it unnecessary to recall which index represents the
numerator. Comments are not necessary; the self-documentation makes the
program more certain and legible.

Remark

We could have used a record to code our fractions:

type fraction = record
| num, den : integer t.num ;= r.num % s.den + r.den x s. num;

end ; t.den :=r.den x s.den;,
var r, s, t : fraction ;

This solution has a slight advantage over the proceeding: typing t. num
requires five characters, whereas 7[num] requires six (there are two brackets).
The demand on the memory is the same because a record is stored in a similar
manner to an array.

For beginners

Suppose that we want to work in Q[¢]; that is, with complex numbers of the
form
=2 4iZ, g @€l b b eN.
by b

To find a good type, experience shows that it is best to seek first the most
convenient notation by trying them out in several lines of code. Once this is
decided, the construction of the appropriate type then proceeds easily.

If we want to let z. re. den denote the real part of the denominator of z, we
would use the declaration on the left. But if we were to decide that z[den]. re
is preferable, we would use the code on the right.

type fraction = record const num =0 ; den=1,
| num, den : integer type fraction = record
end ; |num, den : integer
type complex = record end ;
| re, im : fraction complex = array(num..den) of fraction ;
end ; var z : complex ;
Exercise 2

Reconstruct the declarations which correspond to z.re.den, z[rellden], z.re[den],
zlden].re and z[den][re]. More generally, what are the declarations that allow
to write: P[i, k][j], Qli, k).coeff[j], Rli].toto[3]).alphal5], R[i].toto[3).betal5]
and toto.tata.titi.thing.

6.7. Litter

When you declare a variable x, you say to the program: “Reserve a segment in
RAM to store the value of x”. The program doesn’t do anything else: it does
not “clean up” afterwards by, for example, setting all the octets to zero. If you
do not initialize the variable x, you risk finding remains of other programs.

Here is an analogy: you buy some land several miles from your house. Your
lawyer will ask a surveyor to mark off the boundaries of the field and will
draw up a sales contract, but he or she will not clear the field which might be
covered with litter, broken bottles, or underbrush. This is left to you.

This phenomenon is very easy to demonstrate. Type the following program:

program litter ;
var vector = array(1..1000] of real ;

i:integer;

begin

|for i .= 1 to 1000 do writeln(vector{i])
end .

If you run this program right after you have turned on your computer,
you will probably only obtain zeroes on the screen. However, if you run the
program after having previously run some other program which uses a lot of
memory, you will see numbers appear randomly on the screen which are the
“litter”” the preceding program left behind.

For beginners

Think of this any time that you are tempted to complain “I do not understand:
my program worked so well yesterday!”. Yesterday, you probably used a ma-
chine that had been just turned on, so that all the memory was set to zero and
the absence of initialization did not manifest itself. Today, the faulty program
was not the first to run on the machine, and the variables that you forgot to
initialize were initialized by the litter left by the preceding program resulting
in aberrant values of the variables.

6.8. Procedures

One should think of a procedure as a black box which information enters and
leaves.

A procedure is a small program which functions inside the main program. For
this reason, the syntax of a procedure resembles that of a program:

arguments without var) copy

i PROCEDURE ;
arguments with var arguments with var

........ e = >

variables which exist before the procedure call

Fig. 6.1.

procedure toto(x; : type, ; X3,Xx3 :type, ; var Xy : type3))
declaration of the constants of the procedure ;
declaration of the types of the procedure ;
declaration of the variables of the procedure ;
declaration of procedures and functions ;

known by the single procedure toto

begin {procedure}

| body of the procedure

end ; {procedure}

Notice that following two ways in which the syntax of a procedure differs
from that of a program:
« if a procedure possesses arguments, the name of the procedure is followed
by the list of arguments in parentheses;
« the final “end” of a procedure is followed by a semicolon (since the final
“end” of a program is followed by a period).
Before explaining what a program does when it encounters a procedure or
function call, we clarify some points of syntax.

6.8.1. The declarative part of a procedure
Here are three declarations of procedures:

procedure foto ;
procedure tata(x : real) ;
procedure titi(x,y : real ; var t:real ; n:integer) ;

o The procedure toto is a procedure without an argument (or without a
parameter).
o The precedure rata possesses a single argument.

o The procedure titi possesses four arguments.

The words argument and parameter are synonyms. An argument can be
preceded by the reserved word “var”. The number of arguments of a procedure
is always the same.® Finally, the arguments of a procedure need not be declared
variables. These are “placeholders” in a sense which we will make precise later.

% With the exception of certain system procedures such as write, read and concat.

For beginners

Each argument is necessarily followed by its type. Consequently, if you write
your declaration as

procedure roto(x : array[1..10] of real) ;

the compiler will complain because “array[1..10] of real” is not a type!
From the strict point of view of syntax, the compiler expects to find an iden-
tifier after the “x”. The presence of the square bracket in “array[” triggers the
protest.

6.8.2. Procedure calls

One says that one calls the procedure titi when one writes
Lo tti(u, v, w, k); .

A procedure call is a statement; the arguments are separated by commas. One
can call a procedure anywhere that one can write a statement, so, for example,
in the interior of another procedure or a function:

x:=x+1; toto, y:= sin(x); tata(log(x)); titi(x,2 xx+ 1,x,n);

In the chapter on recursion we shall see that one can even call a procedure
inside its own code!

There is an essential difference between parameters “with var” and parame-
ters “without var”.

» A parameter “without var” can be replaced by any arithmetic expression,
in particular by the name of a variable or a constant. Of course, the arithmetic
expression in question must only contain variables known to the program at
the moment of the procedure call.

« In contrast, a parameter “with var” can only be replaced by a variable
known to the program; any other arithmetic expression is rejected. If we return
to the procedure titi, we do not have the right to type titi(x, x,x + y, n) or
titi(x, x, 100, n) because the third argument is preceded by a “var” in the
declaration of riti.

One says that a parameter “without var” is passed by value and that a
parameter “with var” is passed by address. We will return to this subject at
much greater length in Chapter 13.

For beginners

One meets from time to time, in the body of the principal program, horrors
such as:
begin
choose_vector(var X : vector ; var n: integer) ;
procedure toto(var u : integer ; a,b : real) ;
end .

These syntactic monstrosities result from a grave confusion between declar-
ing a procedure and calling that procedure. When we declare a procedure, we
are educating our program; when we call a procedure, we are demanding that
our program act, not learn!

6.8.3. Communication of a procedure with the exterior
Remember our black box model (Fig. 6.1).

o The values of the parameters passed by value are “photocopied” into
special variables automatically created for this occasion (this is the reason that
parameters “without var” need not be declared variables). Since the procedure
actually works with copies, the original parameters are therefore never modified
by the procedure.

e On the contrary, parameters passed by address are really communicated
to the procedure which allows the procedure to actually modify their value.
This is the reason that parameters “with var” can only be names of variables.

In a somewhat more suggestive manner,we say that parameters “with var”
leave a procedure; we also say that the procedure returns its calculations in
arguments passed by address.

o The variables local to a procedure, which are created at the moment the
procedure is called, are destroyed at the end of the call. Thus, their values do
not leave the procedure.

Examples

1) We write a procedure to calculate the sum Z = X + Y of two vectors of
dimension dim.

procedure sum_vector(X, Y : vector ; var Z : vector ; dim : integer) ;
var i : integer ;
begin
|for i := 1 to dim do Z[i] := X[i] + Y[i]
end ;
We communicate the vectors X, Y to the procedure as well as their com-

mon dimension dim: these arguments are passed by value. The result Z must
necessarily be passed by address because it must leave the procedure.

2) Suppose we want to write a procedure to choose a vector X.

procedure choose_vector(var X : vector ; var dim : integer) ;
var i : integer ;

begin

repeat

|write(’dim = ') ; readln(dim)

until (1 < dim) and (dim < dim_mayx) ,

for i := | to dim do begin

| write(X[',i: 1,1 =") ; readln(X[i])

end

end ;

We do not communicate any information to the procedure. This arrives,
via the keyboard, when it is activated, not before. Thus, there is no argument
“without var” because the procedure does not need any information to function.
On the other hand, the arguments X and dim, which are destined to receive
our messages and leave, are passed by address.

For beginners

1) Here is an error that one often encounters (notice the location of the
variable Z):

procedure sum_vector(X, Y : vector ; dim : integer) ;
var i : integer ; Z : vector

begin

|for i := 1 to dim do Z[i] := X[i] + YI[i]

end ;

Syntactically this program is correct, but semantically it is false! As we have
already pointed out, a procedure destroys its local variables once it finishes its
work: the vector Z winds up “in the garbage”. ..

2) Here is an even larger error (the two vectors Z) committed by individuals
who are genuinely indifferent to computer science (these exist) and who refuse
to respect the difference between the “var” that one puts before an argument
and the “var” which serves to declare the local variables in a procedure.

procedure sum_vector(X, Y : vector ; dim : integer ; var Z : vector) ;
var i : integer; Z : vector ;

begin

|for i := 1 to dim do Z[i] = X[i] + YIi]

end ;

How can one distinguish the two vectors Z? This is not honest! And how
will the compiler be able to guess what is going on in the programmer’s head?

3) We end with an error that one encounters fairly often. We want to translate
the pseudo-statement “X := X + Y” into code .

procedure add_vector(X, Y : vector ; var X : vector ; dim : integer) ;
var i : integer ;

begin

| for i :== 1 to dim do X[i] := X[i] + Yli]

end ;

Here the programmer wrongly imagines that what enters (the vector X
alongside Y') must be distinct from what leaves (this is why “var X ” is present
at the end. The compiler is not bothered by the presence of two arguments
with the same name.

6.9. Visibility of the Variables in a Procedure

Consider the programs visibility_1 and visibility_2. The program visibilty_1
writes 1999 three times in succession while visibility_2 writes 1999, 1515
then 1999.

program visibility_1 ; program visibility_2 ;
var x : integer ; var x : integer ;
procedure toto_1 ; procedure toto_2 ;
begin var x : integer ;

| writeln(x) begin
end ; |x = 1515 ; writeln(x)

end ;

begin begin

x :=1999 ; x:= 1999 ;
writeln(x) ; writeln(x) ;

toto_1 ; toto2 ;

writeln(x) writeln(x)
end . end .

From this observation, we can deduce:

« that the procedure toro_1 “sees” the global variable x of the program
because it is capable of writing its value;

« that the local variable x of the procedure toto_2 provisionally masks the
global variable x of the program but this last variable reappears once the
procedure ceases functioning.

All variables which exist at the moment of a procedure call are global
variables for the procedure. Consequently, the variables of a program are global
for all procedures.

A procedure sees all variables which exist at the moment a procedure is
called except those whose names are masked by local variables.

Consider now the principal part of a program which chooses vectors X
and Y and displays the result:

begin begin

choose(X, Y, dim) ; choose(X, Y, dim) ;
sum_vector(X, Y, Z, dim) ; sum_vector(X, Y, Z) ;
display(Z, dim) display(Z)

end . end .

When we write a program, it is difficult to remember at each instant that
dim is the true dimension of the vectors. Since all procedures see the variable
dim, we can suppress the references to dim in the procedures sum_vector and
display (as in the program on the right). Of course, you must then modify the
procedure sum_vector.

procedure sum_vector(X, Y : vector ; var Z : vector) ;
var i : integer ;

begin

|for i := 1 to dim do Z[i] := X[i] + YI[i]

end ;

Procedures are simplified thereby. There is less “background noise” and the
program is easier to follow and functions perfectly. But this freedom also has
disadvantages:

« If the program is being written simultaneously by several persons, each
programmer must know the list of global variables of the program.

« If we write a procedure that we intend to re-use in another program (as in
a library of procedures), we must absolutely not allow ourselves this freedom
because we do not know in advance what the global variables of the program
will be. It is then essential to write airtight procedures; that is, procedures
which only communicate with the exterior via their parameters.

6.10. Context Effects

Consider the program context_effects whose main part is the following:

begin
|x = 1999 ; writeln(x) ; surreptitious ; writeln(x)
end .

Nothing allows us to foresee that the program will write 1999, then 1515!
In other words, there is no way we could know that the variable x is modified
by the procedure surreptitious. This frightening phenomenon, called a context
effect, is a mechanical consequence of the visibility of global variables in a

procedure: because the procedure can see global variables, it can modify them.
Context effects are a result of bad programming which must be avoided at all
costs. A procedure should only modify parameters which are transmitted to it
by address, and should not touch the others.

program context_effect ;

var x : integer ;

procedure surreptitious ;

begin

|x =x—484

end ;

begin

|x = 1999 ; writeln(x) ; surreptitious ; writeln(x)
end .

Nonetheless, context effects are often tolerated. Consider a medium size
program that initializes 50 variables when it starts.
begin
message ;
diverse_initializations ; < voluntary context effects

end .

The procedure diverse_initializations gives initial values to the 50 variables
by context effects: it would be rather painful to declare 50 arguments “with
var” (or ten procedures with five arguments). But, be honest: do not forget to
document it because you are playing with fire.

For beginners

Context effects are sometimes involuntary (these are the most frightening
ones). Consider the main part of a program which chooses a square matrix:
begin
| ... ; choose_matrix(A) ; ...
end .

The programmer, blinded by the matrix, has forgotten that it is a pair (array,
dim). Nevertheless, the program functions correctly because it is written as
follows:

procedure choose_matrix(var A : matrix) ;

var i,j : integer ;

begin

write('dim =") ; readln(dim) ; < involontary context effect
for i .= 1 to dim do

for j := 1 to dim do begin

| writeCAl',i: 1,7 : 1,1 =) 5 readin(Ali,j])

end

end ;

The right declaration is
procedure choose_matrix(var A : matrix ; var dim : integer) ;

Here is another typical example of an involuntary context effect. Suppose
that we want to calculate the determinant of a square matrix (the choice of
algorithm does not matter). Beginners often propose the following code:

choose_matrix(A) ;
determinant(A) ;

When one asks the author, he or she, disconcerted (is my identifier not clear
enough?), responds that determinant calculates the determinant of the matrix.
When you remark that the syntax is that of a procedure call, the author replies
by promising to introduce a variable, call it det, in the interior of the procedure
which allows the procedure to store the value of the determinant. But, since
this variable is not among the parameters of the procedure, we now have a
context effect! What’s worse, the program runs! A good solution is to use a

function:
choose_matrix(A) ;

det := determinant(A) ;
Since an arithmetic expression can contain the value of a function, the code
on the right is better:

det .= determinant(A) , if determinant(A) # 0
if det # 0 then ... then ...

6.10.1. Functions

The syntax is similar to that of a procedure with two differences:
1) a function has a type which one must not forget in a declaration;
2) one must not forget to give a value to the function:

function sum(x : vector ; n: integer) : real ;
var i : integer ; temp : real ;
begin
temp :=0;
for i := | to n do temp := temp + x[i] ;
sum = temp
end ;

function is_solution(a, b : integer) : boolean ;

begin

|if a div b then is_solution := true else is_solution := false
end ;

The name of a function can occur alone before the assignment sign; in
contrast, it must be followed by an open parenthesis and a list of arguments
after the assignment sign. The following code is therefore incorrect:

function sum(x : vector ; n: integer) : real ;
var i : integer ;
begin

sum = 0; {legal}

fori:=1tondo

sum = sum + x[i] ;

{sum after “:=" is not allowed alone}
end ;

You can redefine the value of a function as many times as you like:

function last_place_nonzero(x : vector) : integer ;
var i : integer ;
begin
last_place_nonzero .= —1 ;
fori:=1ton do
if x[i] # + then last_place_nonzero := i
end ;

When the name of a function occurs in the code that defines the value of
the function, one says that the function is recursive. The best known examble
is that of the factorial function which we will study in detail in Chapter 12.

6.10.2. Procedure or function?

A function in old Pascal can only be of basic type: boolean, integer, real, or a
string of characters. It cannot have a more complicated type (that is, a type that
one teaches to the compiler). This historical limitation’ of the Pascal language
leads many beginners astray. Suppose for example that I need the product of
two matrices. I would like to declare the function

function product_matrix(X, Y : matrix) : matrix ;
and use it in the following very natural way
...y Z:= product_matrix(X,Y) ; ...

However, if my Pascal does not accept functions of the type matrix, I must
use a procedure instead

procedure product_matrix(var Z : matrix ; X, Y : matrix) ;

" This limitation dates to an era when machines were not as powerful as today and
when modern languages did not exist.

and type
.3 product_matrix(Z, X, Y) ; ...

in the program. This is reminiscent of a phenomenon which is quite familiar
to mathematicians: we can explicitly define a function z of the variables x
and y by z = f(x, y) or implicitly by f(z,x, y) =0.

6.11. Procedures: What the Program Seems To Do

The description® that follows is not at all realistic (we will see why in Chap-
ter 13). However, it permits us to understand and predict the effect of calling
a procedure.

procedure toto(x, y, 7 : integer ; var u : real) ;
var i : integer ;
begin
i=x;
x:=x4+1;
=x+y/z
end ;

When the program encounters the statement
toto(i, 1515,A + B mod 3, R),

what occurs is as if the program were to execute the following sequence of
actions:

« creation of the auxiliary variables x_toto, y_toto, z_toto and i_toto (this is
provoked by the arguments “without var” x, y, z and the local variable i; the
variable “with var” u is not involved);

« initialization of the auxiliary variables
x_toto :=1; y_toto .= 1515; z_toto := A + B mod 3;

in other words, the procedure “photocopies” the values of the arguments i,
1515 and A + B mod 3 into x_toto, y_toto and z_toto (the local variable i_toto
is not involved);

« modification of the code of the procedure: the parameter u passed by

address is replaced by the argument R and the variables x, y, z, i are replaced
by x_toto, y_toto, z_toto, i_toto which gives the new code

i_toto == x_toto ;
x_toto := x_toto + 1 ;
= x_toto + y_toto/z_toto

8 This description is the result of a collaboration with Michele Loday-Richaud.

« execution of the modified code;

« destruction of the auxiliary variables x_toto, y_toto, z_toto and i_toto once
the new code is executed.

In summary what happens is as if the following actions were carried out:

1) creation of the auxiliary variables x_toto, y_toto, z_toto, i_toto;
2) initialization of x_toto, y_toto and z_toto by the values occupying the
locations of the variables “without var” x, y and z;
3) modification of the code of the procedure:
e x, ¥, zand i are replaced by x_toto, y_toto, z_toto and i_toto;
o the parameter “with var” u is replaced by R ;
4) execution of the new code
5) destruction of the new variables x_toto, y_toto, z_toto and i_toto.

Remarks

1) To create a variable means to reserve a free location in memory. Re-
member that reserve does not mean clean. It is quite possible that the location
chosen by the program is the address of a variable which had been “destroyed”
and which contains litter.

2) To destroy a variable simply means to authorize the program to use the
address for another procedure call.
This model allows us to understand why:

« the parameters of a procedure need not be declared variables in the pro-
gram;

« the statement x := x 4+ 1 does not modify the variable x: in effect, the
procedure works on the copy x_toto and not on the original x!

« the program does not confuse the global variable i of the program (if such
exists) with the local variable i; the local variable i provisionally masks the
global variable i;

« an arithmetic expression can not occupy the place of a parameter trans-
mitted by address and why such a parameter can change value: in our model,
the call toto(x, y, z, R + 1) would be transformed into the absurd assignment
R + 1 := x_toto + y_toto/z_toto (absurd because R + 1 is not an identifier).

Let us test our model with the program:

program fesrt |

var i, A, B : integer ;
procedure toto(x : integer ; vary : integer) ;

var i : integer ;
begin

writeln('entry into toto') ;

writeln(x=",x:1,", y=",y:1,', i=",i:1);

i=10; x:=x+1i; y:=x+2x%y;
writeln(x =",x:1,", y=",y: 1,/ i=",i:1);
writeln('exit from toto') ;

end ;

procedure message ,
begin

writeln('----- IR

writeln('main program’) ;
writeln(i=",i:1,’), A=",A:1,", B=",B: 1);
writeln('----- I

end ;

begin

1:=1994; A.=3;, B:=51;
message ; toto(A, B) ;
message ; toto(A+ 9, B) ;
message ; toto(A, A) ;
message ; toto(B,A) ;

end .

When we let the program run, here is what we obtain:

main program: i = 1994, A =3, B =51

entry into toto: x = 3, y =51, i = 8196
exit from toto: x = 13, y = 115,i = 10

main program: { = 1994, A =3, B =115

entry into toto: x = 12, y = 115, i = 8196
exit from toto: x =22, y =252,i =10

main program: i = 1994, A =3, B =252

entry into toto: x =3, y =3, = 8196
exit from toto: x =13, y =19,i =10

main program: { = 1994, A =19, B = 252

entry into toto: x =252, y =19, i = 8196
exit from toto: x = 262, y =300, i = 10

main program: i = 1994, A = 300, B = 252

We can already see the “litter” phenomenon. Each time the procedure roto
is called, the procedure creates the local variable i which is called i_toto in
our model. Since i_toto is not yet initialized when we want to see the values
of x, y, i (which are called x_toto, y_toto, i_toto in our model), the program
displays the unexpected value i = 8196 stemming from the residue of earlier
activity in the memory allocated to the local variable .

We also obtain these results without using our computer with the aid of our
model.

i:=1994; A:=3; B:=51;

creation of x_toto and i_toto
x_toto := A; i_toto := 10;
X_toto := x_toto + i_toto, call toto(A, B)
B = x_toto + 2 x B,
destruction of x_toto and i_toto

creation of x_toto and i_toto
x_toto:=A+9; i_toto := 10;
X_toto := x_toto + i_toto, call toto(A + 9, B)
B := x_toto+ 2 x B;
destruction of x_toto and i_toto

creation of x_toto and i_toto
x_toto = A; i_toto := 10;
X_toto := x_toto + i_toto; call roto(A, A)
A:=x_toto+2xA;
destruction of x_toto and i_toto

creation of x_toto and i_toto
x_toto .= B; i_toto = 10;
X_toto := x_toto + i_toto; + call roro(B, A)
A:=x_toto+2xA;
destruction of x_toto and i_toto

Executing these statements by hand allows us to recover the values displayed
by the machine.

Exercise 3

In the preceding program, replace the global variables A, B by x, y in the
declarative part and the main body of the program. Explain, using the model,
why the displayed values are the same as before.

6.11.1. Using the model
Let us return to the procedure to choose a vector,

procedure choose_vector(var X : vector ; var dim : integer) ;
var i : integer ;

begin

write('dim =") ; readin(dim)

for i := | to dim do begin

|write(’X[’,i :1,'1="); readln(X[i])

end
end ;

When the variables X and dim are transmitted to the procedure, their values
are “random” (they are litter: one also says that they are indefinite). Our model
shows that the procedure choose gives the variables X and dim the values
provided by the keyboard. Without touching the body of the procedure, let us
now ask what would happen if we were to modify the declarative part:

o One argument is passed by address and the other by value:

procedure choose_vector(var X : vector ; dim : integer) ;

Here, the procedure replaces the random contents of the variable X and of the
variable dim_choose_vector from our model by information entered from the
keyboard. The vector X is then corectly initialized. By contrast, the dimension
(which was sent to the auxiliary variable dim_choose_vector) is lost and the
variable dim retains the random value that it had earlier.

o The two arguments are passed by value:
procedure choose_vector(X : vector ; dim : integer) ;
Now, the procedure modifies X_choose_vector and dim_choose_vector: the

variables X and dim retain their indefinite values.

For beginners

1) When starting, one should be very conscientious about passing parameters
and not allow oneself any fantasies. Consider, for example, a procedure which
returns as Z the product of the matrices X and Y.

procedure product_matrix(var Z : matrix ; X,Y : matrix) ;

This declaration is the only possible. The following declaration (which attempts
to economize on memory) is incorrect, but in a subtle way,

procedure product_matrix(var Z, X, Y : matrix) ;

In effect, the result is correct each time that Z # X and Z # Y. On the
contrary, it is grossly false as soon as we want to calculate X = XY or
X := X2. To understand why, suppose that we want to calculate X = X?
when X is of dimension 2. The procedure begins, for example, by calculating

X1, 1] := X[1, 1] % X[1, 1]+ X[1,2] * X[2, 1].

The initial value of X[1, 1] having been destroyed, the next X[i, j] will be
incorrect ... We draw from this a proverb:

One should never modify the data of a program.

2) If, after a procedure is called, you obtain aberrant values (for example,
integers that are too large or negative when you are working in the interval
[1, 10], or else real numbers that are “infinitely large” or “infinitely small”),
this is because you have forgotten the “var”. As you see, these values are
litter; the true results have been volatized ...

6.12. Solutions of the Exercises

Exercise 1

The index i, € [min,, max,] takes b, = max, — min, + 1 possible values, so
that the array contains by - - - b, elements. To set up a bijection between the
elements of the array and the interval [0, by - - - bi[[, we use the expansion in
a variable base (Chap. 2) by considering i, — min, as a number in the base b,
since it satisfies the conditions O < i, — min, < b,. The desired bijection is:

@1y -y i) V> (ip — ming) + (i1 — min;)by

+(ip — ming)boby + - - - + (ix — ming)bob, - - - by .

7. How to Write a Program

It seems that the work of the engineers, physicists, and draughstmen
is, in appearance, only to polish surfaces and refine away angles, ease
this joint or stabilize that wing, render these parts invisible, so that
in the end there is no longer a wing hooked to a framework but a
form flawless in its perfection, completely disengaged from its matrix,
a sort of spontaneous whole, its parts mysteriously fused together and
resembling in their unity a poem. It seems that perfection is attained
when there is nothing more that can be cut out.' At the height of its
evolution the machine dissembles its own existence.

Antoine de Saint Exupéry, Terre des hommes

7.1. Inverse of an Order 4 Matrix

Let A be an n x n matrix with coefficients in a ring. The adjoint of A is the
matrix of cofactors of A; that is, the matrix

Adj, ; = (= 1)"*/ minor,_, (i, j), (7.1)

where minor,_, (i, j) denotes the (i, j)-th minor; that is, the determinant of
the (n — 1) x (n — 1) submatrix obtained by deleting the i-th row and j-th
column of A.

Theorem 7.1.1. With the notation above,
'Adj(A) - A = A -"Adj(A) = det(A)]. (7.2)

Proof. When we multiply the i-th row of ' Adj(A) by the i-th column of A, we
obtain the Laplace expansion of the determinant of A along the i-th column
which explains why the diagonal entries are det(A).

When we multiply the i-th row of ' Adj(A) by the j-th column of A, with
i # j, we obtain the Laplace expansion of a determinant whose i-th and j-th
columns are equal, which implies that the off-diagonal entries are zero.

! The emphasis is mine.

Corollary 7.1.1. If the determinant of A is invertible in the ring in which one
is working, then the matrix A is invertible with inverse

oL iagia
A = det(Ad) j(A). (7.3)

7.1.1. The problem

We are going to compute the inverse of a 4 x 4 matrix with real coefficients
in a somewhat bizarre manner. The constraints® are the following:

« the calculation of A~' must use formula (7.3);

« determinants will always be expanded along the first column (for minors
of order 2, this gives the traditional formula ad — bc);

» minors of order 2 and 3 must only make reference to the single matrix A;
one is not allowed to employ an auxiliary matrix to calculate the minors.

7.1.2. Theoretical study

Before lauching into programming proper, we focus on our algorithms. The
determinant of A must be calculated using the formula:

ap a3 Aaza a2 a3 a4

det(A) = ay 1 |asp azp aza|—azi|azz azp asa
ds2 Q42 AQag dsn 42 Q44

a2 413 a4 a2 a3 dpg

+ azi|ax2 a2 Gr4|— a4 |G22 22 Q24

As2 da2 Qa4 aszp dzz Aazg

Since there is no question of typing this formula in our future program, we
use the technique of naming the difficult objects; that is, of introducing the
function minors:

det(A) = a, minor3(l, 1) — a,; minor;(2, 1) (7.4)

+a;; minor3(3, 1) — a4, minors(4, 1).

The adjoint requires knowing the function minors(é, j) for all values of i
and j.

This raises a new problem: how can we calculate minor; without using an
intermediate matrix of dimension 3?

2 This is not at all the way in one would calculate the determinant with a computer!
Gaussian elimination is infinitely more efficient.

At this stage, we encounter an interesting phenomenon: while it is very
easy to explicitly write minors(1, 1), minor;(1, 2), minor;(3, 4), ..., we have
trouble generalising because when we try to write minors(i, j), we obtain:

minor; (i, j) = a»» minory(?,?) — - - -.

We don’t know how to write the appropriate indices! In order to advance, we
once again name that which causes the problem and postpone a finer study of
the stubborn objects. If minor, (i, «, j, k) denotes the minor of order 2 obtained
by suppressing the rows i, « and columns j, k of A, we have

minor; (i, j) = a,, minor, (i, o, j, k)
—ag, minor, (i, B, j, k) (7.5)
+a, minory (¢, y, j, k).

The indices «, 8, ¥y denote the first, second, and third lines of the matrix
obtained from A by suppressing the row i: as a result, these are functions of
the single varaible i (in other words, j has no connection with these three
indexes). Similarly, the index ¥ = «(j) denotes the first column of A when
one removes the column ;.

Since there are so many unknowns, we might ask if we can be more efficient
with fewer functions.> To do this, we are going to use the old trick which
consists of replacing the three functions « (i), 8(i), y (i) by the single function
A(i, k) where k indicates the function that one must choose: @ when k = 1, 8
when kK =2 and y when k = 3.

Economy demands that we extract what is common in the row and column
indices. To do this, consider four lottery balls arranged in the following order

OOO®

A(i, k) = number of the k-th ball when one removes the i-th ball.

and put

If we let minor,(iy, i3, ji, j2) denote the determinant of the 2 x 2 matrix ob-
tained by deleting the rows i, i, and the columns j,, j, of A, we have

minors(i, j) = dyi.1ya.1) minora(i, AGi, 1), j, A(j, 1))
—ay .2y minory (i, A(i, 2), j, A(j, 1)) (7.6)
+ayi.3)00.1) minory (i, A3, 3), j, A(j, 1)).

¥ This common sense principle bears the suggestive name of Occam’s razor in honor
of the medieval English philosopher Occam (1285-13497?) who phrased it as follows
“Entia non sunt multiplicanda praeter necessitatem” (Entities should not be multi-
plied needlessly).

Now that it is well-defined, the function A does not resist our efforts long:

) ko if k<, an
i,k) = .
k+1if k>i.

You can see the power of this method.* Had we tried to solve the prob-
lem and the sub-problem together, we would have written a horrible formula
combining (7.6) and (7.7).

All that remains is to find the explicit value of the function minor,. Once
again, instead of trying to go too fast, we content ourselves with introducing
the function:

w(iy, i, k) = number of the k-th ball when one removes the i\-th and i,-th ball:

Inspired by (7.6), we can now write

minora (i, iz, jis j2) = Quiyin.1).wGir. jo.) Qs i 2).mir. j2.2)

(7.8)

TAu(iriz)G j2.2) Audinin2).eGi o) -

The value of the function u is a little more complicated than that of A. Sup-
posing that i; < i, we find that

k if k < iy,
uly, i k)y=1k+1 ifij<kand k+1 < iy, (7.9)
k +?2 otherwise.
The only pitfall would be to forget the test k + | < i, when k € [i, i2],
because this would give w(iy, ir,k) =i, when i, =i, + 1 and k = i;.
Remark 7.1.1. 1t is possible to find a more compact formulation with i} < i;:
k if k < i

A, k+1) otherwise} = wlin, k) =202, M,).

M(ilsi%k) = {

Mathematicians appreciate the latter formulation. On the other hand, computer
scientists see many potential booby traps here. Since the code is opaque, all
kinds of errors are possible (including typing errors); how could one correct
something this obscure?

7.1.3. Writing the program

We now translate our algorithms into code. We begin by sketching the body
of the main program.

4 Tomorrow, things will be better; the day after tomorrow, they will be better still.

begin

message ; choose(A) ;
matrix_inverse(A, inv_A) ;
display(inv_A)

end .

This code contains a serious flaw: it will crash if the matrix A is not
invertible.® Hence we must be careful.

begin

message ; choose(A) ;

if abs(det(A)) < ¢

then writeln(matrix not invertible')
else begin

matrix_inverse(A, inv_A) ;
display(inv_A)

end

end .

Remember that the test u = v between two real numbers will not give
the desired result because of numerical errors. Thus, we must replace the test
det(A) = O by the test | det(A)| < € where ¢ is chosen in a realistic manner.

But, we cannot relax too soon! We can (and must) improve on this second
attempt, because we can never rely blindly on results displayed by a machine.
They could be wrong (but the probability is tiny) or, what is more likely, we
could have made an error in coding. So, we will only accept a result after
verifying it: we require our program to multiply the matrices A and inv_A and
display the result. If we obtain a matrix very near the identity, we know that
the probablility of simultaneous errors which cancel one another out is very,
very small. So a good main program is the following.

begin

message ; choose(A) ;

if abs(det(A)) < ¢

then writeln('matrix not invertible')
else begin

matrix_inverse(A, inv_A) ;
display(inv_A) ;

verification(A, inv_A)

end

end .

As you can see, several lines of code can require lots of time. Do not be in
too much of a hurry. Re-read and criticize . ..

5 Even the first time, it is necessary to protect yourself . ..

Declarations

We can now specify the declarations used in our program. These use the
number ¢ and the matrices A and inv_A. Since the matrices are arguments in
procedures, we must define their type:

program matrix_inverse ;

const ¢ = 0.00000001 ;

type matrix = array[1..4, 1..4] of real ;
var A, inv_A : matrix ;

The procedure message

This is a sequence of “writeln(‘...’)” statements that explain what your pro-
gram is going to do.

The procedure choose

We need two indices i and j. It is essential to declare these variables as local
variables of the procedure because they are the control variables of a “for”
loop. Note also the declaration “var” which allows the procedure to modify
(via the keyboard) the variable A in the program.

procedure choose(var A : matrix) ;
var i,j : integer ;
begin
fori:=1to 4 do
for j := | to 4 do begin
|writeCA[',i:1,",,j: 1,'1="); readln(Ali,j])
end
end ;

7.1.4. The function det

The main program uses the function det. Unlike abs, this function is not known
to Pascal. Hence, we teach our program how to calculate it by copying (7.4).

function det(A : matrix) : real ;
begin
det :=
A[l, 1] *minor_3(A, 1, 1)
—A[2, 1] * minor_ 3(A, 2, 1)
+A[3, 1] * minor_ 3(A, 3, 1)
—A[4, 1] * minor_3(A, 4, 1)
end ;

Note the placement on the page, which simplifies verification.

The function minor_3

Since det uses the function minor;, we immediately use (7.5) and write out
the code for this function. The placement on the page is very important!

function minor_3(A : matrix ; i,j: integer) : real ;
begin
minor_3 :=
AL, 1), A(,)] x minor_2(A, i, A(i, 1),j, A(, 1))
—A[M(, 2), L(j,)] * minor_2(A, i, L(i, 2),j, A(j, 1))
+A[A(>, 3), A, 1)] * minor_2(A, i, A(i, 3),j, A(, 1))
end ;

The function lambda

Since minor_3 uses A, we must also describe how to calculate A for our
program.

function A(i, k : integer) : integer ;
begin

|if k <ithen A :=kelse A :=k+ 1
end ;

The function minor_2
Since the minor_3 uses the function minor_2, we also code (7.8).

function minor_2(A : matrix ; iy, iz,j,,J, : integer) : real ;
begin
minor_2 =

Alplin, i, 1), 12Giy s D] % Al b2, 2), 12Gi1 s 2)]
—A[u(iy, iz, 1), Gy, Jay D)) ¥ Al iz, 2), nGysJas 1]
end ;

The function mu

Finally, since the function minor_2 uses the function u, we implement pu
using (7.9). The two internal “begin . ..end” statements (and the vertical lines
that accompany them) are not needed from the point of view of syntax. We
retain them because they greatly facilitate comprehension.

function w(iy, i, k : integer) : integer ;

begin

if i < i, then begin

if k < i then u := k else
ifk+1<ithenpu:=k+ 1lelsepu:=k+2
end

else begin {case i; < i, since i # i}

|if k < i> then u =k else

|ifk+1 <i then p:=k+ 1 else u:=k+2
end
end ;

The procedure matrix_inverse

Now that we have finished with the calculation of the determinant function
and its auxiliaries, we turn to the next action of the main program that has
not already been specified: the calculation of the inverse of A. For this, we
implement (7.3) and (7.2).

procedure matrix_inverse(A : matrix ; var inv_A : matrix)
var i, : integer ; A :real;

begin

A = det(A) ;

fori:=1to4 do

for j ;= 1 to 4 do begin
if(i+j)mod2=0

then inv_A[i, j] := minor_3(A, j, i)/ A
else inv_A[i, j] := —minor_3(A, j, i)/ A
end

end ;

The code has been polished in a number of places.
« Transposition is accomplished by tinkering with the indices: (i, j) before
the assignment sign, (j, i) after;

« The calculation of (—1)**/ is based on the parity of i + j

o The determinant is handled so that it does not have to be computed sixteen
times.

The procedure display

Notice how the statements “write” and “writeln” alternate and how the display
“write(inv_Ali, j]: 8 : 4)” is formatted for real numbers.

procedure display(inv_A : matrix) ;
var i,] : integer ;
begin
for i := 1 to 4 do begin
for j .= 1 to 4 do write(inv_Ali,j] : 8:4);
writeln
end
end ;

The procedure verification

We multiply the matrices A and inv_A, and display the result. If it is not
sufficiently close to the identity matrix, we should fear the worst.

procedure verification(A, inv_A : matrix) ;
var i,j : integer ; unit_mat : matrix ;
begin

mult_matrix(A, inv_A, unit_mat)
display(unit_mat)

end ;

The procedure mult_matrix

As the name suggests, this procedure returns the product C = AB. The code
is a classical calculation of 4 x 4 = 16 sums. Turn to Chapter 6 if you do not
understand the use of the local variable temp.

procedure mult_matrix(A, B : matrix ; var C : matrix) ;
var i,j, k : integer ; temp : real ;
begin

fori:=1to4do
for j ;== 1 to 4 do begin
temp :=0;
for k := 1| to 4 do temp := temp + Ali, k] * Blk, j] ;
Cli, j] := temp
end
end ;

7.1.5. How to type a program

The order in which we have written the procedures is not at all the order
required by the compiler; instead, the compiler requires them in the reverse
order! Thus, when we are typing a program, we need to run over our notes in
reverse.

The order which the compiler requires is very easy to understand: at each
instant, it must know the procedures and functions called by the code it is
currently translating.

Since det uses the function minor_3, the code for minor_3 must come before
that of der. For the same reason, the code for A and minor_2 must precede
that of minor_3, and so on. The principal body of the program is typed after
all the procedures and functions. Hence, one possible order is:

program matrix_inverse ;

{declarations of constants, types and variables (in this order)}
procedure message ,

procedure choose(var A : matrix) ;

function A(i,j : integer) : integer ;

function (i), ip, k : integer) : integer ;

function minor,(A : matrix ; iy, 1i,]j,,J, : integer) : real ;
function minor;(A : matrix ; i,j : integer) : real ;
function det(A : matrix) : real ;

procedure matrix_inverse(A : matrix ;

var inv_A : matrix) ;

procedure display(inv_A : matrix) ;

procedure mult_matrix(A, B : matrix ; var C : matrix) ;
procedure verification(A, inv_A : matrix) ;

begin

| main body of the program

end .

Each procedure or function is followed by its code.

7.2. Characteristic Polynomial of a Matrix

The following definition allows us to avoid errors which are difficult to detect.
There are two ways of denoting polynomials:

AX) = a, X"+ a, X" '+ -+ a1 X + ay,
boX" + b X" '+ + b, X + b,

The first notation, where the index equals the exponent, is the one that we
encounter most often today. The second, where the sum of the index and the
exponent is equal to the degree, is encountered more often in older works. For
this reason, we call the first notation the modern notation and the second the
old notation.

Let A be a matrix with real coefficients and suppose that we want to calculate
its characteristic polynomial. Then (note the sign and the old notation),

P(X) = (—1)"det(A — A1) =\ +pl)\"4l + -+ pa.

Unlike Maple or Mathematica, Pascal does not allow symbolic calculations
carried out with indeterminates. Thus we cannot calculate this determinant
because it involves arithmetic expressions containing A. This accounts for the
difficulty (but also the charm) of this problem.

Certain programmable calculators proceed as follows: they first determine
the numerical values of the determinants P(0), ..., P(n) and then recover P
by Lagrange interpolation.®

® The reader is strongly encouraged to write the corresponding program

We are going to explain, and then program, a very elegant algorithm due
to the mathematician-astronomer Leverrier.” Let A, ..., A, be the eigenvalues
of the matrix A so that

PRy = A=A (A= Ay).
Introduce the Newton sums
Se= Moot A,

for | < k < n. We can deduce the p;,..., p, from the S, thanks to the
Newton-Girard formulas which we shall establish in Chapter 10.

P+ S =0,
200+ piSi+ 5 =0,

nPn+Pn~|S| +"‘+pISn—l +Sn =0.

Contrary to what one might think, one can compute the Newton sums with-
out first determining the eigenvalues.
Lemma 7.2.1. For every integer k > 0, S; = Trace(A¥).

Proof. We put A in upper triangular form using a matrix Q (with, perhaps,
complex coefficients).

A.] * *\
\).2 *
07'AQ = |
),
Then
A *
Q0 'AFQ =) B

My
which immediately gives

S¢ = Trace (Q~' A¥ Q) = Trace(A").

7 Urbain Leverrier (1811-1877) became famous for his discovery in 1846 of the
planet Uranus by calculation alone from its perturbations of the orbit of the planet
Neptune.

The algorithm that Leverrier proposed consists of the following two steps:

o calculate A, ..., A" to get the Newton sums S, ..., Sy;

« solve the traingular system of Newton-Girard equations.

Before encoding this as a program, we pause to ask how we might verify
the result. Clearly, we can run a number of preliminary tests with, for example,
the triangular matrices. But tests, no matter how sophisticated, cannot prove

that the program is correct; at best, they can detect a programming error by
exhibiting incorrect results.

Theorem 7.2.1 (Hamilton-Cayley). Let A be a matrix with coefficients in a
commutative ring with unit. If P(A\) = det(Al — A) = A"+ p A" '+ + p,
is the characteristic polynomial of the matrix A, then the following matrix
equation holds:

A"+ p A" 4 p A+ pol = 0.

Proof. Although this result is well-known, its proof is less so. Here is a simple
proof which makes no use of vector spaces and which, therefore, holds for
matrices with coefficients in any commutative ring (with unit) whatsoever. If
we replace A by the matrix (A — A7) in (7.2) and if we put

B(A) = (—=1)"" Adj(A — AI),
we obtain the matrix equation (with py = 1):
(A=ADBM) = PO = (poA" + piA"™ + -+ puih+ p)I. (7.10)

It is clear that the matrix B(X) is a polynomial in A of degree at most n — 1,
so that we can write (in modern notation)

B(A) =B, \ """+ -+ BiA + By, (7.11)

where the B; are matrices which we want to specify. Substituting into (7.10)
and equating coefficients of the same degree, we obtain

4 pnI = AB,,
A pntl = ABy — By,
A? Pn_2l = AB, — By,

A pil =AB,_| — B,_,,
A" pOI =-—B,.
It remains to multiply these equations by I, A, A2, ..., A" respectively and

add them term by term to obtain the desired result.

We are going to use this celebrated theorem to verify our program: if P(A)
is the zero matrix, we can be reasonably certain that P is the characteristic
polynomial of A. In fact, since the verification is totally independent of the
calculation of p, the probablility of simultaneous errors that cancel one another
out is miniscule.

7.2.1. The program Leverrier

The main body of the program
We enounter again the classical trichotomy:

« introduction of data (preceeded by a message explaining what the program
does and what data is required by the computer)

« treatment of the data; that is, calculation of Newton sums and solution of
the linear system of Newton-Girard equations;

« display of results after verification.

begin

message ;

choose(A, dim) ,

store_traces(A, Newton_Sum, dim) ;
solve_system(Newton_Sum, char_poly, dim) ;
Hamilton_Cayley(char_poly, A, dim) ;
display(char_poly, dim)

end .

Declarations

Our program makes use of the matrix A, its dimension dim, and the vectors
Newton_Sum and char_poly.

» We want to calculate the characteristic polynomial of a matrix A of any
dimension. Since Pascal only allows arrays whose dimension is fixed at the
moment of declaration, we reserve a large space in memory even though we
usually only use a small part of it. This is the reason for the appearance of the
constant dim_max.

o The variables Newton_Sum and char_poly are vectors of the same dimen-
sion. For convenience, the indices start at zero.

program Leverrier ;

const dim_max = 10 ;

type matrix = array[l..dim_max, |..dim_max] of integer
vector = array(0..dim_max) of integer ;

var A : matrix ;

Newton_sum, char_poly : vector ;

dim : integer ;

We have chosen to work with integer coefficients (which simplify some
tests); but there is no reason that you cannot modify the program to work with
rational, real or complex coefficients.

For beginners

One should avoid delusions of grandeur such as entering without thinking
dim_max = 100. Would you be willing to type the 100? = 10000 coefficients
in such a matrix?

The procedure choose

This procedure starts by asking for the dimension of the matrix, verifying that
it is correct, and prompting for entry of the coefficients.

« Note the “repeat until” designed to check the validity of the dimension
of A.

» We increase ease of use by displaying the name of the coefficient that is
to be entered. We also adhere to the usual typographic conventions and place
a space on each side of the the equals sign “=".

procedure choose(var A : matrix ; var dim : integer) ;
var i,] : integer ;

begin

repeat

| write('dimension =") ; readIn(dim)

until (2 < dim) and (dim < dim_max) ;

for i := 1 to dim do

for j := 1 to dim do begin
|write(A[',i:1,",,j:1,'1="); readIn(A[i,j])
end ;

end ;

Calculating traces

The sequence M, = AF satisfies the first order recurrence relation:
My =1, Mk=AMk_| if k>1.

We can then calculate the traces using the algorithm:

M=1,;

for k :== 1 to n do begin

|M =AM ; S; = trace(M)
end

To transform this algorithm into a procedure, we observe that we need to
have the following at our disposal:

« a procedure unit_mat(X, n) which implements the assignment M := I,;
« a procedure matrix_product(Z, X, Y, n) which returns Z = XY;
« a function trace(X, n) which returns the trace of a matrix X.

procedure store_traces(A : matrix
var Newton_Sum : vector ; dim : integer) ;

var k : integer ; M : matrix ;
begin
unit_mat(M, dim) ; {M = l,;,,, whence M = A%}
for k :== | to dim do begin
product_matrix(M, A, M, dim) ; {M =AM, whence M = Ak}
Newton_Sumlk) := trace(M, dim)
end
end ;

The procedure unit_mat
This procedure returns the unit matrix (do not forget the “var”).

procedure unit_mat(var M : matrix ; dim : integer) ;
var i,j : integer ;
begin
fori:= 1 todim do
for j .= 1 to dim do
if i =j then M[i,j] =1 else M[i,j] =0
end ;

The procedure product_matrix

Look over the part of Chapter 6 devoted to arrays if you do not understand
the role of the variable remp.

procedure product_matrix(var Z : matrix ; X, Y : matrix ; dim : integer) .
var i,j, k, temp : integer ;
begin

for i := 1 to dim do

for j :== 1 to dim do begin

temp :=0;
for k := 1 to dim do temp := temp + X[i, k] * Y[k,]] ;
Z[i,j] := temp
end
end ;

The function trace

We use the local variable temp because we cannot use the name of a function
to accumulate a sum

function trace(X : matrix ; dim : integer) : integer ;
var i, temp : integer ;
begin
temp :=0;
for i := 1 to dim do temp := temp + X[i, i] ;
trace := temp
end ;

The procedure solve_system
This is a classical exercise that we have already encountered.

procedure solve_system(Newton_Sum : vector ;
var coeff : vector ; dim: integer) ;
var i, k, temp : integer ;
begin
for k := 1 to dim do begin
temp := Newton_Suml(k] ;
fori:=1tok—1 do
temp = temp + coeff[i] x Newton_Sumlk — i] ;
coeffk] := —temp div k {“div” because one is working}
{over the integers}

end
end ;

The procedure display

We observe the following conventions.
« we do not write 0X*;
o we write X¥ instead of 1X*;
« we write —3X* instead of + — 3X*;
« we write —X* instead of —1X*.
procedure display(coeff : vector ; dim : integer) ;
var i,] : integer ;
begin
write(X", dim : 1) ;
fori:= 1 to dim do
if coeff[i] > 1 then write(' + ', coeffi] : 1,' X", dim —i: 1)
else if coeff[i] = 1 then write(' + X', dim —i: 1)

else if coeff[i] = —1 then write(' — X', dim—i: 1)
else if coeff[i] < —1 then write(' — ', —coeff[i] : 1,’ X", dim —i: 1)
end ;

Since the procedure “write” does not display the sign of a positive number,
we must supply it. Why is it imperative to preceded the last “else” with a the
test “if coeff[i] < 07?7

You can further improve the display by including the following usages:
o write 6X instead of 6X';
« write 5 or —7 instead of 5X° or —7X°.

Exercise 1

Let A= X"+a,_1X"'+---4+a X + ap be a monic polynomials with roots
o), ...,o,. Let P be a second monic polynomial. We want to find a monic
polynomial B whose roots are the numbers P(«,), ..., P(x,). In other words,
knowing that

B(X)= (X — P()) (X — P(an)),

can we calculate the coefficients of B using those of A? To solve this classical
problem, associate to the polynomial

A=X"4+a, 1 X" "+ +a X +ao

its companion matrix

0 1
0 1
A= 0
I
_ao _al .. DR -—an_l

Here, the coefficients that are not written are zero.

1) By adding to the first column of (A/ —A) the successive columns multi-
plied by A, A%, ..., A"~!, show that the characteristic polynomial of A is equal
to £A.

2) Show (by putting A in triangular form) that the eigenvalues of the
matrix P(A) are precisely P(c),..., P(a,). It follows that the polynomial
B = det(P(A) — Al) is, up to sign, the desired solution and that the coeffi-
cients of B are polynomials in the coefficients of A and of P. Write a program
that calculates, then displays, the characteristic polynomial of P(A).

Exercise 2

Let A, B be two rectangular matrices of arbitrary dimension. Put

aHB al'zB a|~,,B
A®B= az'lB az‘zB az‘,,B
a,,\B a,,B ... a,,B

Theorem 7.2.2. Let A and B be square matrices of dimensions n and m with
eigenvalues «, ...,a, and B, ..., Bn, respectively. Then the eigenvalues of
A ® B are the a; x Bj; and the eigenvalues of AQ I + 1 ® B are o; + ;.

Proof. We have the identities
(AA)® (BB') = (A® B)(A'® B).

If we bring A and B to triangular form P~'AP = T, and Q™' BQ = T, and
use the fact that (P ® Q)™' = P~' ® Q~', then it follows that
(PRQ)'A®B)(PRQ =(P'RAQP)®(Q'®BR®Q) =T,QTs.

We finish by noting that T, ® T is a triangular dmatrix with coefficients o; B;
along the diagonal. For A ® I + I ® B, use the identity:
PO®O)ARI+I®B)(POQA=TsQI+1QTs.
O

We say that a complex number z is an algebraic integer if it is the root of

a monic polynomial with rational coefficients:
S Ha o ta=0, aeQ

By replacing “rational” by “integral” in the preceding proof, we find that

Theorem 7.2.3. The algebraic numbers are a subfield of C.

Exercise 3

Write a program to explicitly calculate a polynomial with having « + 8 or a8
as roots given polynomials which vanish on @ and 8. (Use companion matrices
and tensor products.)

7.3. How to Write a Program

The advice that you are going to receive is not original. Re-read the proverbs
at the beginning as well as Descartes’ Discourse on Method (1637).

Define the problem

This is not at all simple! There are frequently many implicit hypotheses that
need to be made made precise and that are not perceived immediately. A good
technique is to imagine that a program is running and to continually pose the
questions: “What is the program doing? What am I expecting from it? What
information must I communicate to it?”

Adjust the algorithms

This is the stage of first order recurrences and mathematical reasoning. At this
point, you have total intellectual freedom because you are not yet program-
ming.

Define the types

Return to Earth ... You need to decide how to represent the objects under
consideration in the memory of the machine. Since we are using Pascal without
pointers, we can hardly ever use arrays or pointers. On the other hand, the
choices are unlimited for a professional. A poorly chosen type can make the
writing of a program very painful and heavily penalize performance.

To program is to role-play

A good programmer structures his or her program; that is, separates a pro-
cedure into statements on the same level. It is necessary to learn to separate
the incidental from the essential: one should not climb stairs while chewing
gum. When we write the main body of a program for example, we must not
ask ourselves about the contents of the procedures or functions (this is for
“tomorrow”, or even “the day after tomorrow”); we simply imagine the names
of procedures, their effect and their interplay.

We are lead to successively play different roles: each level of the program
corresponds to a different role.

When I write the main body of the program, I am the CEO. My work
consists in imagining, in distributing, and in coordinating the tasks; I do not
execute them! (One does not execute orders which have not been given.) Once
the body of the program is written, I become an engineer when I write the
large procedures and give the main orders, a foreman when I write the more
detailed procedures, then a janitor, and so on.

A poorly structured program is one that contains orders from different levels.
When I am the CEO, I am busy with the future of the business. I do not ask
myself if there is toilet paper in the second restroom on the right hand side of
the third floor! This will come, but much later, when I am the janitor. Do not
be too hurried . ..

The beginning

We write our program by beginning with the main body of the program; then
we specify the procedures and the functions.

The writing is done by touching up, by successive refinements: one sur-
mounts difficulties one after another. In the main body of the program, we do
not concern ourselves with useless detail; we deliberately stay at the level of
generalities. It is important not to start writing overly detailed code prema-
turely.

To accomplish this, we mask® very technical portions of the code by pro-
cedures and functions which we only suppose exist: tomorrow, things will be
better, and the day after tomorrow, better still. Have confidence, you will come

% One does not execute orders which have not been given.

to the point where you write them; do not give into anxiety and try doing it
right away.

Some beginners often have a psychological block against working with a
procedure which they have not already written (although these same individu-
als will apply a theorem they cannot prove). It seems easier to accept a static
hypothesis that one sees than a dynamic process that one does not see. (We
shall return to this difficulty when dealing with recursion.)

This way of functioning is familiar to mathematicians: “Let’s see whether I
can prove my theorem by provisionally supposing that properties A, B and C
are true.”

The code must remain limpid; one should be able to recognize without effort
what algorithm is being used.

The main body of the program
The main body consists of three phases:

« data entry (accompanied in due course by initialization and a message
explaining what the user can expect);

« treatment of the data (the program, properly speaking);
« display of results.

Do not be fooled by the apparent simplicity of the main body of the program.
As you will discover, some lines require much effort, and often many tries.

The procedures

Multiply procedures and functions so that you will not have to master more
than five to ten lines of code at a time. With practice, you will be able to
increase the number of lines a little (but do not run over a single screen!)

The names of procedures and functions are very important. For example,
avoid calling a procedure “calculation” because all procedures calculate some-
thing. A name such as this, which applies to everything, carries no information
and will oblige you to comment! Use your imagination; if necessary, spend at
least a minute to find a good identifier.

Do not hesitate to give a very long (hence very informative) name to a
variable or procedure that you will not use too much; reserve short names for
objects that you will use repeatedly.

To determine if you have forgotten a procedure or function, re-read what
you have done. If you find yourelf making comments to yourself like “ Oh,
yes! I am calculating the determinant of the matrix”, then you have forgotten
to define the determinant function.

Be very attentive to the problems of transmitting information from one
procedure to another.

Complete procedures or modules separately before assembling them. Build
libraries of procedures (manipulation of fractions, of matrices, of polynomials,
and so on).

Loops

First put in place external loops without trying to specify their content: choose
the type carefully using solid arguments; contemplate the result, mentally ver-
ifying their function using a trace and carefully examining the limit cases,
because these can cause a program to crash or loop endlessly! Proceed slowly,
take your time.

When you are satisfied, you can pass to a deeper level using the same
approach. The process resembles peeling an onion.

Comments

Never forget your imaginary interlocutor because the best way to understand
what you have done is to explain it to yourself. This technique is a very
powerful device to help you become more conscious of what you are doing
and to mentally unblock yourself. And, to be sure you are talking to this
imaginary interlocutor, write comments.

Avoid comments which are too long: they disfigure a program and break its
unity. The ideal comment is brief and fits on the same line as the statement
it clarifies. Nothing is more painful than to be obliged to read three lines of
code followed by five lines of comments, then a line of code followed by two
lines of comments, etc.

Personally, I prefer to write a large comment before the code and place
references “see (1)”, “see (2)”, etc. in the code.

Re-read

Do not be too hurried to run through your program. Re-read each procedure
trying to implement mentally what it does: does the code correctly translate
your thought? Is information being transmitted correctly? Experience shows
that you will avoid losing many hours debugging a program that obstinately
refuses to work.

Verify the results

Never believe a program, even your own! Any time that it is possible, seek
cross-checks.

7.4. A Poorly Written Procedure

To put the preceeding advice into practice, we are going to dissect a procedure
written by a beginner and understand why it is poorly written. This procedure
was inserted in a program to solve a linear system Ax = b.

procedure triangularization(var A : matrice ;
var b : vector ; dim: integer) ;
var i,j, k : integer ;
begin
test 1= test_singularity(A, 1) ;
k:=1;
enlarge(A, b, 1) ;
while (test = false) and (k < dim — 1) do begin
fori = k+ 1 todim do
for j:=k+ 1 to dim do
Ali, j] = Ali,j] — (Ali, k] /Alk, k]) * A[k, j] ;
bli] := bli] — (A[i, k1/A[k, k]) * b[k] ;
enlarge(A, b, k+ 1) ;
test .= test_singularity(A, k + 1) ;
k:=k+1
end
end ;

Let us examine the code:

o The variable k£ denotes the current column. This is certainly not clear at
first glance! It would be better to call it current_column or col.

» The variable rest is a global variable of the program which is surreptiously
modified by the procedure so to inform the program when the matrix is not
invertible. Thus, we have a context effect.

 The identifier zest is poorly chosen: what does it mean? Note that resz_sin-
gularity(A, k) is a boolean which tells us whether or not (a; ;)< j<« is invert-
ible. Why not call it Cramer?

o The procedure enlarge leaves one perplexed: what does it do? Does it
augment the matrix by bordering it? Not at all! When I asked this question
to the beginner, he replied that it sought the number ¢ of the row with the
largest coefficient (for reasons of numerical stability) in the k-th column, then
exchanges rows k and €. The choice of this identifier is not judicious. Besides,
it conflates in a single procedure two actions of a different nature (finding a
pivot, exchanging two rows) and this obscures the algorithm.

o The statements test = test_singularity and enlarge occur outside and
inside the “while” loop which indicate a bad choice of loop.

« Finally, lines 8 to 11 (the two embedded “for” loops and the statement that
follows) are incomprehensible. One must read them very carefully before real-

ising that they kill the coefficients below the pivot. This suggests prematurely
written code which should be replaced by a procedure.

These criticisms allow us to improve the procedure.

procedure triangularization(var A : matrice ; var b : vector ;

var Cramer : boolean ; dim : integer) ;

var col, place_pivot, coeff : real ;

begin

col .= 1; Cramer := true ;

repeat

seek_largest_pivot(A, col, place_pivot, Cramer, dim) ;

if Cramer then begin
exchange_rows(A, b, col, place_pivot, dim) ;
zero_out_under_pivot(A, b, col, dim)

end ;

col :== col + 1

until (col > dim — 1) or not Cramer
end ;

Isn’t the new version more comprehensible, hence more certain?

8. The Integers

8.1. The Euclidean Algorithm

To calculate the GCD of two numbers, we play “ping pong” with the formulas
GCD(a, b) = GCD(a,b — a) = GCD(a — b, b) ending with GCD(a,0) =
GCD(0, a) = |a|. This gives for example
GCD(12,7) = GCD(5,7) = GCD(5, 2) = GCD(3, 2)
= GCD(l, 2) = GCD(1,0) = 1.

Formalizing this, we see that we obtain two sequences of numbers (a,) and (b,)
such that GCD(a, b) = GCD(a,, b,) and the first order recurrence:

ifa, > b,
then begin a,+, ;== a, — b, ; byy1 = b, end
else begin a,.| := a, ; b,y = b, —a, end

The translation into code, called the additive Euclid algorithm, is immediate:

a,b = integers > 0 ;

while (a # 0) and (b # 0) do
ifa>bthena:=a—belseb:=b—a;

if a =0 then GCD := b else GCD :=a

Some students suggest replacing the test @ = O by the statement GCD :=
a + b. This is not really a good idea' because a test is much more rapid than
an addition. In order to speed things up, we can regroup subtractions by the
same number which amounts to introducing Euclidean division. We obtain the
Euclidean algorithm

a, b = integers > 0 ;

while (a # 0) and (b # 0) do
ifa>bthena:=amodbelse b:=bmoda;

if a =0 then GCD :=b else GCD :=a

' Above all, no tricks!

This algorithm is usually presented using a single sequence (r,) obtained
from the sequences sequences (a,) and (b,) by putting r,, = a, and ry, 4| = b,
The GCD is then the last non-zero remainder.

ro=a, r=b, azb20,
ro = riqi + ra, 0<ry<ri,
r1 = raqs + r3, 0<r<r, (8.1)

Fn_2 = Fn—1qn-1 + n, 0< rn < Ftp—y,

Fno1 = Fnqn (rag1 =0 and g, > 2).

Example
We calculate the GCD of 10,780 and 3,675 as follows:

10780 = 2 - 3675 + 3430,
3675 = 13430+ 245,
3430 = 14-245 4+ 0.

The GCD is the last nonzero remainder, namely GCD(10780, 3675) = 245.

Theorem 8.1.1. The Euclidean algorithm correctly calculates the GCD of two
numbers.

Proof. The algorithm terminates because the sequence (r;) in (8.1) is strictly
decreasing and bounded below by 0. The last nonzero remainder is the GCD
because GCD(a,b) = GCD(rg,r;) = --- = GCD(ry_1,rn) = r, (in other
words, the function GCD(a, b) is an invariant of the loop).]

8.1.1. Complexity of the Euclidean algorithm

In the middle of the last century, the French mathematician G. Lamé? proved
that the Euclidean algorithm was very efficient.

Theorem 8.1.2. The number of divisions required in the Euclidean algorithm
is less than or equal to five times the number of digits of the smallest of the
two numbers whose GCD is being calculated.

Proof. The formulas (8.1) contain n divisions. Let F(r) be the Fibonacci
sequence. Knowing that F, = 1 and F5 = 2, we immediately have r, > F,
as well as r,_, > 2r, > 2F, > F;. We deduce that r,_o > r,_y +r, >
F;+ F, > F, whence ry = b > F,,, by induction. Let y = %(l ++/5) be the

2 Gabriel Lamé (1795-1870), a railroad engineer, was considered by Gauss to be one
of best French mathematicians of the era.

golden number; that is the positive root of the equation X2 = X + 1. A simple
induction shows that F, > y"~2 for n > 3. Knowing that b > F,,; > y"~!
and log,,y =0.208... > % we deduce that

log,yb > (n — 1)log,gy > +(n — 1).

To say that b can be written with k numerals in base 10 means that log,, b < k.
Consequently, n — 1 < 5Slog,qb < 5k shows that n < 5k. O

Remark

The precise result is not important. It suffices to remember that the number of
required divisions is bounded by Clogb where C is a constant and b is the
smallest of the two numbers.

8.2. The Blankinship Algorithm

From the definition dZ = aZ + bZ of the GCD, it follows that there exist
u, v € Z such that au + bv = d. But this does not tell us how to calculate u
and v. This is a nice example of static mathematics! One way to find u and v
is to reverse the steps of the Euclidean algorithm. Doing this, for example, for
the calculation of the GCD of 10780 and 3675 gives:

245 = 3675 — 3430,
= 3675 — (10780 — 2 - 3675)
= 3-3675 — 10780.

This algorithm does not interest programmers because it requires storing all
intermediate results. Happily, it is possible to calculate ¥ and v in the course
of the Euclidean algorithm by surfing on the edge of the calculations. To do
this, it suffices to adapt the method of Gauss pivoting to integers.® Suppose
that we are calculating the GCD of 252 and 198 (see Table 8.1). To calculate
u and v, Blankinship proposed constructing a matrix

Mo=(los 0 1)

and applying the Euclidean algorithm to the first column all the while extending
the operations to the rows of M. The algorithm terminates when the first
column contains the GCD. At this moment, ¥ and v are found across from
the GCD :

18=4-252-5-198.

3 W.A. Blankinship, A new version of the Eulidean Algorithm, American Mathemat-
ical Monthly 70 (1963), pp. 742-745.

Old matrix Pivot Manipulation New matrix

mo=(log o 1)[19% mi=ti-to [m=(j5 o)
m=(rog o 1) % L=t-dnfm=(5 5)
M= (36 3 4)| 3% Li=Li-L[M=(3 5)

s=(36 =3 &)| 18 Le=te-2nm=(g 73

Table 8.1. The Blankinship algorithm: the values of u, v and d = GCD(252, 198) such
that 252u + 198v = d are on the first row of My: d = 18, u =4 and v = -5

Proof. Consider the unimodular matrices*

o= (5 3) w=(L D) 7=(0)

Let M be a matrix with two rows and put:
M=UMM, M'=LO)M, M"=TM.
A straightforward calculation shows that one passes from M to M', M", M""
by the following elementary row operations:
M— M L =L+ ALy,
Mw— M'" : L, =L+ AL,,
M — M"™ : exchange rows L, and L,.

Since we pass from M to M, by a sequence of row operations, we have an
equality of the form

M4 - E3E2E|M0 - EM(),
where the E; denote unimodular matrices which we need not know. If we write
M4 = EM; in the form

d u v a a
(0w v)=£(h1)=(£()-£)
we see why we bordered the vector '(a, b) by the identity matrix: the product

of the unimodular matrices appears automatically! The desired result is simply
the (1,1) element of the product E(}) :

au + bv =d. m]

¢ A unimodular matrix is a matrix with integer coefficients and determinant 1. The
inverse of such a matrix also has integer coefficients. We shall study unimodular
matrices more fully in Chapter 11.

a ua va

Ifwe]etM=<b ub v

) be the matrix to manipulate, Blankinship’s
algorithm is then:

a, b := prescribed integers > 0 ;
ua:=1; va:=0;

ub:=0; vb:=1;

while (a > 0) and (b > 0) do begin

if a > b then begin

g:=adivb;

a=a—bxqg; ua:=ua—qxub; va:=va—qx*vb
end

else begin

g =bdiva;

b:=b—-—axq; ub:=ub—qgxua; vb:=vb—qg=xva
end
end ;
ifa>0

then begin gcd :==a; u:=ua; v:=va end
else begin gcd .=b; u:=ub; v:=vbend;

For beginners

« Students sometimes want to replace the variables a, b, u;,..., v, by a
matrix M|[i, j] with two rows and three columns. This is not a good idea
because it slows the execution (the reason is explained in Chapter 6). We are,
however, forced to use this solution when we apply Blankinship’s algorithm
with more than two integers.

» One can make Blankinship’s algorithm much more compact (which speeds
it up, but makes it opaque) by only retaining the first two columns of the
matrix M (that is, the variables a, b, ua, ub). Once the value of u is known,
one finds v by division v = (d —au)/b, where a and b are the original values.

8.3. Perfect Numbers

One says that an integer n > 1 is perfect if it is equal to the sum of all

its proper divisors; that is, if it satisfies the condition n =) d or the
d| nd<n

equivalent condition 2n =)_ d. The smallest perfect number is 6 because
d|n

6 =1+2+43. All the even perfect numbers have been know for a long time:

they are numbers of the form

n=2r"'2" -1

where p a prime number such that 2” — | is also prime. On the other hand,
it is still not known whether there are odd perfect numbers: all that is known

is that if such exist, their size must be gigantic. Although perfect numbers are
not in themselves of great interest to us, the calculation of sums of divisors
will provide us with an opportunity to present some techniques for optimizing
code. If we introduce the sequence whose general term is

S - Ss—1+d if d divides n,
4= Su_1 otherwise,
then the calculation of the sum of divisors is as follows:
S=0;
ford =1 tondo
ifnmodd=0then S:=S+d

Like Laurel and Hardy, divisors come in pairs: if d divides n, then n/d
divides n. This suggests using the recurrence:

Si-1+d+n/d if ddivides n and d* < n,
Sy =13 Sso1+d if d divides n and d? = n,
Sy otherwise.

If we do not allow ourselves recourse to the real numbers here, we cannot
write, for example,

for d :== 1 to round(sqrt(n)) do ...

Since we cannot use the function \/n, we abandon the “for” loop in favor of
a “repeat” loop and write:

S=0;d=1;

repeat

if . mod d = 0 then begin

§$:=85+d; (8.2)
ifd> <nthen S:=S+ndivd

end ;

d:=d+1

until &> > n

We calculated the sequence d? twice in (8.2). To avoid this, we introduce
the variable square = d* which gives (8.3).

S:=0; d:=1; square :=1;

repeat
if n mod d = 0 then begin
S=5S+4d; (8.3)
if square < n then S := S + n divd ’
end ;

d:=d+1; square = &’
until square > n

The above is an example of a “Penelope code” because we forget that we
already know d? when we calculate (d+1)?. It is more efficient to calculate the
new square using the formula square +2d+ 1. If we introduce this modification
at the right time (that is, before modifying d) and if we replace the statement
square := square+2xd + 1 by the slightly faster square := square+d+d+1
we get

S=0; d=1; square =1;

repeat
if n mod d = 0 then begin
S:=54+4d;
if square < n then S := S+ n div d (3.4)
end ;
square := square +d+d+1;
d=d+1;

until square > n

Exercise 1

Compare the speeds of (8.2), (8.3) and (8.4) experimentally.

8.4. The Lowest Divisor Function

Consider the code that we wrote in Chapter 3.

function LD (n : integer) : integer ;
var d : integer ;

begin

d=2;

whilen modd >0dod:=d+1;
LD, := d
end ;

Since it is pointless to seek an even divisor of an odd number, we could

hope to double the speed of the function LD, by proceeding by steps of 2
starting with 3 when » is odd.

function LD,(n : integer) : integer ;
var d : integer ;

begin

if n mod 2 =0 then LD, =2

else begin

d=3;

whilenmodd >0dod:=d+2;

LD, := d

end

end ;

We can push this idea a little further. When n is divisible by neither 2 nor 3,
there is no point seeking divisors of the form 2d or 3d. Thus we can start at
d =5 and alternately add 2 or 4 (Chap. 2):

+2 +4 +2 +4 +2
S5t Tr—— 11+ 13— 17— 19
+4 +2 +4 + 4

3 05 092 31 1 35
+2 +4 +2 +2
e S 39

The integers that remain are those of the form ¢y = 6n + 1 or ds = 6n + 5.

function LD;(n : integer) : integer ;

var d|,ds : integer ;

begin

if n mod 2 =0 then LD; :=2

else if n mod 3 =0 then LD; :=3

else begin

ds =1

repeat

|di :=ds+4; ds:=d +2

until (n mod d;, = 0) or (n mod ds = 0) ;
if n mod d =0 then LD; := d, else LD3 :=ds
end

end ;

When »n is a prime number, the algorithm for LD, tries to divide n by all
odd integers < n whereas we know the response as soon as d* exceeds n. So,
we introduce the square of d and the rapid calculation that we developed for
the perfect numbers:

function LDy(n : integer) : integer ;

var d, dd, square : integer ;

begin

if n mod 2 =0 then LD, =2

else begin

d =3, square =9 ;

while (» mod d > 0) and (square < n) do begin
dd =d+d;

square := square + dd + dd + 1 ;
d:=d+2

end ;

if square > n then LD, :=n else LDy :=d
end

end ;

Have our attempts to increase performance been successful? Here are the
times (in seconds) that it took a medium size computer to calculate LD for
all odd numbers in the intervals /; = [2 000, 5000], I, = [5000, 10000],
I3 = [[20000, 30 000] and 14 = [50 000, 100 000].

L L L L
LD, [7.2 238 137.2 303.7
LD, [3.6 118 682 1514
LD; [23 78 463 100.1
LD,[03 05 15 49

Since we have only looked at odd numbers, we see, in accord with our
expectations, that the function LD, is close to twice as fast as LD;. The function
LD; takes about 66 % of the time taken by LD,, which is again what we would
expect. In fact, the interval [1, N], contains [N/k] multiples of k, so there
are N — [N/2] — [N /3] + [N/6] integers which are not divisible by either 2
or 3. If N is very large, then N = [N] and

N-N/2-N/3+N/6 2 _
N—-N/2 3

0.66.

Finally, in spite of its complicated and delicate code, the function LD4 surpasses
all the others.

8.5. The Moebius Function

Recall the Moebius function w(n) is defined as

| if n=1,
unr) =0 if n > 1 is divisible by the square of a prime number,
(—=1)* if n>1 is the product of k distinct prime numbers,

To calculate w(n), beginners typically store the prime numbers in an array and
then inspect the array to calculate w(n). This static conception, with its two
separate phases, squanders lots of code, time and memory. Let us try a more
dynamic approach by calculating “approximations” to p(n) as we find prime
factors of n. Suppose that we have already found divisors p; < --- < p; of n;
if p;+1 > p; is the next divisor, it is clear that we have:

—pu(pr---pi) if pig > pi,
w(py-- pipiv1) = ' Lo (8.5)
0 if piy) = pi.

This method is justified by the following result whose proof is immediate.

Lemma 8.5.1. The sequence
p1 = LD(n), po = LD(n/p;), p3 = LD(n/pi1p2), . ..
of prime divisors of n is increasing (not necessarily strictly).

The algorithm for decomposing n into prime factors gives a classical two-
column table. We introduce a third column containing p(p; - - - py):

n LD um n LD n
n0=1050 p|=2 /J,|=—l n0=210 p|=2 ,LL|=—1

n; =525 p2=3 pL2=1 n; = 105 p2=3 //L2=1
n2=l75 p3=5 LL3=—1 n2=35 p3=5 [1.3:—1
ny=35 ps=35 me=0 |n3=T7 ps=T7 =1

stop ng =1 stop

We translate this into the language of recurrent sequences.

ng = given number > 1;
p1=LD(ng); ny=no/p1; i =-1
pr»=LD(n); ny=ni/py; = { . Pl
0 if not;
—Ke—1 i pey < pe,
Pe=LDme_1); ne=ne_/pe; e = ! ol
0 otherwise;
stop when ng =1 or uy =0

Note that we encounter a second order recurrence because it is necessary
to know p,_; and p, to calculate u,. We reduce to a first order recurrence
by passing to dimension two; that is, by introducing the sequence old_LD, =
pe_y. If we put, to simplify,

old_LD¢ = pe_1; pe=LD(Ny-1); ng=ne_i/pe;
S(t) = —pe if old_LDy = py,

e = .
0 otherwise

we can describe our algorithm as follows

no = given number > 1; po=1; py=1,
S(D; S@2); ...; S (8.6)
stop when ny, =1 or pu, =0.

We suppress the time index £ in (8.6) and use a “repeat” loop:

function Moebius(n : integer) : integer ;
var i, old_LD, new_LD : integer ;
begin
u:=1; new LD = 1;
if n > | then begin
repeat
old_LD = new_LD ; new_LD = LD(n) ;
n:= n div new_LD ;
if old_LD < new_LD then u := —u else u :=0
until (n=1)or (u=0) ;
end ;
Moebius :=
end ;

Exercises 2

o If we store the values of the Mcebius function for 1| < n < N in an
array p[1..N], we can be more efficient. In effect, because we already know
ull], ..., uln — 1], when d = LD(n), formula (8.5) and the lemma assure us

that
—u(n/d) if d does not divide d/n,

u(n) =)
0 otherwise.

» Suppose we want to verify the Mcebius inversion formula (Chap. 2). For
this, fill the array f[1..N] arbitrarily, then store the values of the functions

g(n) =Y f(d)and h(n) = Y ¢(d)u(n/d) in the arrays g[1..N] and h[1..N],
dln d|n
respectively. Have your program display the values of f and of A on two

different rows.

« Calculate the Euler phi function ¢ by a similar method.

8.6. The Sieve of Eratosthenes

In order to find all prime numbers between 2 and N, one often uses the age
old algorithm known as the Sieve of Eratosthenes. Write 2 and all odd integers
smaller than N (we have taken N = 149).

23 5 7 9 11 13 15 17 19 21 23 25 27 29
31 . 33 35 37 39 41 43 45 47 49 51 53 55 57 59
6l . 63 65 67 69 71 73 75 77 79 81 83 85 87 89

91 . 93 95 97 99 101 103 105 107 109 111 113 115 117 119
121 . 123 125 127 129 131 133 135 137 139 141 143 145 147 149.

Now remove all multiples of 3 greater than 3. Since 6 = 2 - 3, it suffices to
begin with 3-3 =9:
23 5 7 .11 13 .17 19 .23 25 . 29
31 .. 35 37 .41 43 .47 49 .53 55 . 59
61 .. 65 67 .71 73 .77 79 . 83 85 . 89
91 .. 95 97 . 101 103 . 107 109 . 113 115 . 119
121 . . 125 127 . 131 133 . 137 139 . 143 145 . 149.

Since the prime number that follows 3 is 5, we remove all multiples of 5
greater than 5. Knowing that 2 -5, 3-5 and 4 - 5 have already disappeared
because they are multiples of 2 or 3, we begin with 5 -5 = 25:

235 7 .11 13 .17 19 .23 .. 29

31 ... 37 .41 43 . 47 49 .53 .. 59
61 ... 67 .71 73 .77 79 .83 .. 89
91 . .. 97 .101 103 .107 109 . 113 .. 119
121 . . . 127 . 131 133 . 137 139 . 143 . . 149.

The first number that follows 5 is 7, so we remove all multiples of 7 greater
than 7. But since the numbers of the form 7m with m < 6 have disappeared
in the course of the preceding operations, we begin with 7 - 7:

235 7 .11 13 .17 19 .23 .. 29

31 ... 37 .41 43 .47 . .53 .. 59
61 ... 67 .71 73 . . 79 .83 .. 89
. .. .97 .101 103 .107 109 . 113 ..

121 .. . 127 131 . . 137 139 . 143 . . 149.

The prime number following 7 being 11, we remove numbers of the form 11m
with m > 11, which only removes 11 - 11 = 121.

235 7 .11 13 .17 19 .23 .. 29

31.. .37 .41 43 .47 . .53 .. 59
61 . ..67 .71 713. . 79 .83 .. 89
... 97 .101 103 . 107 109 . 113 ..

127 0131 0 1371390 0 .. 140.

The first number following 11 is 13, so we must suppress all numbers of the
form 13m with m > 13. Since 13- 13 = 169 > N, the array above contains
no numbers of this type, and the survivors are all the prime numbers less than

or equal to 149.

8.6.1. Formulation of the algorithm
We translate the preceding operations using sequences.
« A first sequence is clearly formed by the successive arrays.
T, = set of integers remaining at the instant ¢.
The first element of the sequence is:
T, = {2} U { odd integers < N}

« This sequence is not sufficient because to deduce 7, from T, we require
supplementary information: what is the first element not excluded from 7;?
So, we introduce the sequence (p,) of first non-excluded elements

pri=min{n €T, | n> p}. (8.7)

The first few terms are p, =2, p, =3, p3 =5, ps =7, ps = 11. If we let
big_mults(p) designate the set of all multiples of p which are larger than p?
(that is, of the form mp with m > p), we can write:

Ty =T, — big_mults(p,).

We can now formalize the sieve algorithm.
T, .= {2} U {odd integers < N} ;
hi=1; p :=2;
while p,2 < N do begin

Py i=min{T, N 1p,, N1} ; (8.8)
Tiw =T, — big-mults(p,) ;

ti=t+1

end

Theorem 8.6.1. Algorithm (8.8) is correct, which means that it terminates,
does not crash, and that the last set T, is exactly the set of prime numbers less
than or equal to N.

Proof. Consider the induction hypothesis:

(i) the prime numbers < N all belong to T;;
(3{,) { (ii) the ¢ prime numbers are p,,..., p,;

(iii) 7; contains no numbers mp,, ..., mp, with m > 1.

We are going to show that (J{,) is an invariant of the loop, which means that
it is true each time we enter the loop. It is clear that (J{,) holds. Suppose
that () is true on entry into the loop and that p? < N, which allows us to
re-enter the loop. Let g be the first prime number that is encountered after p,.
The corollary of Bertrand’s postulate assures us that p, < g < p,2 < N.
Condition (i) then shows that g belongs to 7,. Consequently, 7, N] p,, N] is
not the empty set, whence p,, exists and the algorithm does not crash. Since
the sequence of numbers p, is strictly increasing and bounded by /N, we

conclude that the algorithm must terminate. Now, we establish that (3,) is
true upon entering the loop again.

« The set T,,, is obtained by removing the strict multiples of p,,, from T,
and hence conditions (i) and (iii) are satisfied.

« Suppose that (ii) were false; that is, that p,,, is not the smallest prime
number greater than p,. With the notation above, we have p, < ¢ < p,4; which
contradicts the definition of p,,;. A single formality remains: we must show
that when the algorithm terminates, the set 7, contains all prime numbers < N
and nothing else. Condition (i) already shows that 7, contains all primes < N.
Suppose that 7, were to contain a composite integer n = gn’ with g prime,
g < n’ and g2 < n < N. Conditions (ii) and (iii) imply that ¢ > p,_,. Since
we are at the exit of the loop, we have p? > N, whence g2 > p, > N which
contradicts g2 < n < N. O

8.6.2. Transforming the algorithm to a program
We get rid of the time ¢ in (8.8) to obtain a “true” algorithm.

T = {2} U {odd integers < N} ; p:=12;
while p? < N do begin

pi=min{TN1p, N1} ; 8.9)
T :=T — big_mults(p)
end

The discussion so far has not dealt with storage of the sets T. To do this, it is
natural to choose an array of booleans called is_removed

const max = 2000 ;
type vector = array[2..max] of boolean ;
var is_removed : vector ; p : integer

The meaning and use of the variable is_removed is as its name suggests:

true if n is removed,

is_removed[n] = .
false if not.

We are going to work “on site”; that is, with the single vector is_removed,
where we consider the set 7, to be the state of the vector is_removed at the
instant ¢. This said, the main body of our program is:

begin

initialize(is_removed) ;

p:=1;

while p x p < max do begin
p = first_non_removed(p, is_removed) ;
remove_large_mults(p, is_removed)

end ;
display(is_removed)
end .

The procedure initialize

To remove the even integers > 2, we do not use the statement

for m .= 2 to max div 2 do is_removed[2 x m] := true

because it is much faster to repeatedly add 2:

procedure initialize(var is_removed : vector) ;
var m : integer ;

begin

is_removed|2] := false ;

m:=3;

while m < max do begin
|is_removed[m] =false ; m:=m+2
end ;

m:=4;

while m < max do begin

| is_removed|(m) ‘= true ; m =m+ 2
end

end ;

The procedure remove_large_mults

The first number to remove is p?. We again replace multiplications by additions
in order to speed things up.

procedure remove_large_mults(p : integer ; var is_removed : vector) ;
var m : integer ;
begin

m:=px*xp,

while m < max do begin

| is_removed|m] = true ; m :=m+p

end

end ;

The function first_non_removed

We use here a programming trick to speed up the execution: the two parameters
are passed by address to the procedure (the declarations “var”). This avoids
unnecessary recopying. It is also without danger because we cannot consult
these parameters without modifying them.

function first_non_removed(var p : integer ;
var is_removed : vector) : integer ;
var q : integer ;

begin
if p = 2 then first_non_removed = 3
else begin

q = p+2; while is_removed[ql do g =g+ 2 ;
first_non_removed := q
end

end ;

Advice on finishing the program

» Take care with the presentation! Display your prime numbers in 10 - 10
packets.

num_displayed .= 0 ; num_rows =0 ;

for ¢ :== 2 to max do

if not is_removed|(q] then begin

write(q : 6) ;

num_displayed := num_displayed + 1 ;

if num_displayed = 10 then begin

| writeln ; num_rows = num_rows + 1 ; num_displayed = 0
end ;

if nhum_rows = 10 then begin writeln ; num_rows := 0 end
end ;

o Check that 1789 (which is prime) appears on your screen. Also, compare
your result with the values of 7 (x) listed in Chapter 2.

Exercise 3

One can speed up the sieve by treating the case p = 2 separately. But one
can gain more speed and, in particular, economize on memory by dealing only
with odd numbers. We begin with a compact version.

for i := 1 to (max — 1) div 2 do is_removed[2 x i 4+ 1] := false ;

P:=3;
while P x P < max do begin
X =PxP;

while X < max do begin

is_removed[X] := true

X =X+2xP

end ;

repeat P := P + 2 until not is_removed|P]
end ;

Note the increment “X := X 42 x P”: as we are only sieving odd integers,
it is not necessary to try to remove the even integer X + P. Introduce now
P =2p+1and X = 2x + 1. In the algorithm that follows, is_removed|x]
indicates whether or not the integer X = 2x + 1 is removed.

for i .= 1 to (max — 1) div 2 do is_removed|i] := false ;
p:=1; M:=(max—1) div4;
while p x (p + 1) < M do begin
x:=2xpx(p+1);
while x < max do begin
is_removed|x] .= true ;
x:=x+2*xp+1
end ;
repeat p := p + | until not is_removed|p]
end ;

On a medium powered computer, deliberately slowed, the classical sieve
with N = 30,000 took 1.02 seconds compared with 0.40 seconds for the new
algorithm.

8.7. The Function pi(x)

Let (pi)i>1 be the strictly increasing sequence of prime numbers (p; = 2,
p> = 3, etc.). Recall that the function 7 (x) is defined as follows for any real
number x:

w(x) = number of primes < x
= the largest index i such that p; < x

If x is not too large, a table of primes suffices to calculate 7 (x). But what
happens otherwise? The response to this question is useful because, if we can
calculate 7(x) without knowing in advance all the prime numbers < x, we
know the size of a table of prime numbers < x.

8.7.1. Legendre’s formula

Let x > 2 be a real number. We can partition the [x] integers between | and
x into three classes.

« the integer 1,
« prime numbers < x,
» composite integers < x.

Taking cardinalities of these classes, we get

[x] = 1+ w(x) 4+ Card(composite integers < x).

A composite integer has least divisor less than or equal to /x, so that it can
be written in the form

n =mp, withm > 2 and p prime < /x.

To simplify, put
o« =71(J7).

Since there are [x/p] multiples of p which are < x, there must be [x/p] — 1
composite integers < n which are divisible by p. It is very tempting to assert

> (2])= (S [2) -

I<i<a
composite integers n < x. This enumeration is incorrect beacuse it double-
counts multiples of the numbers p;p; because they are simultaneously mul-
tiples of p; and p;. It is necessary, to subtract the number of integers of the
form [x/p;p;] and introduce a new correction for multiples of p;p; p;, and so
on. If we put

Legendre(x, o) = Z [—] - Z

X
+ cee,
1<i<a 1<i<j<a pip;j |<l<j<k<a PiPjPk

the correct formula is:
Card(composite integers < x) = Legendre(x, @) — c.
We obtain the celebrated Legendre formula
m(x) = [x] — | + a — Legendre(x,) with o =m(v/x). (8.10)
The correction term and the words to describe it

Take x = 50 so that ¢« = 7(+/50) = #(7) = 4. The correction term
Legendre(x, o) is equal to:

I b b
[I’lnpz][plPB] [pnp] [pzpz] [pzm]—[psnm]

+[p|pzp3] [pmzm] [pnpzm] [PZZHM]

_[pnpzpzm]'

In this formula, the essential role is played by the indices

1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234.

because it is possible to reconstitute [n/ p; p;p«] from i, j, k. Observe also the
appearance of words whose letters 1, 2, 3,4 form an increasing sequence. A
program that calculates these words in fact defines a total order on the words
because it calculates them in order one after the other. Since we are talking
about words, this immediately brings to mind the lexicographic ordering:

1, 12, 123, 1234, 124, 13, 134, 14, 2, 23, 234, 24, 3, 34, 4.

Now, trying to find an algorithm to create these words and display them ver-
tically on the screen leads naturally to the structure of a stack.

4

313[4] [4 4
2]2(2(2(3|3[4] [3]3]4] [4
[t]ojo||of1fr|1]2]2]2]2][3]3]4

Note that we move from one word to the next using one of the following
two operations:

« if the top s of the stack is < 4, we push (insert) s + 1 on top of s;

« if the top of the stack is 4, we pop (withdraw) it; if this does not empty
the stack, we increment the top of the new stack.

We realize the stack as a pair (array, height); the variable s contains the
next integer to push. The following algorithm produces the words w = a; - - - g
in increasing order. These words are composed of the letters 1,2,...,« and
satisfy the condition | <a, <a; < - < a; <.

s:=1; h:=0; ({the stack is empty}
repeat

ifs <«

then push(stack, h, s)

else pop_increment(stack, h) ;

if h > 0 then s := stack[h] + 1

until A=10 {the stack is empty again}

The procedures push and pop_increment are immediate.

procedure push(var stack : vector ; var h, s : integer) ;
begin

h=h+1;

stack[h] :=s

end ;

procedure pop_increment(var stack : vector ; var h : integer) ;
begin

h=h—-1;

if h > 0 then stack[h] := stack[h] + 1

end ;

Exercise 4

We could use another strategy to produce the words w. In effect, to be given
indices | < a; < --- < g, < o amounts to being given a non-empty subset
of [1, a]. To this subset, we associate its characteristc function

by +2by +2%by + - - - + b 27", (8.11)

the b; indicating whether or not the index i occurs in the word w. Thus, it
suffices to write in base 2 all integers between 1 and 1 +2+---+297! =22 —|
to obtain each word w once (and only once).

8.7.2. Implementation of Legendre’s formula

With the integers in Pascal, we can in theory calculate® 7 (x) for x < 2'. This
requires us to store in a vector p[1..42] the list of prime numbers smaller that
181 (since 1812 < 2'5 < 1822):

2 3 5 7 11 13 17 19 23 29 31
37 41 43 47 53 59 61 67 71 73 79
83 89 97 101 103 107 109 113 127 131 137
139 149 151 157 163 167 173 179 181

Let aj < a; < --- < a, be the indices contained in the stack at a given
moment and rerm the number associated to the word w = a, - - - a,:

=
term=| ———|.
Pa, ** * Pa,

We must be careful because we are entering the delicate world of numerical
calculation. The naive approach

“ First, I calculate P = p,, - - - p,,, then I divide x by P”

comes to a screeching halt, because when we use integers in Pascal, we must
never exceed 2'° = 32,768 in the course of a calculation. This bound is quickly
exceeded because 2-3-5-7-11-13-17 = 510,510. Instead of dividing x by the
product of the the p;, we are going to divide x by p,, then divide the result
by p,, and so on. This slows the execution of the program, but it never results
in an overflow of the capacity because the integers produced are decreasing.
This strategy is justified by the following, easily established result.

Proposition 8.7.1. For every integer x,

Frerinl | FAERREE.

% In theory only, as we will prove in the next paragraph

The code for the function Legendre is now simple to write: each time that we
modify the stack, we calculate the associated term that we add to or subtract
from Sum.

function Legendre(x, o : integer ; var p : vector) : integer ;
var h, s, Sum : integer ; stack : vector ;
begin
s=1; h:=0; Sum=0;
repeat
if s < « then push(stack, h, s) else pop_increment(stack, h) ;
if 4 > 0 then begin
s == stack[h] + 1 ;
ifhmod2=0
then Sum := Sum + term(p, stack, h, x)
else Sum := Sum — term(p, stack, h, x)
end
until A =0 ;
Legendre := Sum
end ;

In order to avoid unnecessary recopying and to gain time, we communicate
the addresses of the vectors p and stack: there is no danger here because we
only need to consult the values of these variables.

function term(var p, stack : vector ; h, x : integer) : integer ;
var i : integer ;

begin

for i .= 1 to h do x := x div p[stackli]] ;
term = x

end ;

8.7.3. Meissel’s formula

The time needed to calculate the correction term Legendre(x, o) grows rapidly
with x. As we have already remarked, the words formed by the indices of the
prime numbers are in bijective correspondence with non-empty subsets of
{1, ..., o} which gives a pallette of 2* — 1 words to use. If we try to calculate
7(10%), since @ = 7 (10%) = 25, there would be

2% — 1 =33554431

integer parts to calculate: the response would be a very long time coming ...
In 1885, using an improvement of Legendre’s theorem, Meissel announced that
7(10°) = 50,847,534. Considering the primitive tools for calculation available
in this era, this result, although slightly erroneous,® was a real tour de force.

¢ In 1958, D.H. Lehmer, using a computer, found that 7 (10°) = 50,847,478.

Let x > 4 be a real number, and @ and 8 be indices such that

3 3 2 2
Po X < Payis Pp =X <Py

This means that
e=n(Vx). B=(VF)
Having made these choices, we re-partition the integers < x into four classes.
e the number 1[;
« the prime numbers < x;
« the composite integers < x whose LD is < pg;
« the composite integers < x whose LD is > p,.

The cardinalities of the the first two sets are obviously | and 7 (x). Reasoning
as we did for Legendre’s formula, it is easy to see that the cardinality of the
third class is Legendre(x, @) — «. Let n be an integer in the fourth class and
decompose it into prime factors n = p; ---p; witha < i <-.- < i, and
k > 2. The bound pt., < pi -+ pi, <x < p},, shows that k = 2. Finally
the condition n < x, which can be re-written as p;, < x/p;, shows that
i < mw(x/pi,). Thus, there are w(x/py+1) — « integers of the form p,.p;
with i > « + 1, hence w(x/pg+2) — (@ + 1) integers of the form p,,, p;, with
i > a4+ 2, and so forth up to integers of the form pgp; because pgs.\p; >
pB + 12 > x. Because these integers are distinct, the cardinality of the third
class is equal to

> {rx/p) — (i — D)

a<i<p
=—fat@+ D+ +@B=-D}+ > 7x/p)
a<i<p
=1BB-D—ta@—D+ > 7x/p)
a<i<p
If we put

Meissel(x, a, B) = Z n(-x—),

a<i<f i
we obtain Meissel’s formula’
7(x) =[xl + 1B - 1) =L@ - D(@-2)
—Legendre(x, o) — Meissel(x, «, 8),

where we have put « = 7(J/x) and 8 = 7w (/x).

7 One can find much more sophisticated algorithms in Hans Riesel’s book Primes
Numbers and Computer Methods for Factorization, Progress in Mathematics,
vol. 57, Birkhéduser, Boston-Basel-Stuttgart (1958).

Example

Let us calculate (200). Since +/200 = 5.8, we have a = 3 prime numbers
smaller than /200, which gives:

Legendre(200, 3) = [ﬂz"H?Hz;ﬂ]

Lol - e

Since +/200 = 14.1, we have 8 = 6 primes less than or equal to +/200, which
gives:

Meissel (200, 3, 6) = n(@)m(%)m(%): 2.

Note that the Legendre correction term uses integer parts while the Meissel
correction term uses the function w. Thus desired value is:

m(200) =200+ 15 — 1 — 146 — 22 = 46.

Exercise 5

Let M = 2'5 = 32768 (the upper limit of the integers in Pascal). The sieve
of Eratosthenes on the interval [[2, 3000] allows us to transfer into the vector
pl1..430] the prime numbers less than or equal to 3 - 10° (p430 = 2999 and
paz = 3001).
o If x <3-10% we calculate 7(x) by direct inspection of the vector p.
« If3.10° < x < M, then 7(~/3000) < 7(J/x) < m(v/M), which gives
6 <o < lland B = n(/x) < m(2"%%) = 42. If we use Meissel’s
formula to calculate 7 (x):
> the time to calculate Legendre(x, &) becomes reasonable because this
function contains no more than 2% < 2'' = 2048 integer parts;

> the time needed to calculate Meissel(x, «, B) is very short; in effect,
this function contains 8 —a < 36 terms of the form (x/p;) that we
can calculate directly by inspecting the vector p since p; > py+1 >
p7 = 17 implies that x/q < M /17 < 1928.

8.8. Egyptian Fractions

The ancient Egyptians, it seems, only liked the fraction 2/3 and the fractions
of the form 1/n and they wrote their fractions as sums of inverses of whole
numbers. To honor this whim, we call the inverse of an integer an Egyptian
fraction. Is it always possible to write a given rational number as a sum of
Egyptian fractions? And is this expression unique?

Theorem 8.8.1. Every rational number a/b > 0 is a sum of Egyptian frac-
tions:
a 1 |

= — 4, l<xi<xp<--<xx, x €N
b X\ X2 Xk

Proof. We will use an algorithm first written down by Leonardo de Pisa (Fi-
bonacci) and rediscovered and verified by Sylvester.

 Suppose first that a/b < | and define n; > 2 by the condition:
1 1

n n.—lv

a
<-<
b

If a/b equals 1/n,, we are done. Otherwise, put a; = an, — b and b, = bn,,
so that:
a 1 a

b n b
Since a(n; — 1) < b, it follows that a; < a. Beginning again with a;/b,, we
let n, > 2 be the integer satisfying the condition :
1 aj 1

i’lz_b| Ilz—l.

Putting a, = a\n, — b, et b, = byny, we now have:

a | 1 a

b n ny bz
As above, we have a; < a;. On the other hand, we can write:

b] bnl n n
n, > — = = > =ni(n = 1) > ny.
a an; — b a | n :
b m—1

Since the sequence of the g; is strictly decreasing, the process must stop after
at most a steps, and gives fractions with strictly increasing denomiators.

e Ifa/b > 1, put:
H—l+l+ +1
102 n

Since the harmonic series H, diverges to +00, we know that there exists an
integer n > 1 such that:

H, < < Hyy1.

SHEN

If a/b equals H,, we are done. Otherwise:

0<2_H :
<-—-H, <
b

This reduces us to the first case with the condition that the first fraction to
introduce must have denominator > n + 1 since

]
—<-—H, <

a
— = n; >n+l. o
n b n+l

Remarks

1) This algorithm presents some serious inconveniences. As the bound ny,; >
ng(n; — 1) indicates, it tends to choose denominators that are factorials and
that grow excessively. For example, the algorithm gives

153 l+ 1 " 1 + 1 + 1 + 1

1001 — 7 101 ' 11234 ' 1135768634 227153727 257994078222798918

while there exist “better” decompositions such as

153 1 1 1 1

1001 ~ 8 ' 36 + 14415 + 346305960

2) A decomposition of a rational number into a sum of Egyptian fractions
is never unique because one can always replace the last fraction by a sum of
two new fractions thanks to the identity

1 1 1

x=x+l+x(x+l).

Restricting the number of fractions does not fix anything. We shall see later
that the fraction 2 admits a single decomposition as a sum of two Egyptian
fractions, six decompositions as a sum of three fractions and eighty decompo-
sitions as a sum of three fractions. This method of representing the rationals

is not very practical!

8.8.1. The program

We want to find all decompositions of a given fraction as a sum of two or
thee Egyptian fractions. The main body of the program is:

begin

message ; choose(a, b) ;
decomposition_into_two_fractions(a, b) ;
decomposition_into_three_fractions(a, b)
end .

The procedure decomposition_into_two_fractions

We are going to use “brute force” to consider all possible couples (x, x2). But
instead of varying x, and x, independently, we let x; take all possible values.
Once x; is chosen, we check that whether the rational number x, defined by
the condition

1 _a 1 8.12)
X2_b X1 ’

is an integer. In other words, our scheme is the following:

for x; ;== 1 to 0o do begin
«calculate x; using (8.12)» ;
if x, € N then writeln(x,, x;)
end

We need to get rid of the infinite bound. A short reflection shows that x,
and x, cannot be too large since the sum of two infinitely small numbers is
infinitely small. Let (x;, x;) be a solution of (8.12) satisfying the condition
1 < x; < x;. The double inequality

1 a 2
— < - < — (8.13)
X1 b X1
immediately furnishes the bounds
b 2b b 2b
—<x = — &= |[-|[+l=x=|—| (8.14)
a a a a

We note in passing that (8.14) implies x; < x, since

S .
X2 b x X

We now specify our algorithm. Here x, runs over the interval defined by (8.14).
To avoid manipulating rationals, we put

ay=ax, —b, by =bx,
so that x, = b;/a, is an integer if and only if a, divides b,.

procedure decomposition_into_two_fractions(a, b : integer) ;

var ai, by, x|, x3 : integer ;

begin

for x; .= lower_bound(a, b, 1) to (2 x b) div a do begin
new_fraction(a, b, x|, ai, by) ;
if is_integer(ay, b;) then begin x, := a, div b, ; write_2(x,, x;) end
end

end ;

The code for the functions and procedures is easy to write. The seemingly
bizarre introduction of the parameter k in the funtion lower_bound will be
justified below.

function lower_bound(a, b, k : integer) : integer ;
var temp : integer ;
begin
temp =1+ bdiva,;
if temp > k then lower_bound := temp else lower_bound := k
end ;

procedure new_fraction(a, b, x : integer ; var a, b, : integer) ;
begin

|ay =xxa—0b; b :=bxx; simplify(a,, b))

end ;

function is_integer(a, b : integer) : boolean ;

begin

|if b mod a = 0 then is_integer = true else is_integer := false
end ;

The procedure decomposition_into_three_fractions

We continue to use brute force by assigning x; and x, all possible values and
checking to see whether the equation

a 1 1 1
—=— 4+ —+ — (8.15)
b xi x3 x3
defines an integer value of x3;. As in the preceding case, we must find rea-
sonable intervals in which x; and x, live. Consider a solution of (8.16) which
satisfies x; < x; < x3. The double inequality
1 a 1 1 1 3
N - = — + N + — E N
X b xi x x3 X

immediately implies that

b 3b [b] [317]
— <X £ — —|+1 <x1<|—1-
a a a a

Having chosen x; consistent with this, and putting a; = ax; —b and b, = bx,,
we are reduced to studying the equation
a | |

—=—+ —. 8.16
b x2+x3 (8.16)

This is something we know how to do. It suffices to choose x;, to put a, =
ajx, — by and b, = byx,;, and to test whether x3 = b,/a, is an integer.
Experience shows that even x, < x; is a solution of (8.16), we cannot be
certain of obtaining x; < x,. For example, when a = b = 1 and x; = 3, we
obtain a,/b; = 1 — 1/3 = 2/3 which defines the interval x, € [2, 4]. To be
sure that x, > x;, we must choose x, in the interval:

max(x., [Z—:] +1) =x = [2a_bl'] .

This precaution is the reason we introduced the parameter k in the function
lower_bound(a, b, k).

procedure decomposition_into_three_fractions(a, b : integer) ;
var a;, by, ay, by, X1, x2, X3 : integer ;
begin
for x| .= lower_bound(a, b, 1) to (3 * b) div a do begin
new_fraction(a, b, x\,ay,by) ; {ai/by =a/b—1/x}
for x, := lower_bound(a,, by, x;) to (2 x b) div a; do begin
new_fraction(a,, by, x2, az, by) ; {ax/b, = a\/by — 1/x3}
if is_integer(a,, b;) then begin
| x3 = b, div ay ; write_3(xy, X2, X3)
end
end
end
end ;

The procedures write_2 and write_3

Because the integers in Pascal are limited, it is prudent to double check before
accepting them: one of the integers x, and x3 might be too large and become
negative! Thus, we are going to check the equality a, /b, = 1/x;+1/x;+1/x;
by redoing the calculation using real numbers.

procedure write_3(x,, x5, X3 : integer) ;

begin

write(=1/, x1: 1, + 1/, x2: 1, + 1/, x3: 1)
writeln(’, precision =',a/b— 1/x; — 1/x; — 1/x3)
end ;

If the “solution” is correct, the displayed real number must be very small (let
us say of order at most 10~7). If this is not the case, beware! The procedure
write_2 is similar.

8.8.2. Numerical results

The numerical results are impressive. As one might predict, the number of
decompositions increases with the number of fractions one allows. The size

of integers that appear is surprising. One also observes that some rationals are
not the sum of two (or three) Egyptian fractions.

» One sees, for example, that there is a single decomposition of 3/4 as a
sum of two fractions:

« When one allows three fractions, there are six solutions :

31 1 1 | (R
1"2%5%0 | T332
1 1 1 1 1 1
=2tz | T371'%
I 1 1 I 1 1
“2%87"% “itity

Exercise 6

If you have access to long integers, write a Pascal program which finds all
decompositions of a/b as a sum of four fractions.

8.9. Operations on Large Integers

If we wish to add, subtract or multiply two integers of 30 digits, the integers
already defined in Pascal will not suffice; a special program is necessary. We
are going to work in base b > 2 with integers that have at most n digits:

Xx=xo+x1b+xb>+---+x,b", 0<x; <b. (8.17)

As usual, we use the notation x = X, - - - xo to denote (8.17).

8.9.1. Addition
Put z = x + y and add the representations (8.17) of x and y:
2= (xo+ yo) + (xi + yDb+ -+ (xy + y,)0". (8.18)

The sum xo + yo is not a digit if it is greater than or equal to b. Thus, we
divide by b

Xo+Yo=pib+2z0, 0=<z9<b. (8.19)
to obtain the digit zo. The quotient p, is called the first carry. Combining
(8.18) and (8.19) gives

z2=20+ (x1 + y1 + p)b + (X2 + y2)b* + -+ (X, + y)b". (8.20)

Dividing in turn x; + y; + p; by b gives us the second carry.
Xi1+y+p=bor+z;, 052z <b. (8.21)
Substituting (8.21) into (8.20) gives
z2=204 210+ (x2 4 y2 + p2)b” + -+ + (x4 + ya)b". (8.22)
Proceeding little by little, we finally arrive at the equality
z=2+ub+ b+ -+ 20" + b, 0=z <b. (8.23)

The bounds 0 < xp + yo < 2(b — 1) show that 0 < p; < 1. More generally,
all the carries are equal to O or 1, because if 0 < p; < 1 then

0<xi+yi+p<2b-1=0=<p <L (3.24)

This bound is important, because it will allow us to avoid exceeding capacity
when we are programming. When the last carry p,4; is zero, (8.22) shows
that the representation of z in base b is z = z,, - - - 0. The transformation into
an algorithm is immediate:

p :=0; {because p;y, is a function of p;}
for i := 0 to n do begin
temp :=x; +y; +p; zi =temp mod b ;
if temp < b then p :=0 else p := 1
end ;
if p > 0 then overflow {x + y has more than n digits}

Note that the calculation of the new carry p does not use division by b

which greatly speeds up the algorithm.

8.9.2. Subtraction

Consider the representations (8.17) of x and y and let z = x — y:
Z=(X0—,V0)+(x| _yl)b+"'+(xn_yn)b"~ (825)

The difference xo — y, is a digit if and only if it is positive or zero. When it
is negative, we “borrow”, which amounts to defining zo as follows:

0 if xo—y =0,
Z0=Xx0— Yo+ omb, p= . (8.26)
1 if Xo— Yo < 0.
Combining (8.26) and (8.27) gives

2=20+ (X1 —y1 — p)b + (x2 — y2)b* + - + (X, — yu)b". (8.27)

When we have —b < x; — y; — p; < b, we must borrow again to obtain the
digit z;:

0 if X|—y|—,0|>0,

zZ=xi—y1—pr+pb, p2= _
1 if xy,—y—p <O.

Proceding little by little, we finally obtain
=204+ 214+ 2,b" — pub"', 0<z <b. (8.28)
One cannot have p,,; = 1 when x > y because it follows from (8.28) that
< b-DU+b+--+b)=b"" =p"" -1 b =1

Consequently, x > y implies that p,,; = 0, which shows that the expression
Zn -+ - 20 given by (8.28) is the representation of z in base b. The subtraction
algorithm is, therefore:

p =0 {because p;,, is a function of p;}

for i := 1 to n do begin

i =X oY — P

ifzi <Othenbeginz, ;=2 +b; p:=1end
elsep =0

end ;

if p > 0 then underflow (that is x < y}

8.9.3. Multiplication
Put Z = x x y. The formula

Z=x*xy= (x; % y) * b

n
i=0

allows us to reduce multiplication to adding the results of multiplication of a
number and a digit. So, suppose that 0 < ¢ < b is a digit and put

Z=c*xx =cxo+cx;b+---+cx,b". (8.29)

The inequalities 0 < cxg < (b — 1)2, where the bounds can be obtained, show
that cxg is not always a digit. Thus, we divide by the base

cxo = p1b + 2o, 0<z9<b, (8.30)

which gives the first carry p,. We now have

05p.=[c—x(’]s[i—ib—+l]= [b—2+l]=b—2.

If we substitute (8.30) into (8.29) we get

z2=2z0+ (cx;1 + p))b+--- +cx,b". (8.31)
Dividing cx; + p; by the base gives the next carry:

cxi+pr=pb+z1, 0<2z <b.

Its size is

cx.+p,]< [b2_2b+1+b—2]= [b—l—l]=b—2
b - b

05;02=[A

and we have
z2=z0+ b+ (cx2 + p2)b+--- +cx,b".

Proceeding in this manner, we find that the carries can equal at most (b — 2)
and we finally obtain

z=zo+ b+ +2,b" + pp b (8.32)

If the last carry is zero, we obtain the representation z, - - - zo. Otherwise, we
exceed the capacity.

o :=0; {because p;y, is a function of p;}
for i := 0 to n do begin
temp :=cxx;+p;
Zi :=temp mod b ; p :=temp div b
end ;
if o > 0 then overflow {c x x possesses more than n digits}

The estimates
O<cxi+p<(b-D*+b-=2) <b’ (8.33)

are very valuable because they protect us from exceeding the capacity when
we program.

8.9.4. Declarations

We are going to work in base B = 100. In the program “digit” (in quotes)
will refer to a digit in base B, that is, an ordinary integer between 0 and 99.
The machine knows knows how to add and multiply two “digits”. The bounds
B? < 2'5,(8.20) and (8.32) guarantee that the intermediate calculations will
never produce negative integers when starting with Pascal integers. Knowing
that a line on a screen contains 80 characters, we will only be interested in
(positive) integers with at most 80 digits. Such an integer can be stored with
n = 180 = 40 ordinary Pascal integers:

X=X0+X|b+--~+X3gB39.

Thus, our declarations will be as follows

const B=100; ind_max =39 ;
type bigint = array[0..ind_max] of integer ;
string80 = string[80] ;

8.9.5. The program

The main body employs the boolean variables finish, overflow, underflow and
the bigint x, y, z. This program repeatedly requests the values of x and y and
displays the sum, difference and product whenever possible; that is, whenever
the capacity is not exceeded. One leaves the loop when x = y = 0 which
allows us to test the pairs (x, 0) and (0, y).

begin

message ;

repeat

choose('x’', x, finish) ;

if not finish then choose('y', y, finish) ;

if not finish then begin
big_sum(x, y, z, overflow) ; display(x +Y', z, overflow) ;
big_subtraction(x, y, z, underflow) ; display('x — y', z, underflow) ;
big_multiplication(x, y, z, overflow) ; display('x x y', z, overflow) ;
end

until finish

end .

(Division will be treated separately because it is more complicated.)

The procedures choose and display

As always, the procedures for interfacing with the exterior (entrances and
exits) are the most delicate to write. Here are some traps and problems:

« It is necessary to convert chains of chosen characters into bigint.

« The “digits” with weak weight (those which multiply 1, B, B2, ...) are at
the beginning of the arrays. This explains the appearance of “downto” loops.

o We should display “03” and not “3” when the “digit” is equal to 3.

The procedure choose

When we type 1234567890123456, we send the machine a chain of characters
which it must convert into a sequence of “digits”.

o We cut the chain into two digit pieces, which requires that we adjoin a
‘0’ when it contains an odd number of digits;

» We convert the ordinary digits (which are characters) into the correspond-
ing integers using the statement “ord(chain(i]) — ord('0')”;

« A final snare awaits us: the indices of the chain range between 1 and 80;
in bigint x, they range between 0 and 39.

procedure choose(letter : char ; var x : bigint ; var finish : boolean) ;

var i, £ : integer ; chain : string80 ;

begin

write(letter,’ =) ;

readln(chain) ;

if chain =" O/

then finish = true

else begin

finish := false ;

if length(chain) mod 2 = | then chain := concat('0’, chain) ;

annul(x) ;

£ := length(chain) div 2 ;

fori:=1to { do

x[€ —i] := 10 * (ord(chain[2 x i — 1]) — ord('0"))
+ord(chain[2 * i]) — ord('0)

end
end ;

In order to beter understand the subtleties of this procedure, you should run
a trace when chain = ‘1234567°. (The procedure annul is left to the reader.)

The procedure display

We want to display the “digits” properly on the screen. For example, if we
have x[0] = 0, x[1] =9 and x[2] = 7, the other “digits” being zero, we must
display 70900 and not 790 or 00 - --0070900! (The convenience of the user
always comes before that of the programmer.)

procedure display(word : string80 ; x : bigint ; impossible : boolean) ;
var i, start : integer ;
begin

if impossible then writeln('no result : overflow or underflow’)
else begin

writeln(word) ;

for i := | to ind_max do if x[i] > O then start :=1i,
write(x[start] : 1) ;

for i :== start — | downto O do

if x[i] < 10 then write('0’, x[i] : 1) else write(x[i] : 1) ;
writeln
end
end ;

The procedure big_sum

This procedure returns z = x + y when this number has less than 80 digits;
exceeding the capacity is stored in the boolean variable overflow.

procedure big_sum(x, y : bigint ; var z : bigint ; var overflow : boolean) ;
var i, carry, temp : integer ;

begin

carry :=0;

for i := 0 to ind_max do begin

temp = x[i] + yli] + carry ;

if temp > B

then begin z[i] :=temp — B ; carry :=1 end

else begin z[i] := temp ; carry =0 end ;

if carry = 0 then overflow := false else overflow := true
end

end ;

The procedure big_subtraction

This procedure returns z = x —y when x > y; otherwise the variable underflow
becomes true.

procedure big_subtraction(x, y : bigint ;
var z : bigint ; var underflow : boolean) ;
var i, carry, temp : integer ;
begin
carry :=0;
for i := 0 to ind_max do begin
temp = x[i] — y[i] — carry ;
if temp < 0
then begin z[i] :=temp + B ; carry:=1 end
else begin z[i] := temp ; carry =0 end
if carry = 0 then underflow := false else underflow := true
end
end ;

The procedure big_multiplication

This procedure returns z = x x y when x x y has less that 80 digits. We use the
formula z = Z}‘ﬂo x; * y x B and the algorithm for multiplying by a “digit”.
If x x y has more than n digits, the boolean variable overflow becomes true.

procedure big_multiplication(x, y : bigint ;
var z : bigint ; var overflow : boolean) ;
var i : integer ; temp : bigint ;
begin
i:=0; annul(z) ; overflow := false ;
repeat
{temp = x[i] * y}
big_multiplication_by_digit(x[i], y, temp, overflow) ;
if not overflow then begin

shift(temp, i, overflow) ; {temp := temp % B'}
if not overflow
then big_sum(z, temp, z, overflow) {z := z + temp)}
end ;
i=i+1
until ((= ind_max) or overflow
end ;

The procedure shift is left to the reader.

The procedure big_mult_by_digit
Suppose that x is a “digit”, that is x € [0, B — 1]

procedure big_multiplication_by_digit(x : integer ; y : bigint ;
var z : bigint ; var overflow : boolean) ;

var i, carry, temp : integer ;
begin

carry :=0;

for i :== 0 to ind_max do begin

temp = x x y[i] + carry ;

zZ[i] := temp mod B ; carry := temp div B ;

end ;

if carry = 0 then overflow := false else overflow := true
end ;

Exercise 7

Adapt the algorithms and the program to a representation complementing
base B (Chapter 6).

8.10. Division in Base b

Let x,y > 0 and g, r be the quotient and the remainder upon division of x
by y:

x=qy+r, 0<r<y.
As school children, we learned an algorithm to determine the numbers g

and r from x and y. This algorithm, however, uses guesses, which makes
it unprogrammable, so that a careful theroretical study is in order.

8.10.1. Description of the division algorithm

Suppose that we know the addition and multiplication tables in base b. To be
precise, suppose the following:

» We know how to add, subtract and multiply numbers written in base b.

}m

X
a1y
£
q2y
&
q3y
&

qsy
r

— — B W
NN — BN O
—_— N 00 O NN

V2 T A T 2 A A
—_ 0 00 W = L O\ -
wh — O W O -

2

Fig. 8.1. Euclidean division of x = 1,562,693 by y = 237

e On the other hand, we do not know how to divide anything other than a
number having no more that two diigts by a digit (which we do by “reading
the multiplication table in reverse”).

This said, we recall how we divide x = 1,562,693 by y = 237 (working in
base 10).

» Let & = 1562 be the smallest integer > y formed from the first digits
of x.

« To find the integer part of & /y, we ask the question “How many times
does 237 go into 15627 Since we do not know the multiplication table, we
cannot immediately answer this question. For this reason, we replace the ques-
tion by a simpler one: “How many times does 2 go into 15?” The estimate
g1 = 7 that we obtain turns out to be too large since 7 - 237 = 1659 > 1562,
so we reduce it by one. Since 6 - 237 < 1562, we now know that g, = 6 is
the integer part we seek.

o We calculate next that r; = §y—q,y = 140, then we “bring down” the digit
of x which follows &,. This means that we have made & = 10r, + 6 = 1406.

» We estimate the integral part of £, /y with the question “How many times
does 2 go into 14?”. The answer g, = 7 is too large because 7-237 = 1659 >
1406. We decrease g, by a unit and find that this still does not work because
6237 = 1422 > 1406. We begin again and determine finally that the integer
partis g, = 5.

o We calculate r, = & — g,y = 221, then we bring down the next digit of
x to obtain & = 10r, + 9 = 2219.

» We estimate the integral part of &/y = 2219/237 by asking “How many
times does 2 go into 22?”. Since the response is greater than the greatest digit,

&o

N
x ﬁ xn PR xm xm—l e xO y
ri=46&—qy q q
L Gt
& = bri + xp- "
=& — qy
: qi =Isi-1/yl

& = bry +xm2

{rm = sm-l —qmy
‘Sm = bry, + xo

P41 = sm —qm+1y

Fig. 8.2. Sequences which arise when dividing x by y

namely 9, we try g3 = 9. This turns out to be correct.

o The next partial remainder is r3 = & — g3y = 86. We find that & =
10r; + 3 = 863, whence g4 = 3.

o The division comes to an end with ry = & — g4y = 152 because there is
no digit to bring down. The quotient we seek is 6593 and the remainder 152.

8.10.2. Justification of the division algorithm

The division algorithm uses two auxiliary sequences (r;);>1 and (§;)>o:

ri = &_1—gqy,

6 brtx (8.34)

The sequence (§;) begins with the smallest integer § > y formed from the
first digits of x; let

Eo=Xn Xnm- (8.35)
The sequence of digits of the quotient is defined by
qi = [E] (8.36)
y

where, as always, the bracket indicates the integral part. Thus, to a first ap-
proximation, we can write the division algorithm as follows:

«to determine &y = X, - - Xy »
for i := | to m do begin

q; = &-1/y];
rii=&.1—¢qy;
i i=bri +Xm_i;
end ;

P41 i= Em —dmi1y
Theorem 8.10.1. The division algorithm defined by (8.34), (8.35) and (8.36)
correctly determines the digits of the quotient.

Proof. Multiply each r; by b™"'~/ and add the resulting equations term by
term to get

b ro==& —qy,

bt ry = bri 4+ Xm_1 — G2y,
b Fp = bFm_1 + X1 — Gy,
1 Fm+1 = brm + X0 — Gm+1)-

After simplifying, we get:
X = (gnb" + Gn-1b""" -+ G0)Y + Fma. (8.37)

If the g; defined by (8.36) are digits (that is, if they satisfy 0 < q; < b),
and if the last remainder satisfies 0 < r,,; < y, and we know that the
expression of the quotient in base b is ¢ = g1 - - - gm+1- We begin by showing
that y < &9 < by. Consider the numbers &’ formed by all digits of &y except
the last. That is, & = X, ...xn_1, sO that & = b€’ + x,, (if m = n, take
&' = 0.) The definition of &, ensures that &' < y. Returning to &, this gives
Eo<b(y—1)+b—1<by—1 < by. Using the inequality y < & < by,
we deduce that g, = [&/y] is a digit different from O and that ry =&y — q1y
satisfies 0 < r; < y. The bound

E,:br|+x,,,_|Sb(y—l)—}-b—l:by—l

now allows us to conclude that g, is a digit and O < r, < y. A simple induction
establishes the theorem. D

8.10.3. Effective estimates of integer parts

If we examine our provisional division algorithm, we find an action which
we cannot execute with the primitives at our disposal, namely calculating the
integer part of (u/v] when u possesses more than two digits (remember that
we need to have a multiplication table in order to read it in reverse). Thus, we

replace g = [u/v] by the estimate g = [u/ v] obtained from the multiplication
table. Let 4 and v be two integers satisfying the condition

0O<v<u<bv,

which ensures that g = [u/v] is a digit different from zero. Set

U= Upy1Uy - U, V=1V, V,

with u,,; = 0 when u and v have the same number of digits. Put B = b" and

=)

Il
<
=
s
<
S
=)

=Uy,_- Uy, u=Bu+u, 0<u < B,
v

=V, Vg, V=Bv+ 5, 0<v<B.

<
Il
<
S
S

The number # is made up of the first or two first digits of u according as the
number of digits of u is equal to or one more than v. If we only have a simple
multiplication table in base b, we can only calculate the digit

a=unm[b—1,[%][(8.38)

The estimate g that we obtain is sometimes catastrophic: in base 10, if u = 99
and v = 19 then g = 9 whereas g = 5. More generally, if 8 is the digit
B=b—1,withu =100 =5b? and v = 18 = 2b — | we have g =~ b whereas

q = 5b if b is large!

Lemma 8.10.1. With the same notation as above, q < q.

Proof. Suppose that ¢ < b — 1 and write:

_Bu+u _Bu+B-|
Bv+7v ~ Bv

u
v

Since the integer part is an increasing function, we will be done if we can
prove that the integer part of the upper bound of u/v is g; that is if we can
establish the inequalities:

Bi+ B —1
Ly S

g <

7=""B%
o The left inequality is immediate:
Bu Bu+B-1

— 1= .

__@_Bi
7= B Bv

ST

« To establish the right one, multiply u/v < g + 1 by v to obtain the
inequality u < v(g + 1) — 1. We have
B((g+DHv—1)+B—1
B(g+1)v—1<B(g+1)v. O

Bu+ B —1

=
=

We have seen that it can happen that ¢ — ¢ has the same order as %b.

Happily, this catastrophe only occurs when the first digit v of v is small, as
the following result shows.

Lemma 8.10.2. If v > 3b, then g —q < 2.
Proof. We are going to establish the contrapositive
g—q=3 = V<3b

By the definition of the integer part, we can write:

It follows that

since u/v is bounded above by b.

When the first digit v of v is not too large, we can replace u, v by du, v,
which does not change g but which multiplies the remainder r by §. If we
choose § well, the first digit of v will be sufficiently large.

Proposition 8.10.1. Suppose that b isevenand v < %b, andputd = [b/(v + 1)].

Then Sv has the same number of digits as v and the first digit of dv is greater
than 1b.
2

Example 8.10.1. In base 10, when v = 293,578, we have v = 2, § = 3 and
év = 880734 ; when v = 4999, we have v =4, § = 2 and Sv = 9998.

Proof. The condition ¥ < b shows that § > 1 and 8v > v. From v < B, we
deduce that

8v<[%%](BU+B)§B[](5+1)53b

v+ 1

since [b/(v+ 1)] < b/(v + 1). Thus v has the same number of digits as v.

Knowing this and that v = (§v)B + (8v), we see that the first digit c,
of Sv equals & v plus, possibly, a contribution from § v:

8:
) = 85*"‘ [;v]

We can write

azove (ﬁil —l)ﬁzg_lz[g]'l
because T(b/(T+ 1) — 1) = 1o+ 1= (tb— T~ 1)(T— D/(T+1) 2 0.

We are done upon remarking that the strict inequality ¢, > [%b] — 1 between
integers implies that ¢; > [%b]. m]

8.10.4. A good division algorithm

When the base is an even number, we can prepare x and y, meaning that we
can replace x and y by §x and 8y so that the first digit of 8y is greater than %b.
We can then be certain that our estimates are good because g will equal either
q,q + 1 or g + 2: the internal loop “while r; < 0 do begin ...end” will be
traversed at most twice.

8 =1, v:=digit of highest weight of y ;

if 2v < b then begin

§=bdiv(l+7v);

x:=46x; y:=38y

end ;

«determine £y = X, -+ Xp»

for i := 1 to m do begin

q; = estimate(§;_1,y) ; {g; = q}

ri=§&_1—q; %y

while r; < 0 do begin

|ri=rity; g =gq —1

end ;

& = bri + X
end ;
r’=x—gq%*y

Exercise 8

Write a program that divides one biginteger by another.

8.11. Sums of Fibonacci Numbers

In what follows, x > y means x > y+ 2 and x < y means x < y + 2.

Theorem 8.11.1 (Zeckendorf, 1972). Every integer n > 1 is a sum of Fibo-
nacci numbers:
n=F,+F,+ - +F,. (8.39)

Moreover, if one requires that the indexes satisfy iy > i, > -+ > iy > 0,
then this decomposition is unique.

Here are the Zeckendorf decompositions of the integers 2 < n < 25.

2= F 10 = Fs + F, 18 = Fy + Fs
3=F, 1l =Fs+ Fs 19=F + Fs+ F,
4=F+ F 12=Fo+ Fy + F 20=F, + Fs+ F;
5=Fs 13=F 21 = Fy
6=Fs+ F» 14 = F;+ F 2 = Fs + F
T=Fs+ F; 15=F,+ F B =Fs+ F
8= Fy 16 = F; + F, 24 = Fy+ F,
9=Fy+ F, 17=F,+ Fy+ F, B=Fs+F+ F

Remarks

1) One can show that the Fibonacci sequence is the only sequence with this
property.
2) Please refer also to the Hofstadter function (Chap. 12, §2).

Lemma 8.11.1. For all ¢ > 2, one has
Fopo=14+F+F o+ Fr g+, (8.40)

the sum extending over all indices £ — 2i > 2 (the last term is F, (resp. F3)
if £ is even (resp. odd)).

Proof. The identity follows easily by induction upon repeatedly applying the
definition

Fppn=F+F =F+F_ ,+F_3=--.

When ¢ is even, one stops at F>+F, = F,+1; when £ is odd, at F3+ F, = F3+1
(the equality F, = F; =1 is essential). m]

Proof of Zeckendorf’s theorm

We begin with existence. Set nyp = n. Since F, tends to infinity, there exists
an index i{; > 2 (and only one such) such that:

Fi, <ng < Fy 4.
Put ny = ny — F;,. If n, is zero, we are done; otherwise, we have the bound:
n=ny—F, < F4—F =F_.

Since 1 < n; < F;,_, it follows that there exists a (unique) index 2 < i; <
i1 — | such that:

Fi, <ni < F41.

Put n, = ny — F;,. If ny is zero, we are done. Otherwise,
l<ny=n—F, < Fi2+|_Fi2=Fi2—]’

which allows us to begin again. Since the sequence (n;);>o defined in this
way is strictly decreasing, the algorithm cannot run endlessly. (Once again,
the equality F, = F, = 1 is vital, because it ensures a correct stop.) It is
clear that one can extract an algorithm from this argument which will supply
the decomposition (8.39). Now we establish uniqueness. The conditions i; >
> - > i > 0imply that for all t =1, ..., k, one has:

242k —1t)<i, <i)—20-1).
Since the Fibonacci sequence is increasing, identity (8.40) allows us to write
n=F +F,+ - +F
<F,tF2tF a4t +F un=F.a-1

Two cases arise:

» n = Fy, is a Fibonacci number. It follows from the bound F, < F;, 4, that
¢ < i, and thus that k = 1.

« n is not a Fibonacci number. The bounds F;, < n < Fj 4, establish the
uniqueness of ;.

The uniqueness of the other indices now follows by induction.

The Zeckendorf decomposition (8.39) of n 41 can be obtained very simply
from that of n thanks to (8.40). Let £ € [1, k]] be the smallest index such that
lgp1 2 0+ 3:

n=Fil+"'+F"r+|+(Fi:+Fir—2+ﬂr-4+ﬂt-h+“‘+ﬂk)‘

In other words, we put in parentheses those F; that we encounter when we
start from the right letting the indices grow by 2:

o 16 = 7+ (Fu),
e 25=F+ (F4s+ F,),
° 20 = (F7 + Fs + F})

Proposition 8.11.1. With the notation above:
Fp+- +F,+F if iy > 4,

n+1= Fi+ -+ F, +Fuifiig<3and > 1,

Fi 4 if iy, <3and £ =1.

Proof. This is an immediate application of the identity (3.40). O

Example

Let us start, for example, with the decomposition 25 = Fg + (F; + F>). We
have 26 = Fg + (F4 + F, + 1) = Fg + Fs in view of (3.40). Then we get
27T =Fg+ (Fs+1)= Fg+ Fs+ F>, and then 28 = Fg + F5 + (F; + 1) =
Fg + Fs + F5. The next decompositions are:

26 = Fg+ F5s 3Ml=Fs+Fo+ F5 36 =F+ F;
2QI=FRK+F+F 32=Fs+ Fo+ F4 31=F+F
8 =Fg+ Fs+ F3 B=FR+FK+FL+FRB B=FK+FL+F
29=Fs+ Fg 34=F 3I9=Fy+ Fs
0=F+Fo+ F 5=FK+F V=F+F+F

Exercises 9

e Write a Pascal program to display all Zeckendorf decompositions of inte-
gers in the interval [1,2000] knowing only that 1 = F;.

e« Letn = F;, +---+ F;, be any sum if Fibonacci numbers. Write a Pascal
program which computes the Zeckendorf decomposition of 7.

» Write a Pascal program which adds two numbers whose Zeckendorf de-
compositions are given.

8.12. Odd Primes as a Sum of Two Squares

We know from Chapter 2 that a prime number p of the form 4n + 1 is a sum
of two squares. We are going to prove this theorem differently. This time, our
proof will be constructive and be based on Euler’s proof.

First step: finding a particular solution of X* +1 =0

We work modulo p. Euler’s theorem (Chap. 2) tells us that there are as many
squares as nonsquares in Z; and that if x # 0, then

L2 _ +1 if x is a square in Z,,

—1 otherwise.

To find a particular solution of the equation X2 + 1 = 0 mod p, we choose
an element x € Z* at random and raise it to the power %(p — 1) using the
algorithm for fast exponentiation. If squares and nonsquares were uniformly
distributed in Z7,, we would have exactly one chance in two of choosing a
nonsquare; practice shows that we very rapidly obtain a nonsquare. When this
is the case, x'?~"/2 = —1, which shows that X = x?~"/4 is a solution of
X2+ 1=0mod p.

In Pascal one chooses an integer x € [0, p — 1] at random by typing
x = random(p). To obtain a random integer x € [1, p — 1], it suffices to
write

x =1+ random(p — 1).

Second step: decomposing p into a sum of two squares
Let Xy and Y, be two integers such that Xy # 0 or Y, # 0 and xg + Yo2 =0
modulo p:
X2+ Y2 = pN,. (8.41)
o If Ny = 1, chance is on our side and we are done.
o If Ny > 2, we divide X, and Y, by p using division with centered re-
mainders:

X0=P§+x» IX|<%p, (842)

Yo=pn+y, Iyl <3ip.
(The inequalities are strict because p is odd.) It follows from (3.41) and (3.42)
that x*> + y? = X2 + ¥ = 0 mod p, whence:

x2+y’=np, n=>1. (8.43)

We certainly have n > 0, because n = 0 and (8.42) would imply that both X¢
and Y, are multiples of p, contrary to hypothesis.
« If n =1, we are done because p = x? + y?.
o If n > 1, we divide x and y by n, which is reasonable since the inequality
pn < x? + y? < ;p? shows that n < ;p:

X =na+a, la| < sn,

y=nB+b, |bl <

(8.44)
n.

Nl=— N|—

It follows from (8.43) and (8.44) that a> 4+ b2 = x?> + y? = 0 mod n, whence
a’* + b*> =nN,. (8.45)

Putting pn = x% + y? together with (8.44), using (8.45) and dividing by n, we
find that
p = n(@® + B?) + 2(aa + Bb) + N, . (8.46)

If we multiply (8.46) by N,, we obtain®

pNy; = nN(a® + B*) + 2N (aa + Bb) + N}
= (a® + b?)(a? + B?) + 2N, (aa + Bb) + NI2 (8.47)
= (N, + aa + Bb)* + (aB — ba)?.

8 Euler had a prodigious capacity for calculation.

Putting X, = [N, + aa + Bb| and Y|, = |aB — ba|, (8.47) becomes:
pNi = X? + YL (8.48)

Let us estimate the orders of magnitude of n and N,. If £ is not zero in (8.42)
we can write | Xo| > pl&| — |x| > p — |x| > %p > |x]| ; if & is zero, we only
have |Xy| > |x|. One shows in the same way that |Yy| > |y|. These bounds
imply that 1 < n < Ny. Since we also have n N, = a’> + b < %nz, we finally

get:
I <N < in<iN,. (8.49)

Let us justify the inequality Ny > 1. If N| were zero, we would havea = b =0
because of (8.45) as well as x = na and y = nf, so that x2+ y? = np becomes
n(a®+ B%) = p. Since p is prime, this means that n = p or n = 1. The bound
pn < x? + y? < 1 p? prohibits the case n = p, so that we must have n = 1,
which is contrary to our working hypothesis.

If Ny =1, we are done because (8.48) is the decomposition of p as a sum
of two squares.

If N\ > 1, we begin anew the calculations above replacing Xy, Yy by X1, Y).
(If X, =0and Y, = 0 mod p, we deduce from (8.48) that Ny = 0 which
is impossible since 1 < N, < yn < cp.) This process creates a sequence
No > Ny > --- > N, = 1 which decreases very rapidly: Ny, < %Nk. Euler’s

algorithm for writing p as a sum of two squares is therefore:

«seek X such that X* + 1 = 0 mod p»;
Y. =1;
while X? + Y% > p do begin
centered_division(X, p, &, x) ;
centered_division(Y,p,n,y) ;

ni= (x* +y2) div p ;

if n =1 then begin X :=x; Y:=yend
else begin

centered_division(x, n, a, a) ;
centered_division(y, n, 8, b) ;

N := (a® + b?) div n ;
X:=abs(N+axa+bxp);
Y:=abs(axB—bxa);
end
end

Here is the trace of this algorithm when p = 1913. Note the very rapid
decrease in N which accords with what we would expect theoretically.

N|X|Y|n|x|y N|X|Y|n|x|y
7541201 |1(265]|712] 1 5194(27|5|94|27
26 | 223 (3] 26 |223|3 1| 8|43

Remarks

There are two ways of leaving the loop: either because n = 1 (that is, p =
x? + y?), or because N = 1 (that is, p = X2 + X?). The two cases arise:
e p =401, Xo =381 and Yy = 1 give the solution x =20 and y = 1.

e p=397, Xg =334 and Yy = | give x = —63, y = 1 which in turn give
rise to the solution X; = 19 and Y, = 6.

Exercise 10

To find all solutions of the equation x? + y? = n such that 0 < y < x, we can
“tack” around the track defined by the circle x> + y? = n leaving the point
([+/n], 0) and moving vertically when we are inside the circle and diagonally
to the left when we are on the exterior of the circle (Fig. 8.1).

]
8 8 8 Lot}
6 A 6 1 . -
Rl

4 4 4
2 2 R_‘ 2 \

8 10 12 8 10 12 8 10 12

n=125 n= 128 n =145

Fig. 8.3. How to find all solutions 0 < y < x of the equation x* + y* = n

Translation into Pascal is easy; if we want to speed it up, we can replace
the first loop which calculates [ﬁ] by a dichotomous search.

x:=0; y==0;
while x+)x(x+1)<ndox:=x+1:
repeat

A=xxx+y*xy—n;

if A = 0 then writeln(x,y) ;
if A>0Othenx:=x—1;
yi=y+1

until x <y

Exercise 11

Show that this algorithm is correct.

8.13. Sums of Four Squares

Theorem 8.13.1 (Lagrange). Every integer n > 0 is a sum of four squares.

Proof. Let U,V be two quaternions. The identity |UV|?> = |U|* - |V|? can be
written:

@+ 0+ +d)(x* +y? + 2% +17)
= (ax + by + cz +dt)> + (ay — bx — ct + dz)? (8.50)
+(az + bt —cx —dy)® + (at — bz + cy — dx)>.

O

Thus the product of two sums of squares is again a sum of squares and we
are reduced to proving the theorem in the case when n = p is a prime. The
cases p = 2 and p = 4¢ 4+ 1 have already been settled, so we can suppose
that p = 4€ 4 3. We first show (Lemma8.13.1) that kp is a sum of four
squares when k is sufficiently large. We then improve this result by showing
(Lemma 8.13.2) that the smallest value of k is 1.

Lemma 8.13.1. Let p = 4¢ + 3 be a prime number. Then the equation x* +
y? + 2> = 0 has a solution (x,y,z) # (0,0,0) in Z,. In other words, there
exists k > 1 for which kp is a sum of three squares.

Proof. We show that the equation x2 + y? + z?> = 0 admits a solution of the
form (x, y, 1). Let d € [2, p — 1] be the smallest integer which is not a

square, so that d?~"/2 = g?*! = —|. Euler’s theorem tells us that —d is then
a square since (—d)?*' = . Thus the equations y> = —d and x> = d — |
each have a solution since d — 1 is a square.]

Lemma 8.13.2. Let p = 4¢ + 3 be a prime number and k > 1 the smallest
integer such that kp is a sum of four squares. Then k = 1.

Proof. The first lemma guarantees the existence of an integer k& such that
x2 4+ y* + 22+ 1> = kp. Choose x, y,z,t > 0 with k > 1 a minimum. The
identity (p — x)? = p? — 2px + x? allows us to write

lk+p—2xlp=(p—x)+y +2+1~

Since k is minimal, we must have kK + p — 2x > k. Thus, 0 < x < %p, where
the inequality is strict because p is odd. Since this bound also holds for the
numbers y, z, t, we have

kp < 4(%p)2, ie. k< p. (8.51)

Suppose that k > 1:

« If k is even, the possibilities for x, y, z, ¢ are as follows: all are even; two
are even, two are odd; all are odd. By relabelling if necessary, we may assume
that x =y mod 2 and z =t mod 2. We find that

o =[S+ I + e =] + e+ o] + [Fe - 0],
which is absurd.

o If k is odd, let £ = x mod k be the remainder after centered division of x
by k, which ensures that |&| < %k. Similarly, we associate the remainders 7,

¢, T to the numbers y, z, t. The congruence £2 +n* +¢2+1>=0 (mod k)
can be written as

kE=€*4+n+¢*+1> with 0<¢ <k (8.52)

If £ =0, we have x = y = z =t = 0 mod & by (8.53). Upon putting
x = kx', etc., we obtain k(x? + y? + 7" + t'*) = p, which implies that k = p
because £ > 1. But this is forbidden by (8.52). If £ > 0, we use (8.53) and
(8.51) to deduce that:

(kp)(k€) = (x& + yn + 2L +17)* + (xn — y& — 2T +10)?
+(xf 4yt — 2 — 1) 4+ (xT — y{ + 20 —1£)2
These four squares are divisible by k2 since, modulo k, we have
xEtymtztr =84+ +2 412 =0,
xn—yE—zww+ig =€n—nE—¢r+1 =0, et
As a result, we obtain an equation of the form
kK pl = (kX)* + (kY)* + (kZ)* + (kT)?,

which leads to contradiction upon dividing by the term k2. m]

Exercise 12

Transform this proof into an algorithm.

8.14. Highly Composite Numbers

Suppose that we wish to store in a vector d[1..dim_max] all divisors of a
given number n > 1. Knowing only, say, that n < 200, what value should
we give dim_max ? If n = p{' --- p* is the decomposition of n into prime
factors, then our problem amounts to finding the maximum of the function

d(n) = number of divisors of n = (oty + 1) -+ (et, + 1) (8.53)

as n varies from 2 to 200.

....mu.\um.lu.\.m.l.hnl.nl.\m.Lm.hh..\I.th\.\m.lu.M.M.wl.\.ﬂh’.M.hwum\'.\||.\HH.L‘m‘uu.‘.hh.JJ.\h.l.lH.MH..hhh\ll..dt.‘.’

Fig. 8.4. The function d(n) for 2 < n < 200.

Imagine that the sticks in our diagram are soldiers which march to the left.
Only the soldiers which are taller than all those before them see where they
are going. Let us bring these “tall soldiers” to the fore.

max =0 ;
for n := 2 to 200 do begin
num_div =0 ;
ford .= 1tondo
if n mod d = 0 then num_div .= num_div + 1 ;
if num_div > max then begin
max ;= num_div ;
writeln('d(',n: 1,") ="', num_div : 1)
end
end

(8.54)

Running this code tells us that there are ten intermediate viewers (the “tall
soldiers”) obtained (Fig. 8.4) when n = 2,4, 6, 12, 24, 36, 48, 60, 120, 180. If
follows immediately from this calculation that the number of divisors of an
integer n < 200 is always less than or equal to d(180) = 18. When n runs
over a very long interval [2, N] the code (8.55) is not very fast. In fact, let
us estimate the time spent in the two loops.

forn:=2to N do
ford =1 tondo
if n mod d = 0 then num_div := num_div + 1

Since the inner loop makes n divisions, the total time, neglecting additions,
is proportional to 2 +- - - + N, the constant of proportionality depending on the
speed with which the divisions are made. If we replace the sum by szxdx
which does not change the order of magnitude, we conclude that the time
required for the calculation is on the order of %NZ. When N = 2'5 = 32768,
we have 1N? = 2% ~ 5. 10%. If we are using a microcomputer of average
power (in 1995) which can do 1000 divisions a second, the calculation will
last at least 5 - 10° seconds, that is 139 hours ...

The notion of a highly composite integer, which was introduced by S. Rama-
nujan® leads to an elegant solution of this problem.

Definition 8.14.1. An integer n > 1 is called highly composite if d(n') < d(n)
for every integer n’ < n.

Proposition 8.14.1. If H is the largest highly composite integer less than or
equal to N, then the maximum number of divisors of an integer less than or
equal to N is d(H).

In fact, for all n € [[H, N]l, we must have d(n) < d(H); otherwise the
smallest integer n > H such that d(n) > d(H) would be a highly composite
integer, contradicting the definition of H.

8.14.1. Several properties of highly composite numbers

Let (p;)i>1 be a strictly increasing sequence of prime numbers. To the decom-
position
N:pﬁ'...ps’, lfll<<lrs

into prime factors, we associate the number

~

N=p‘|3""Pf!', B =p=>-=8, (8.55)

where the exponents §; are obtained from the «; by reordering them into a
decreasing sequence. For example:

N=3.72.13*.172.23° = N=3".7°.13".17%. 23%
Theorem 8.14.1 (Ramanujan). d(ﬁ) =d(N) and N < N.

Proof. The first equation follows from (8.55). To establish the inequality, note
that since (p“q”)/(p°q") = (p/q)"~", we have:

(u>v) and (p <q) = p“q" < p'q".
If we permute the ; to obtain the 8;, we decrease N:

B B !
pl_ll...p’_, Spﬁlp:t = N.

We wind up with the obvious inequality N < pil e pi 0
Corollary 8.14.1. A highly composite integer necessarily has the form
N =2%3% ... p%, G >a3> - >a, > 1. (8.56)

0

 S. Ramanujan, Highly Composite Numbers, Proc. London Math. Soc. XIV (1915),
pp. 347-409.

Recall that the integers in Pascal do not exceed 2'>. Knowing that
2:3-5-7-11-13<2<2.3-5-7-11-13-17,

we are going to try to find all highly composite integers whose greatest prime
divisor is less than or equal to 13. We begin by estimating the exponents in
the decomposition (8.56).

Theorem 8.14.2 (Ramanujan). Let N = 2°?3% ... p® be a highly composite
integer and P the prime number that follows p. For every prime q < p, the

following holds:
1 log P
[oeq)= =iogg]
log g log g

Proof. We first bound «, from below. We suppose here g < p; let x =
[log p/ logq] be such that ¢* < p < g**', and consider the integer:

, N
N = —g* < N.
p
We have d(N') < d(N) because N is highly composite and N’ < N. Elimi-
nating the common terms in the inequality d(N') < d(N), we obtain
(g +x + Da, < (g + D, + 1).

Upon expanding out and simplifying, we get x < o, + 1.
To bound ¢, from above, we put y = [log P/logq], which implies that
g¢* <P <qg*'. If ¢y > y+ 1, we can consider the integer

N
P < N.
qv+l

As before, we have d(N') < d(N, which can be written

N =

20, —y) <o, +1 = a, <2y + 1. 0

Remarks

1) This theorem shows that there are only a finite number of highly com-
posite integers whose greatest prime divisor is p.

2) For p =3,5,7, 11, 13, the theorem above gives the following ranges for
the o;:

14 o) o3 s o7 o o3
3 1..41..2

5 2.4 1..2 1..2

7 2..6 1..4 1..2 1..2

11 3..6 2..4 1..2 1..2 1..2

13 3..82..41..21..21..21..2

We see from this table that the highly composite integers whose greatest
prime is 13 is not accessible using the integers in Pascal because 2*-3-5-7 -
1-13 = 120120 > 2'5. When the greatest divisor is 11, we must eliminate
the integers 2% - - - 11%"" where a; > 4 because 2%-3%2.5.7- 11 = 55440 > 2.

3) Ramanujan was able to show that the last exponent of (8.56) is

a, =1 when N #4or N #36.

8.14.2. Practical investigation of highly composite integers
Thanks to (8.57), we know that highly composite integers are hidden among
the integers of the form

ayqa o,
N=223‘...pl, 05220(32”‘201,721~

To decide if N is highly composite, we need only verify that d(M) < d(N)
for all integers M < N. Moreover, Theorem 8.15.1 allows us to restrict our
tests to integers of the form:

M=2230...qh By>By>-->B,>1 M<N. (8.57)

To bound B, from above, we putl\~/1 =rfW.ThenrW >2.3.5..... q shows
that

rﬂ’<L (8.58)
2-3-5-----gq)

Proposition 8.14.2. The integer N = 2%23% ... p® is highly composite if and
only if d(M) < d(N) for all integers M sattsfymg (8.57) and (8.58).

Example

Is the integer N = 50,360 = 2% - 3* . 5.7 highly composite? Since
2-3.5-7-11-13<N<2-3.5-7-11-13-17,

we must perform the test d(/Vl) < d(N) for all integers M < N of the form

(i) 2%,
(i) 27234,
(iii) 272 3% 565
(iv) 282 3% 565 767,
(v) 28:3A 5870 110,
(vi) 2P 3% 58578 1P 1380,
where the §; are a decreasing sequence whose size is controlled by (8.59).

A computer capable of handling long integers gives the response in a few
seconds: N = 50,360 is highly composite.

We make a note of this result: an integer less than or equal to 50,360
possesses at most

d2*-3*.5.7)=5-5.2-2 =100 divisors.

Exercise 13

Find all Pascal integers which are highly composite.

8.15. Permutations: Johnson’s’ Algorithm

How can one list all n! permutations of the integers 1,2,...,n ? The fol-
lowing algorithm, due to Johnson in 1963, uses integers decorated with a
“weathervane” such as:
e R e R e
1 35 7 6 4 2.
One says that a integer with a weathervane is mobile it it can “see” a smaller
integer or if it “looks outside” (that is, if it sees no one). In our example, the
integers 3, 5, 7, 4 are mobile and 1, 6, 2 are not.

Johnson’s algorithm proceeds as follows:

(i) Start with the permuation 1 , 2 ,..., n .

(ii) Look for the largest mobile integer. If there is not one, the algorithm
terminates; otherwise, let m be the largest mobile integer and v the integer
seen by m.

(iii) Interchange m and v without changing their weathervanes.

(iv) Change the direction of the weathervanes on all integers k > m and return
to (ii).

Example

Let us see what this gives when n = 3. The first three permutations are in
the table on the left: in the first two, the largest mobile integer is 3, which
explains why it moves from right to left; no weathervane changes direction
when 3 moves because there is no integer greater than 3.

“«— «— «— — «— «—
1 2 3 3 2 1
«— «— «— «— — «—
1 3 2 2 3 1
«— «— «— «— «— —
3 1 2 2 1 3

In the third permﬁa[ion,(@e largest (and only) mobile integer is m = 2. We
first interchange 1 and 2 (without modifying their weathervanes); we then

change the direction of the weathervane which decorates 3 since 3 > m. The
effect of this operation is to unblock the number 3, allowing it to move to the
right. The algorithm stops when no mobile integer remains and we do indeed
obtain the 6 = 3! permutations of 1, 2, 3.

Exercise 14

When n = 4 (Fig. 8.5), one finds that the number 4 zigzags across four line
blocks. When one takes 4 out of the six blocks of four lines, one is left with
the permutations made by Johnson’s algorithm when n = 3.

Fig. 8.5. Johnson's algorithm when n = 4

Show that this behavior is general. In more modern terms, Johnson’s algo-
rithm is fractal, which is to say that it contains different scales.

Exercise 15

Let £k € [1, n!] be the number of the permutation s in Johnson’s algorithm.
Knowing that the permutations decompose into blocks of n permutations,
let B; be the block containing s and i € [1, n]] the row on which s occurs.

n n

B; B; (j odd) B; (j even)
Sincek—1=n(j—1)+i—1and 0 <i — 1 < n, we conclude that

j=l+Gk—-=1)divn, i=1+((k—1) mod n.

If j is odd, we know that the place p of n in the permutation is p = n—i+1; if

J is even, the place of n in s is p = i. Call §s the permutation of 1,...,n—1
obtained from s by suppressing the integer n. We know that 8s is the j-th
Johnson permutation of 1, ..., n— 1, which allows us to put the element n — 1
into s, etc.

n=7 k=194 j=285 i=6 p=2 o7 oo oo
n=6 k=285 Jj =48 i=3 p=3 o7 e6 e o
n=5 k=48 Jj=10 i=3 p=3 e7 65 ..
n=4 k=10 j=3 i=2 p=3 e7e654.

n=3 k=3 j=1 i=3 p=1 37.654.
n=2 k=1 j=1 i=1 p=2 37.6542
n=1 k=1 j=1 i=1 p=1 3716542

Fig. 8.6. Reconstitution of the permutation s € &; whose number in Johnson’s algo-
rithm is k = 1994. The number p denotes the place of n in the permutation s.

Write a Pascal program which lists the n! permutations of 1, ..., n using
this algorithm.

8.15.1. The program Johnson
The types

In order to teach a computer what a weathervane integer is, one thinks im-
mediately of the pair (integer, boolean). But one quickly changes one’s mind
when trying to specify the integer seen by k. Systematic tries establish the
superiority of the pairs (integer, vane) where vane = 1 symbolises the
weathervane (with the convention +1 if it points to the right and —1 if it
points to the left). After this delicate choice, another difficulty awaits us: how
can we express simply that an integer which looks outside is not mobile? In
order not to complicate the programming with distracting tests, we border'®
our permutation to the left and right with the integer n + 1 as, for example:

— > — —

52 1 4 305

(We do not need to endow n + 1 with a weathervane.) Now, an integer which
looks outside sees n + 1 and cannot be mobile. We now use an array whose
indices vary from O to 11 in order to be able to treat the cases n € [2, 10].

'0 Yes, this is a trick. But it is vital, which justifies it. We remark that mathematicians
often say that a method is a trick that occurs at least three times. We will use this
trick again in Chapter 12

type integer_vane = record num, vane : integer end ;
permutation = array[0..11] of integer_vane ;
var s : permutation ;

With these declarations, s[k].num sees s[k + s[k].vane].num which is what
we want.

The main body of the program

The main body is a simple loop. The auxiliary variable counter will be used
by the procedure display to vertically separate blocks of » permutations.

begin

message ;

counter := 0 ; finish := false ;
initialize(s, n) ;

repeat

display(s, counter) ;

next(s, finish)

until finish

end .

The procedure display

The permutations are displayed in blocks of n, which allows one to inspect
the movement of the integer n across successive blocks.

procedure display(s : permutation ; var counter : integer) ;
var i : integer ;
begin
for i := | to n do write(s[i].num :5) ;
writeln ;
counter := counter + 1 ;
if counter mod n = 0 then writeln
end ;

The procedure initialize

As mentioned above, we border the permutation by the integer n 4 1 (there is
no reason to define weathervanes at s[0] and s[n + 1]).

procedure initialize(var s : permutation ; var n: integer) ;
var i : integer ;
begin
repeat write('n ="') ; readin(n) until (n > 2) and (n < 10) ;
s[0l.num :=n+1; sln+ 1lnum:=n+1;
fori:=1tondo
with s[i] do begin num :=i; vane := —1 end
end ;

The procedure next

This procedure determines the next permutation (when it exists). When there is
a next permutation, the boolean variable finish remains false and s contains the
following permutation; otherwise, finish remains true and s does not represent
anything.

procedure next(var s : permutation ; var finish : boolean) ;
var place_bm, value_bm, i : integer ;
begin

biggest_mobile(s, place_bm, value_bm, finish) ;

if not finish then begin
move_biggest_mobile(place_bm, s) ;
the_wind_turns(value_bm, s)

end
end ;

Here is a rather subtle error: the fragment of code that follows is false
because information in it circulates badly.

if not finish then begin
move_biggest_mobile(place_bm, s) ;
the_wind_turns(place_bm, s) < erroneous statement!
end

In effect, after move_biggest_mobile(place_bm, s), the biggest mobile is not
in place_bm!

The procedure biggest_mobile

A sweep allows one to find the placement and value of the biggest mobile
integer. The procedure gives the boolean finish the value false when it does
not find a mobile integer.

procedure biggest_mobile(s : permutation ;
var place_bm, value_bm : integer ; var finish : boolean)

var i : integer ;

begin

finish == true ; value_bm =0 ;

for i := | to n do with s[i] do

if (num > s(i 4+ vane].num) and (num > value_bm) then begin

| place_bm = i ; value_bm := num ; finish := false

end
end ;

The procedure move_biggest_mobile

This procedure exchanges the mobile integer which is leaving with the integer
that is arriving which it sees. It does not change the weathervanes.

procedure move_biggest_mobile(leaving : integer ; var s : permutatior
var temp : integer_vane ; arriving : integer ;
begin
arriving := leaving + sl[leaving].vane ;
temp := slarriving] ;
slarriving) := s[leaving] ;
slleaving] := temp
end ;

Here is a vicious pitfall which causes many programmers to stumble. Can
you explain why the following fragment of code is false?

temp := departing ;
sldeparting] := sldeparting] + sldeparting].vane ;
sldeparting + s[departing].vane) := temp

The procedure the_wind_turns

This procedure changes the direction of the weathervanes on the integers which
are greater than m. To avoid useless work, we only examine an permutation
when we are certain that there is a weathervane that needs to be changed; that
is, when m < n.

procedure the_wind_turns(m : integer ; var s : permutation) ;
var i : integer

begin
ifm < nthen fori:= 1 ton do
with s[i] do if num > m then vane := —vane
end ;

8.16. The Count is Good

This section is inspired by a popular French TV game. Suppose that we are
given five integers ay, . .., as > 0 and goal. We want to obtain the integer goal
using a succession of operations on the q;, the operations being chosen from
among the four possible ones. The constraints are as follows.

« Each number a; must be used once and only once.
« The result of a subtraction must be greater than O; division must be defined
and without remainder.

Let us take, as an example, a; = 2, a; = 5, a3 = 7 and a4 = 10. A
succession of operations amounts to being given a parenthesized arithmetic

progression, the parentheses specifying the order of the operations. For exam-
ple:
(@2 + az)/ar) xas = ((5 +7)/2) * 10 = 60,

((ar+a3)+a)—as=(2+7)+5) — 10 =4,

(as/a)) + (a3 —a) = (10/2) +7-5=1.

On the other hand, we are not allowed to use the expressions
((a1/az) + a3) xas), ((a1 — az) +a3) + as)

because a;/a, is not an integer and because a; — a, is negative. To solve the
problem, we will use “brute force” and consider all possible expressions and
compare the values of those that are legal to goal. (We shall see in Chapter 12
that it is possible to proceed in a more intelligent manner.)

8.16.1. Syntactic trees

We can associate to an arithmetic expression a binary tree which describes
the order in which the calculations are made. Conversely, we can reconstruct
a totally parenthesized arithmetic expression from a syntactic tree.

(11 2 a3

az as

Fig. 8.7. Syntactic trees associated to ((a, + a3)/a,) x as and (a, x a;) — (a, + az).

Knowing this, we can break the search for all parenthesized arithmetic ex-
pressions into two subproblems:

« the search for all binary trees with four leaves;
o the search for all decorations of a binary tree with four leaves.

The leaves are the a;; the decoration is formed by the operators. It is easy
to sketch five binary trees with four leaves (see Fig. 8.4). But are there others?

A little theory will reassure us.

Definition 8.16.1. Let n > 1. The n-th Catalan number c, is defined to be the
number of binary trees with n leaves.

AN AN N /R /I

tree | tree 2 tree 3 tree 4 tree 5
tree; = ((@a 6, b)6, ¢) 03 d, tree; = (a 6, (b6, ¢)) 65 d,
trees = (a 0, b) 03 (c6, d), trees =a 65 ((b 6, ¢)6, d)),
trees =a 65 (b 6, (c 6, d)).

Fig. 8.8. The five binary trees with four leaves

Considering a leaf as a binary tree with one leaf, we have ¢, = 1. We also
have ¢c; = 1 and c3 = 2.

Theorem 8.16.1. For any n > 1,

1 n
Cp = CI1Cph- +C2C,,_2 + - +C,,_|C| = ﬁ(zn _ l).

Proof. Consider a binary tree with n > 2 leaves. The branch on the left of
the root is binary tree with p leaves (reduced eventually to one leaf) and that
on the right is a binary tree with ¢ = n — p leaves. To make a binary tree
with n > 2 leaves, it suffices to take a root and to attach two binary trees with
p and g leaves, which gives c,c, choices. One obtains all binary trees once
and only once by letting p vary from | to (n — 1). The explicit expression
using the binomial coefficient is proved by induction or with the aid of formal
series. O

The first few Catalan numbers are now ¢; = 1, ¢; = 1, ¢c3 = 2 and,
most importantly, ¢, = 5. We can estimate the total number of arithmetic
expressions: there are five binary trees with four leaves; to decorate a tree, we
need three operations and four leaves, which gives

5-4%. 4! = 7,680 arithmetic expressions.

The declarations and the main body of the program

We shall store ay, ..., a4 in an array.

type data = array(l..4] of integer ;
var a, data, goal : integer

begin

message ;

choose(a, goal) ;

| the_count_is_good(a, goal)
end .

The procedure the_count_is_good

To understand the following it is necessary to realise that a tree is only a
representation of a schema for calculation. We choose a tree which we “dec-
orate” with the operations op,, op,, op; and the leaves a,;, where s € G4
is a permutation. We then communicate these parameters to the procedure
calculate: if we obtain a legal arithmetic expression which possess a value,
we compare this value with goal and we display the result if they are equal.
Changing permutations is realised by the procedure next of Johnson’s program
with n = 4.

procedure the_count_is_good(a : data ; goal : integer) ;
const addition = 1 ; subtraction =2 ;

multiplication = 3 ; division = 4 ;

type {add here the type permutation (see Johnson)} ;
var tree, op,, op,, ops, value : integer ;

s : permutation ; finish, exist : boolean ;

begin
for tree =1 to 5 do
for op, := addition to division do

for op, = addition to division do

for op,; = addition to division do

for op, = addition to division do begin
permutation_identity(s) ; finish := false ;
repeat
calculate(value, exist, tree, op,, op,, ops, a, s) ;
if exist and (val = goal) then write(value, op,, op,, ops, a, s) ;
next(s, finish)

until finish

end

end ;

The procedure calculate

Since a tree is a little program, we have five programs to manage. In order
not to try the patience of the reader (and to leave something for him or her
to write), we only detail the case of the first tree. When an operation gives
an integer less than O or if a division has nonzero remainder, the procedure
partial_result informs us via the boolean exist: we know that there is no point
in pursuing such a case.

procedure calculate(var value : integer ; var exist : boolean ;
tree, op,, 0p,, Op : integer ; a:data ; s: permutation) ;
var i, temp,, temp — 2 : integer ; leaf : data ;

begin

for i := 1 to 4 do leaf[i] := al[s[i].num] ;

exist .= true ;

case tree of

l:

begin {calculate value = ((f, op, f,)op,f3)op;f, and exist}
partial_result(temp, exist, leaf(1], op,, leaf[2]) ;

if exist then partial_result(temp,, exist, temp,, op,, leaf[3]) ;

if exist then partial_result(value, exist, temp,, op-, leaf(4]) ;

end ;

2:

begin «calculate value = (f | op,(f, op, f3)) opsf4 and exist» end ;
3:

begin «calculate value = (| op, f,)op;(f; op,fs) and exist» end ;
4

begin «calculate value = f| op; ((f, op,f3) op,f4)) and exist» end ;
5:

begin «calculate value = f| op; (f, op, (fz0p,f4)) and exist» end ;
end ; {case}

end ;

The procedure partial_result

We know the operands and the operation. We examine the four cases of pos-
sible figures and signal incorrect partial results (subtraction giving a number
less than O or division that leaves a nonzero remainder) Recall that the boolean
exist has been initialized to true in the procedure calculate.

procedure partial_result(var temp : integer

var exist : boolean ; a,op,b : integer) ;

var temp : integer ;

begin
case op of
addition : temp :==a+ b ;
substraction : if a > b then temp := a — b else exist := false ;
multiplication : temp := a * b ;
division : if a mod b = 0 then temp := a div b else exist := false ;
end ; {case}

end ;

The procedure display

We do not attempt to sketch a tree on our screen; we content ourselves with
displaying the corresponding arithmetical expression. For this it suffices to
consider each tree.

procedure display(value, tree, op,, op,, ops : integer ;
a:data; s:permutation)
var i : integer ; leaf : data ;

begin
for i := 1 to 4 do leafi] := a[s[i].num] ;
write('value = ") ;

case tree of

1 : writeln('((', leafl1] : 1, oplop,), leaf[2] : 1,")’,
op(op,), leaf(3]1: 1,"), oplops, leaf[4] : 1) ;
2.,
3:...
4:...;
5:...;
end {case}
end ;

The function op converts the integer op; into the corresponding character:

function op(operation : integer) : char ;
begin
case operation of
addition : op :="4";
subtraction : op :="—"
multiplication : op :="%"
division : op :="/";
end ; {case}
end ;

Remark

The interest of this program resides in the ideas that it puts into play. We note
in particular the distance that separates concepts from their translation; that is,
theory from code. We also remark that without theory we would not be able
to create and understand the code at all.

9. The Complex Numbers

9.1. The Gaussian Integers

Let Z[i] denote the set of complex numbers of the form x +iy with x,y € Z.
If we endow this set with addition and multiplication inherited from the com-
plex numbers, we obtain a ring. This ring is a commutative integral domain
and is called the ring of Gaussian integers in honor of their creator, Gauss,
who introduced them around 1830.

o If @ = x + iy belongs to Z[i], we set
N(@) = |a)* = x> + y*;

and call N («) the norm of «. (This is the norm in the sense that algebraists use
the word. It should not be confused with the modulus of a complex number.)
It is clear that the norm is multiplicative:

N(ap) = N(a) N(B).

o The units of Z[i] are the invertible Gaussian integers (that is, those
Gaussian integers ¢ such that there exists ¢’ satisfying e¢’ = 1). There are
four units 1, —1, i and —i. They are characterized by the condition

N() =1.

» We say that @ and B are associates if there exists a unit & such that
o = ¢ B. Thus, the associates of & = x + iy are the four complex numbers

a=x+iy, ia=—-y+ix, —a=—x—1Iy, —ila=y—ix
obtained by successive rotations of @ about O through angle %yr.

« Finally, one says that w # 0 1is irreducible if it is not a unit and if it cannot
be written as a product of two nontrivial factors. That is, if

(w =aB) = (x or B is a unit).

9.1.1. Euclidean division

Theorem 9.1.1. Let a and B # 0 be Gaussian integers. There exists at least
one pair (x, p) of Gaussian integers satisfying the conditions:

a=Bx+p and N(p) < N(B).

Proof. Among the points on the plane with integer coordinates, let x be as

X =X +iy

close as possible to the complex number «/8, so that:
Ix —a/Bl < 32
Clearing the denominator and removing the square, we obtain

N(x — xB) < AN(B).

It follows that p = o — x B satisfies the condition N(p) < N(B). m]

Remarks

 The pair (x, p) is not unique. Each Gaussian integer x sufficiently close
to a/B gives a solution. There up to four possible values for y when the real
and imaginary parts of «/f are of the form n + %

« The existence of Euclidean division allows us to carry over to Z[i] the the-
ory of the GCD, Bézout’s theorem, the algorithms of Euclid and Blankinship,
the existence and uniquenesss of the decomposition into irreducible factors.
The same proofs hold with ordinary integers replaced by Gaussian integers.
Algebraists express this by saying that the Gaussian integers are a Euclidean
ring, hence factorial.

9.1.2. Irreducibles

Recall (see Chapters 2 and 8) that every prime number of the form 4n+ 1, and
no integer of the form 4n+3, is a sum of two squares. Moreover, if p is an odd
prime, the equation x> + 1 = 0 has a root in Z, if and only if p = 1 (mod 4)
and has no root if p =3 (mod 4).

Theorem 9.1.2. A Gaussian integer is irreducible if and only if one of its
associates belongs to the following list:

() 1+1;
(ii) a + bi, where a* + b? is a prime of the form 4n + 1;
(iii) p, where p is a prime number of the form 4n + 3.

Proof. We begin by showing that the three lists in the statement are made up
of irreducibles.

o Gaussian integers of type (i) or (ii) are irreducible. To see this, it suffices
to prove the implication:

N(w) a prime number in Z = w irreducible in Z[i].

In effect, w = af implies that N(w) = N(a)N(B). If N(w) is a prime number,
then N(@) =1 or N(B) = 1; that is, « = ¢ or 8 = ¢.

o The Gaussian integers of type (iii) are irreducible. Let p = 4n + 3 be
a prime number in Z. If p were not irreducible in Z[i], then p = «f with
N(x) > 1 and N(B) > 1. Taking norms gives p2 = N(x¢)N(B). Since p is
prime, we must have p = N(a) = N(B8). But this is impossible since N (o)
is a sum of two squares and p =3 (mod 4).

Now we show that an associate of an irreducible w = x 4 iy belongs to one
of the lists (i), (ii) or (iii).

o If N(w) is prime, we necessarily have N(w) = 2 with w of type (i) or
N(w) =1 (mod 4) since N(w) is a sum of two squares, which proves that w
is of form (ii).

o If N(w) is not a prime number, we write N (w) = p; - - - px with p; primes
and k > 2. Since w is irreducible, w divides one of the p;; that is p; = aw.
Taking norms gives

pl = N@)N(@w) = N(w) = p} and N(a) = 1

which proves that w and p; are associates. The cases p; = 2 and p; = 1 (mod 4)
are ruled out because p; is not irreducible. Thus p; = 3 (mod 4) and w belongs
to the list (iit). O

Remarks

« This theorem shows that it is very important to distinguish between the
prime numbers in Z and the irreducible Gaussian integers since a prime number
is not necessarily an irreducible Gaussian integer.

o We insist on the following. By definition, the units ¢ = +1 and ¢ = +i
are not irreducible!

« Irreducibles of type (ii) are £2 +i and &142i since 5 = 22+ 12. Another
easily remembered example is 5 + 42i because 1789 = 5% + 422 is a prime
number of the form 4n + 1.

« Irreducibles of type (iii) are 3, 7, 11, 19, 23, 31, etc.
o The norm of an irreducible belongs to a very particular class of integers:

it is either a prime number or a square of a prime number. This remark will
be very useful in what follows.

Corollary 9.1.1. Let p be a prime number of the form 4n+ 1 and (a, b) € Z*
a particular solution of the equation p = x* + y*. Then all solutions of this
equation are (xa, £b) and (£b, *a).

Proof. We write p = (a + ib)(a — ib) = (x +iy)(x —iy). Since a £ ib and
x £ iy are irreducibles of type (ii), the uniqueness of the decomposition of p
into irreducible factors implies x + iy = e(a +ib) or x + iy = e(a —ib). DO

Choice of representatives for irreducibles

In the decomposition into irreducible factors, we can replace w by one of its
associates and write, for example,

o =www = (—w)(iw)(—iws).

Is there a reasonable way to choose a representative from among the four
associates w, iw, —w, —iw of w to normalize decompositions into irreducible
factors?

Since the i* @ can be obtained from w by successive rotations through angle
%n centered at the origin, a natural first thought is to choose the irreducibles
in the first quadrant as representatives. This is not a good idea, however. To
see why, consider the decomposition of 5 into irreducible factors:

5=Q+i)2—1). 9.1

To get 2 — i into the first quadrant, we must rotate by %n; that is, multiply
by i. The decomposition is then

5=—i2+)+ 2i). 9.2)

The decomposition (9.2) is much less natural than (9.1) because it is not at
all evident at first glance that —i(2 + i)(1 + 2i) is a real number.

For this reason, we adopt the following conventions:
» The irreducibles of type (i) are represented by 1 + i.

« The irreducibles of type (ii) or (iii) are represented by irreducibles w =
x + iy situated in the part of the half-plane x > O between the two quadrant
bisectors; that is, by those that satisfy the condition 0 < |y| < x.

Let p = a®+b? be the unique decomposition of the prime number p = 4n+1
satisfying the condition 0 < b < a. The Gaussian integers a+ib and a—ib are
not associates because they make an angle < %n with the origin. It follows
from this remark that the eight solutions of the equation p = x? + y? are
associates of a +ib.

Here are some decompositions into irreducible factors:

105 =32+)2 -7,
1789 = (42 + 5i)(42 — 5i),

1457i =i(1 +i)@2—i)*(3+2i),
1458 =i(24i)(23 - 12i),
1459 = (1 +i)(30 + 29i),

14+60i =i(3—2i)(14 4 9i),

74150 = (1 +i)(11 +4i),

15445 = (1+§)3Q+i)*Q—1i),
31463 = (1 +i)Q2 4@+)5 = 2i),
101 +47i = (1+i)2—i)(4 —i)(8+3i).

An algorithm for decomposition into irreducible factors

If we try to recognize a person whom we know only by his or her shadow
on a wall, the results will be uncertain. On the contrary, if we know that we
have to choose between Laurel and Hardy, it will be easy! By the shadow'
of an irreducible Gaussian integer w, we mean the unique prime number that
divides the norm of w.

« If the shadow of w is 2, we know that w is an assotiate of 1 + i.

o If the shadow of w is equal to p = 1 mod 4 and if (a,b) is the unique
solution of the equation p = a? + b? such that a > b > 0, we know that w is
an associate of a + bi or of a — bi.

« If the shadow of w is equal to p = 3 mod 4, then w is an associate of p.

Consider now a Gaussian integer « = a + bi with norm greater than 1.
Let @ = ew - - - w, be its decomposition in irreducible factors, the w; being
situated between the two quadrant bisectors (this explains the presence of the
unit ¢). Consider the norm of «:

N(a) = N(w;) - -+ N(wp).

We know that the shadows of the w, are the prime divisors of the norm of «
and that each prime divisor of N () is a shadow of an w;. We can sketch an
algorithm as follows:

» decompose N (o) into prime factors;
« reconstruct the irreducible divisors of a from their shadows.

' This is not at all classical terminology.

This sketch is not entirely satisfactory because it requires that one store the
prime factors of N («) in advance. We are going to work more dynamically
(by “surfing” once more on the wave of calculations) and recycle the algorithm
for decomposition into prime factors in Chapter 4.

Example
Decompose ¢y = 3 + 21i into irreducible factors.
o The norm of «p is 450. Since this is divisible by 2, we know that «p is
divisible by w; = 1 + i, an irreducible of type (i) :
aw=3+2li =+

e The norm of o) = ay/w; = 12 + 9i is 225. Since this is divisible by 3,
we know that «; is divisible by w, = 3, an irreducible of type (iii) :

3+21i=(14+i)3)a,.

e The norm of a; = o) /w; = 4 + 3i is 25. Since this is divisible by 5,
we know that o, is divisible either by 2 4+ i or 2 — i, the only irreducibles
of type (ii) of norm 5 situated between the quadrant bisectors. One try shows
that o, is divisible by w3 =2 —i:

3421i = (1 +i)(3)Q2 — i)as.

e The norm of a3 = > /w3 = 1 + 2i is 5, which shows that ¢ is divisible
by 2+ or 2 —i. Computation shows that a3/(2 + i) does not belong to Z[i].
We conclude that o5 is necessary divisible by wy =2 — i :

3421 = (1 +i)(3)Q2 —i)%.
Here, then, is our algorithm

ap = o Gaussian integer of norm > 1,
p, = smallest divisor > 1 of N(«ay),
w, = irreducible divisor of « with shadow p,,

o) = ap/w,

p. = smallest divisor > 1 of N(a,-),
w, = irreducible divisor of «,_; with shadow p,,
oy = an—l/wnv

stop when ¢, is unit.

The translation into code is immediate:

o = given Gaussian integer of norm > 1 ;
repeat

p = LD(norm(a)) ;

w = irreducible divisor of a with shadow p ;
o:=uo/w,;

until norm(a) = 1

9.1.3. The program

We are going to use a record to store a Gaussian integer.

type Gaussian_integer = record re, im : integer end ;
var « : Gaussian_integer ;

Consequently, o.re and a.im denote the real and imaginary parts of c.

The body of the program

Our program asks repeatedly for Gaussian integers and does not stop until we
offer it a Gaussian integer equal to zero or a unit.

begin
message ;
Sfinish := false ;
repeat
writeln ; choose(c) ;
if norm(a) > 1 then factor(a) else finish := true
until finish
end .

The procedure choose and the function norm

These are the “mindless” parts of the program that one types in directly without
preliminary reflection.

procedure choose(var « : Gaussian_integer)
begin
write('real part =") ; readln(a.re) ;
write('imaginary part =") ; readln(a.im) ;
end ;

function norm(f : Gaussian_integer) : integer ;
begin

| norm = B.re x B.re + B.im x B.im

end ;

The procedure factor

This procedure implements the algorithm that we have developed. To check the
calculations, we accumulate in the variable prod the product of the irreducible
factors and units. When the factorization terminates this variable must be equal
to the initial value of «.

procedure factor(a : Gaussian_integer) ;
var p : integer ; w, prod : Gaussian_integer

begin

prod.re = 1; prod.im =0 ; {prod = 1}

repeat
p = LD(norm(a)) ; {p is the shadow of w}
reconstruct_irreducible_divisor(w, p, @) ;
display(w) ;
mult_Gaussian_integer(prod, w, prod) ; {prod := w * prod}
divide_Gaussian_integer(a, a, o) ; (o = a/w)}

until norm(a) =1 ;

display(@) ; {now « is a unit}
mult_Gaussian_integer(prod, o, prod) ; {prod = a * prod}
write('verification =") ; display(prod) {one must recover o}

end ;

The procedure reconstruct_irreducible_divisor
This procedure reconstructs the irreducible divisor w from its shadow p.

e The cases p =2 and p = 3 mod 4 are trivial.

e When p = N(w) = | mod 4, we decompose p as a sum of two squares
p=ux>+y* withO < y < x so that @ = x + iy or w = x —iy. To know if «
is divisible by w = x + iy, we see if the complex number
o (a + bi)(x —iy) _ax + by +i(bx —ay)

w ww p

is a Gaussian integer. If not, we know that w = x — iy is the desired divisor.
To simplify the tests, we note from the identity

y(ax + by) + x(bx — ay) = b(x* + y*) = bp
that ax + by are bx — ay are simultaneously divisible or not divisible by p.

procedure reconstruct_irreducible_divisor
(var w : Gaussian_integer ; p : integer ;
o : Gaussian_integer) |
var x, y : integer ;
begin
| case p mod 4 of

1 : begin
decompose_sum_squares(p, X, y) ;

w.re ;==X ;
if (.re xx + a.im*xy) mod p =0 then w.im :=y else w.im := —Yy;
end ;

2: beginw.re:=1; w.im:=1 end ;
3: beginw.re:=p; w.im:=0 end ;
end {case}

end ;

The procedure decompose_sum_squares

Since p is a prime number of the form 4n + 1, we seek the unique solution
to the equation p = x? + y? satisfying the condition 0 < y < x. We use brute
force (two more sophisticated algorithms are written in Chapter 8).

x:=1;
repeat
x=x+1;y:=0;
repeat y ;= y + | until (y > x) or (x* + y* = p)
until x> +y? =p
But using brute force does not mean that we have to abandon our intelli-
gence: we can usefully amuse ourselves by speeding up the code using the
auxiliary variables square_x, square_y and A = p — x°.

procedure decompose_sum_squares(p : integer ; var X,y : integer) ;
var square_x, square_y, A : integer
begin
x=1; square_x =1

repeat

square_x = square x+x+x+1; x:=x+1;
A = p — square_x ,

y:=0; square_y :=0;

repeat

| square_y = square_y +y+y+1; y:=y+1
until (y > x) or (square_y = A) ;

until square_y = A
end ;

The procedure display

Notice the effort directed at presentation.
procedure display(w : Gaussian_integer) ;
begin
| write('(") :

if w.re # 0 then write(w.re : 1," ") ;
if w.im = 1 then write('+ i) else

if w.im = —1 then write('— i') else
if w.im > 0 then write(+ ', w.im : 1,'i’) else
if w.im < 0 then write(— ', —w.im : 1,'i") ;
write(')")
end ;

The procedures mult_Gaussian_integer and divide_Gaussian_integer

procedure mult_Gaussian_integer(var y : Gaussian_integer ;
o, B : Gaussian_integer) ;
begin {returns y = a - B}
y.re .= a.re x B.re — a.im x B.im
y.am = a.im * B.re + a.re x B.im
end ;

procedure divide_Gaussian_integer(var y : Gaussian_integer ;
o, B : Gaussian_integer) ;

var N : integer ;
begin {returns y = a/B}

N := norm(B) ;

y.re .= (a.re x B.re + «.im x B.im) div N ;

y.im = (a.im x B.re — a.re x B.im) div N
end ;

Exercise 1

Implement Euclid’s and Blankinship’s algorithms in Z[i]. (Recall that this is
possible because Z[i], like Z, is a principal domain.)

9.2. Bases of Numeration in the Gaussian Integers

Is it possible to generalize the numeration system for ordinary integers with
respect to a given base b > 1 to the Gaussian integers? What conditions should
B = a + bi satisfy in order to define a base of numeration? How should one
choose the digits relative to this base?

9.2.1. The modulo beta map

Suppose that 8 = a + bi has norm > 1. Given & € Z[i], we have seen that
there exists a pair (x, p) satisfying the conditions

§=Bx+p. N(p)<N(B). (9.3)

Because (x, p) is not necessarily unique, one cannot speak of a map & —
& mod B in Z[i] without taking precautions. If we reflect a moment, however,
we realize that this phenomenon is not new: we know at least two maps
“modulo 4” in Z, depending on whether we consider remainders between 0
and b — 1 or centered remainders.

Definition 9.2.1. We say that two Gaussian integers ¢ and are congruent
modulo B if ¢ — ¥ is divisible by B. We say that a set £ of Gaussian integers
in an exact system of representatives modulo B if for each integer &, there
exists a unique pair (x, p) € Z[i] x X such that £ = Bx + p.

Any time that we have such a system, each Gaussian integer is congruent
mod B to an element of ¥ and only one such. We obtain a map “mod 8”:
Z[i] — X which associates to each & € Z[i] the unique p € X to which it is
congruent. Therefore, once we have a system X, we have a map “mod 8 .

The absence of uniqueness actually did us a favor by requiring us to deepen
the question. (One often thinks that it is the absence of a unique remainder
upon division which forbids speaking of the map “modulo”.)

Example

Choose B8 = 2 + i. Euclidean division (9.3) shows that £ is always congruent
to a Gaussian integer p of norm N(p) < N(B8) = 5. The open disk x2+y? < 5
contains the numbers:

+2i, £1+i, +i, 0, £1, £2.

Knowing that 2 +i=1-2i=—-1+4+2i=-2—-i =0 (mod 2 + i), we see
that among the preceding integers, we only have the congruences:

20=—-1—-i=1, —-14+i=—-i=2,

“2i=1+4+i=-1, l—i=i=-2

As aresult, ¥ = {0, 1, 1 =, 2} is an exact system of representatives mod S.

9.2.2. How to find an exact system of representatives

Euclidean division (9.3) already shows that an exact system of representatives
X is finite. We specify the cardinality of such sets.

Lemma 9.2.1. Let ¢ : 7} — 7* be a group homomorphism. If ¢ is injective,
then 7% |@(Z?) is a finite group of cardinality | det g|.

Proof. Let A be the matrix of ¢ in the canonical basis. One knows (see the
Smith reduction, Exercise 2, Chap. 11) that there exist unimodular matrices E
and F such that EAF = diag(d,, d;). In other words, Zz/go(Zz) is isomorphic
to Z/d\Z @ Z/d,Z, which shows that its cardinality is d,d,. Since det E = £1
and det F = £1, we have detgp = det A = +d,d>.

Corollary 9.2.1. An exact system of representatives ¥ modulo B = a + ib is
a finite set of cardinality N(B) = a* + b.

Proof. 1t suffices to apply the lemma to the injective linear map ¢ : & — B&

whose matrix in the canonical basis is A = (; _f)

Remark

There is no reason to expect that a set ¥ of cardinality N(8) = a® + b®
should be an exact system of representatives, because nothing forbids two
elements of X from being congruent modulo 8. We should be wary of doubtful
generalizations: for example, the interval [0, N(8) — 1] C N is not in general
an exact system. In effect, if we choose 8 = 2 + 2i, then x + iy = x' + iy’
mod B implies that x = x" and y = y mod 2: as a result, 1 4+ is not congruent
to any element of X.

Proposition 9.2.1. For an interval £ = [0, N(B8) — 1] to be an exact system
of representatives of classes modulo B = a + bi, it is necessary and sufficient
that GCD(a, b) = 1.

Proof. The counter-example we gave for 8 = 2 + 2i generalizes and shows
that if GCD(a, b) > 1, there exist Gaussian integers which are not congruent
to any element of X.

Now suppose that a and b are relatively prime: let @« = x + iy be arbitrary
and try to find x = u + iv such that « — 8x = p € X. The condition
Im(p) = y—(av+bu) = 0 implies that u = uy+ka and v = vy—kb with k € Z
arbitrary and (uo, vo) a particular solution (which exists since GCD(a, b) = 1).
Consequently, Re(p) = x — (au — bv) = x — (auy — bvy) — k(a® + b*), which
shows that there exists a p, and only one such, in X. O

9.2.3. Numeration system in base beta

We return to our initial problem. Given a Gaussian integer £ € Z[i], do there
exist “digits” ¢; such that one has a unique expression

S =C()+C|B+"'+Cnﬂ" ? (94)
What digits should we choose? In what follows we shall see that it is natural
to take the digits to be ordinary integers:

ci € [0, N(B) —1]. 9.5)

Theorem 9.2.1 (1. Kdtai and Szabo, 1975). With the convention (9.5), a Gaussic
integer B = a + bi is a base of numeration if and only if it satisfies the con-
ditions

a<0and b==l.

Proof. Suppose first that 8 is a base of numeration and write 1 4 ¢ in this
base:

l+i=co+ciB+-+c,B". 9.6)
This expression contains valuable information. In effect, because the imaginary

part of ¢, + --- 4+ ¢,8" is a multiple of b, we have b = £1.

We cannot have a = 0, because 8 = +i cannot be a system of numeration
(uniqueness in (9.6) would not hold).

We show that we cannot have a > 0. We know that the interval ¥ =
[0, N(B) — 1] is an exact system of residues modulo 8, and this allows us
to talk of the map “ mod B”: Z[i] - X. We express the Gaussian integer

E=1—-B8=(1—a)+ibin the base §:
E=ctaf+--+ap', 0=ca<N(PB.
Multiplying this equality by 1 — 8 gives
(=B =co+(ci —co)B+-+(n—ca)B" =",

and we conclude that (1 — 8)§ = ¢y modulo 8.
On the other hand,

(I1-BE=0=-B8U=-B)=N(1-8)=(-a)+b.

The condition a > 0 implies that 0 < (I — a)? + b*> < N(B) from which it
follows that (I — B)& belongs to X. Since X is an exact system of represen-
tatives, the congruence (1 — B)& = ¢ is an equality (1 — 8)& = ¢y, which we
can again write as:

(Cl - C())ﬁ + te + (Cn - Cn—l)ﬂ" - Cn,B"+' = 0

Upon dividing by 8, we find that ¢o = ¢, mod B. Since ¢(and ¢ are two digits,
this implies that ¢, = ¢,. Beginning again, we obtain ¢o = ¢, = --- = ¢, and
finally ¢, = 0. That is, 8 = 1, which is impossible. 0O

The converse will be established in the next section.

9.2.4. An algorithm for expression in base beta

Lemma 9.2.2. Let B = —N +i, with N > 1, be such that £ = [0, N?] is an
exact system modulo B. Set & = x + iy. The remainder ¢ € £ upon division
of & by B is given by the formula:

¢ = (x+ Ny) mod (1 + N?). 9.7)

Proof. Separating real and imaginary parts in & = £'8 4 ¢, we obtain y =
x'— Ny and x = —Nx' — y' +c. Therefore x + Ny = —(1 + N3)y' +c. O

We will use this lemma to calculate the digits of & with respect to the base 8
in the usual way:

« to begin, we determine the smallest weight digit c¢p by dividing & =

by B (so & = &8 + co) ;
« we then determine ¢, by dividing & by B8 (let & = &8 + ¢)), etc.

Using sequences, our algorithm is:

=0; xo:=x; Yo:=Y; {6 = xo + iyy}
repeat {we suppose &, # 0}

ce = (x; + Ny,) mod (1 + N?);

Evpr = Ee—co)/B (&1 = Xew1 iy}
£:=0+1
until £, =0

Be careful! — here, we use the mathematician’s quotient and remainder (that
is,a =bg +r with 0 <r < b).
Examples

To save space we write & —> y instead of £ = x8 + c.

1) Choose B = —1 + i, i.e. N = 1. If we begin with & = —1, successive
divisions by 8 give:

S LI R L I LN RELIG LN}

Thus —1 = 11101 in the base 8 = —1 +i.

2) Choose B = —2+1i,i.e. N =2. Successive divisions of § = 4+6i by 8
give:

4460 —> —3i —> 142 —> — = 1+i —> 1 —5 0.
Thus 4 + 6i = 133041 in base B = —2 +i.
3) Choose 8 = =3+, i.e. N = 3. Divisions of £ = —59 4 72i by B give:
594+ 72i -5 27— 15i =5 =942 -5 5+i -5 1 -5 0.
Thus —59 + 72i = 18727 in base B = —3 + .
Proposition 9.2.2. The algorithm for expression in base B is correct.
Proof. If the algorithm terminates, it is clear that the ¢, are the sequence of

digits of £ in base 8. Thus, we only need to show that the algorithm terminates.
Consider the sequence of norms N (&,) = |&,|*:

o« when N =1 and £ = —1, the sequence is 1,2, 1, 1, I;

e when N =1 and £ =3 — i, the sequence is 10,5,5,2,1,2,1,1, 1;
e« when N =2 and & = —3 + i, the sequence is 10, 10,2,2, 1;

o« when N =2 and £ =4 + 6i, the sequence is 52,9, 5, 1,2, 1;

« when N =3 and & = 3 + 5i, the sequence is 34,5, 5, 1.

This behavior puts us on our way.

o If N(&) = |£,|? is strictly decreasing the algorithm terminates

o« If N(&) = |&,|? is not a strictly decreasing sequence, consider the small-
est r such that N(&,,,) > N(&,); that is, the first index at which the sequence
“rebounds”. To simplify, put & = x + iy, &+ = u +iv and ¢, = c. Passing
to norms, &, = &, 8 + ¢, gives:

x2+y*= (Nu+v—c)+ (Nv—u)
= (Nu+v)2+(Nv—u)2—2c(Nu+v)+c2
= (N2 + 1)(u? + v?) —2c(Nu + v) + 2.

Since u? + v? > x% + y2, we have
w4+ 02> (1+ N ? +v?) —2c(Nu + v) + ¢,

which can be written, after simplification and division by N? :
2

5) u v C c\2 c \2 Cc \2 0
vt=2(Gr)= (-g) +0-5m) - () =
In other words, u + vi belongs to the closed disk with radius c/N2 centered

at (¢/N,c/N?). Knowing that 0 < ¢ < N?, we get 0 < u < ¢/N + c¢/N? and
0 < v < 2¢/N?, which give:

O<u=<sN+1, O0=<v<2 (9.8)

We are going to show that the algorithm terminates after a finite number
of steps when u and v satisfy satisfy (9.8). Let u’, v’ be the new integers
produced by the algorithm from u and v (that is u + iv = (u’' + iv)8 + ¢
where ¢’ is the new digit), so that:

, [u+Nv

= 1+Nz]’ w=v+Nv.

If u+vN < N? we have v =0 and u' = v € [0, 2], and the algorithm
terminates because u’ + iv’ is a digit if N > 2. The condition u + vN < N?
is always satisfied when N > 4 because we can write:

u+Nv<(N+1)+2N <4N < N2

If N = 1,23 we have only a finite number of cases and the algorithm
terminates for all of them. O

Exercises 2

1) Write a Pascal program which displays a given Gaussian integer in base
B=—-N+i.

2) If you have mastered graphical output, display the set of Gaussian inte-
gers on the screen that have less than k digits.

9.3. Machin Formulas

For many years?, one calculated decimal places of 7 using formulas such as:

%n = 4 Arctan (é) — Arctan (%) (John Machin, 1706),
= Arctan (%) + Arctan (%) (Hutton, 1776),
= 2 Arctan (%) + Arctan (;) (Clausen, 1847),

1 1 |
= Arctan <§) + Arctan (g) + Arctan (§) (Dase, 1884).
In 1974 for example, several million decimal places of = were calculated using
the following formula (due to Gauss)
1 1 1 1

Zn = 12 Arctan (ﬁ) + 8 Arctan (5—7) — 5 Arctan (f)
and checked using Stormer’s formula (1896):

1 1 1 1

Z” = 6 Arctan <§) + 2 Arctan (57—) + Arctan <@>

If x > 0, then

| |
Arclg(—) = —m — Arctan(x) = 2 Arctan(1) — Arctan(x),
X 2

which allows us to rewrite the preceding formulas in a more natural way as
follows:

Arctan(3) = 3 Arctan(l) — Arctan(2) (Hutton),

Arctan(7) = Arctan(1) + 2 Arctan(2) (Clausen),

Arctan(8) = 5 Arctan(l) — 2 Arctan(2) — Arctan(5) (Dase),
Arctan(239) = —5 Arctan(1) + 4 Arctan(5) (Machin),

= 17 Arctan(1) — 6 Arctan(8) — 2 Arctan(57) (Stormer).

2 Nowadays, the search for decimals of 7 uses another strategy based on the Brent-
Salamin formula and its offspring which converge vertiginously fast.

Definition 9.3.1. A Machin formula is an equality of the form
Arctan(n) = c; Arctan(l) 4+ ¢, Arctan(2) + - - - 4+ ¢, Arctan(n — 1) (9.9)

where the c; are integers. An integer n is said to be decomposble if a formula
of type (9.9) holds for Arctan(n).

A Machin formula has an interesting geometric interpretation. Since Arctan(n)
is the argument of 1+in, formula (9.19) simply says that the complex numbers

1+in and M=+ +2)2-(1 4+ (n— 1))

have the same argument, or what is the same thing, that (1 + in)/I1 is a real
number.

Although Gauss had investigated Machin formulas, it wasn’t until the middle
of the XX-th century? that the situation was completely cleared up.

Theorem 9.3.1 (J. Todd, 1949). An integer n is decomposable (i.e. gives rise
to a Machin formula) if and only if it satisfies the following condition:

T) { every prime divisor of 1 +n? is also a divisor of
an integer of the form 1 +d* with | <d < n.

Thus, the first decomposable integers are 3, 7, 8, 13, 18, 21, 30, ... and the
corresponding Machin formulas are:

Arctan(3) = 3 Arctan(1) — Arctan(2),
Arctan(7) = — Arctan(1) + 2 Arctan(2),
Arctan(8) = 5 Arctan(1) — Arctan(2) — Arctan(5),
Arctan(13) = 5 Arctan(1) — Arctan(2) — Arctan(4),
Arctan(17) = Arctan(1) + 2 Arctan(2) — Arctan(12),
Arctan(18) = 3 Arctan(]l) — 2 Arctan(2) + Arctan(5),
Arctan(21) = 2 Arctan(l) + Arctan(4) — Arctan(5),
Arctan(30) = 7 Arctan(1) — Arctan(2) — Arctan(4) — Arctan(23).

Since criterion (T) is not very practical, we give an equivalent criterion
which is easier to use.

Theorem 9.3.2 (J. Todd, 1949). An integer n satisfies condition (T) if and
only if all prime divisors p of 1 + n? satisfy p < 2n.

Proof. Let p be a prime number that divides 1 +n? and 1+ d?. Since n and d
are two solutions of the equation x> + 1 = 0 in Z,, there exists an integer

} John Todd, A Problem on Arctangent Relations, American Math. Monthly 56 (1949),
pp- 517-528.

k € Z such that d = £n + kp. Now suppose that |d| < n and 2n < p. Then
lkp| = |d Fn| < |d| + |n| < 2n < p implies k = O; that is, d = £n, which
is absurd. Conversely, suppose that all odd prime divisors p of 1 + n? are
bounded by 2n. We divide n by p using centered remainders:

n=r (mod p), |r|l< %p.

Then p divides 1 + r2. Since |r| < %p < n, condition (T) is satisfied.

9.3.1. Uniqueness of a Machin formula

Before explaining Todd’s work, we ask whether a decomposable integer n can
occur in several Machin formulas (9.9) The answer is yes as the following
example shows:

Arctan(342) = — Arctan(1) + 2 Arctan(2) — Arctan(5)
+ Arctan(44) — Arctan(129)

—3 Arctan(l) + 2 Arctan(2) — Arctan(5)
+ Arctan(28) + Arctan(44).

Here the Machin formula Arctan(129) = 2 Arctan(1)+Arctan(23)—Arctan(28)
allows one to pass from the first decomposition to the second.

Hence, we must refine our question. If we have a Machin formula for an
integer n, we can, as above, replace a decomposable integer m < n in the
formula by an expression of the type (9.9). If this substitution gives rise to
new decomposable integers, we can do the same thing again. Each time, the
decomposable integers that appear get smaller so that after a finite number of
steps, we obtain a Machin formula that only contains indecomposable integers.

We now ask whether a decomposable integer can give rise to two different
expressions of the form (9.9) which involve only indecomposable integers.
This time, the answer is no.

Proposition 9.3.1 (E. Kern, 1987). If n > 2 is indecomposable, there does
not exist a relation of the form

n—1

cp Arctan(n) + Zc,- Arctan(i) =0, c¢1,...,¢c, €2, ¢, > 2. (9.10)

i=1

To understand where this result leads, suppose for a moment that it is true,
and that we have two distinct Machin formulas

Arctan(n) = Z cqy Arctan(ny) = Z dg Arctan(mg),

ng<n my<n

with indecomposable n, and mg. Combining the two sums gives
Z e, Arctan({,) = 0.

ty<n

Let yo be the largest index for which ¢,, # 0. Since ¢,, is indecomposable,
we cannot have ¢,, = £1. Thus, we would get an equality of the type (9.10)
which is impossible by the proposition.

9.3.2. Proof of Proposition 9.3.1
The proof of the following result is easy.

Lemma 9.3.1. Let a+ib # 0, x + iy and u + iv be any complex numbers.
Then

(u+iv)(x+1iy)
= — €
a+ib

R

= u?(@® 4+ bH(x* + y?) = (ax + by)z(u2 + v?). 9.11)
Proof. We have at = ux —vy and bt = uy + vx. Therefore
(ax + by)t = u(x? + yz).
Taking norms of both sides of (a + ib)t = (u + iv)(x + iy) gives
(@ +bH)1* = (1 + v) (x> + y?).
A little algebra gives the conclusion.]

Let u and v be the real and imaginary parts of (1 + in)*:
(1+in)"=u-+iv. 9.12)

If u = 0, multiply ¢, by 2 so that (1 4 in)* = ((1 + in)"")2 = —v? #0.
Now, we may suppose that u # 0, because if the result is true for c,, it also
holds 2c¢,.
Consider the complex number
a+ bi
X411y

= (14" (1 +2i)° (] +(n— l)i)(,,—l’

where a + bi collects the factors in the product with positive exponents and
x + yi those with negative exponents. Thus,

(a+bi)(x +yi)= A+ DN 420 (1 + (n = D)ol

Taking norms gives
@+ b+ yH) = (1 + 1A+ 2 (4 (= DD (9.13)

As we have already remarked, ¢, Arctan(n) is the argument of (1+in)‘ and
n—1
> ¢; Arctan(i) is the argument of (a +ib)/(x +iy). It results from (9.10) that
i=l
the quotient of u +iv by (a+ib)/(x+iy) is a real number. So, formula (9.11)
holds. Using (9.12) and (9.13), we can rewrite (9.11) as:

wWr(1 4+ 1)l +2Hkel (14 (n = DB = (ax 4+ by) (1 + 12, (9.14)

By condition (T), there exists a prime p which divides 1 + n? but none of
the numbers 1 + d? ford = 1,...n — 1. It also follows from (9.14) that p
divides u.

Expanding (1 + in)‘" using the binomial formula gives

e () (= (0)

n

and, if we use the congruence n? = —1 mod p, we obtain
2 4 6
=1 () (4 (0 =z
Cn Cn Cn

Thus p = 2, which contradicts the Todd condition since p = 2 divides 1 + d?
when d = 1.

9.3.3. The Todd condition is necessary

Consider a Machin formula in which the »; satisfy 1 < n; < n:
Arctan(n) = c,_; Arctan(n;) + c,_» Arctan(n,) + - - - + ¢, Arctan(n;).

Since the complex numbers 1 +in and (1 +in;)' --- (1 +in,)* have the same
argument, there exists a real number M > 0 such that:

MA+in)y={+in)"" - (1 +in,)".
Comparing real parts shows that M is an integer. Passing to norms, we obtain
M*(1 4 n?) = (1 + n3)l1(1 4 nd)lo2hoo (1 4)l

which shows that condition (T) holds.

9.3.4. The Todd condition is sufficient

We say that a Gaussian integer @ is n-adapted if there exists an inte-
ger M > 1 such that M ® is a product of Gaussian integers of the form 1+ iw

with [w| < n. We also say that ®", ..., & is an adapted factorisation
of 1 + in if each ®Y) is n-adapted, that is if there exist integers M; > 1
and integers |wy| < n such that

M- M(1+in)=g(M®V)- - (M) =e(l +iwy)--- (1 +iwg).

An adapted factorization is a precursor of a Machin formula. This is because
(1 +in)and e(1 +iw;)--- (1 + iw;) have the same argument, so

Arctan(n) = k Arctan(1l) + Arctan(w;) + - - - + Arctan(wy).

A calculator (i.e. numeric approximations) allows one to specify the right value
of k € Z (which collects & and the factors 1 £ i).

9.3.5. Kern’s algorithm

To show that condition (T) is sufficient, Todd exhibits an adapted decompo-
sition of 1 + in. We are going to use the same method, but we will prefer a
very fast algorithm due to Eric Kern (1986, unpublished), which rests on two
simple ideas.

First, let u = w, - - - w, be a decomposition into irreducible factors in Z[i].
If the norm N(u) = N(w;)--- N(w,) is not divisible by any prime number
g = 3 mod 4, we know that the N(w;) are either p = 2, or prime num-
bers p = | mod 4. Hence, if we are given a factorization N(u) = A B, there
exist Gauss integers «, 8 such that 4 = a8, A = N(a) and B = N(B):

N(uw)=AB = u=aB, A= N(a), B= N(B).

This argument holds, in particular, for Gaussian integers of the form 1 + in.
In effect, an odd prime number p which divides 1 + n? is necessarily of the
form p = 1 mod 4 since we know that the equation x> 4+ 1 = 0 has no roots
in Z, when p =3 mod 4.

The next lemma is the second idea.

Lemma 9.3.2. Let n > 1 an integer such that 1 + n® is not a prime number;
let &, ' Gaussian integers such as

14+in=®d, 1+n’=ND)ND), N@@),ND)>I.
Now divide n by N(®) using centered remainders:
n=N®q+w, |w <iN).
Then ® divides 1 + iw and there exists ®'" such that
I+iw=ad- 0", N@) < IN@D).
Proof. Write |1 + n* = dd’' where d,d’ > 1 and lift this equality to Z[i]:
l+in=® &, 1+n=N(D) NP), N@@),ND)>I.

Now divide n by N(®) using centered remainders; since
l4+in=igN(®P)+ (1 +iw)

and since ® divides both 1 + in and N(P) = &- d, we know that & divides
1 + iw. Thus, there exists ®" such that

1+ iw = ooV,

Taking norms gives
M 2 1 2
N@) N@®"')=14+w 51+ZN(<D) .

Dividing this inequality by N(®) > 2 gives N(dV) < %N(CD). O

Description of Kern’s algorithm

Let n > 1 be a decomposable integer and
propi=1+n?

the decomposition of 1+ n? into prime factors. Todd’s Theorem 9.3.2 assures
us that p, < 2n. We will prove that lifting this equality to Z[{],

l+in=CD|---(D,,

gives an adapted factorization (and a Machin formula for the integer n).
Let & denote one of the factors &, ..., &,.
o If N(®) = 2, we know that ® = e(1 +i).
o If N(®) > 2 is an odd integer, we use the Lemma 9.3.2: dividing n by
N (®) gives rise to w; and ®" such that
[+iw =0, N@) <3N @)

If N(@") > 1, we know that 1 +w? = N(P)-N(P")) is not a prime number.
Use the Lemma again and divide w, by N(®"), which gives rise to w, and
®®@ such that

I+iw, = 0".0? N@?) < IN@)".

As N(®D) = (I + w})/N(P), it is not necessary to find the explicit value
of ®" to deduce w, from w,. Starting anew with w, and N(®") we obtain
a finite sequence of integers

I+iw = &0, N(@) < jN(P),
[+iw, = 0.0, N@P) < IN(®)?,

l+iw, = D00 N(@@")=1.

Solving these equations gives

Cltiw (I 4iw)®® (w4 iws) -
e T T4iw, (L4 iw) (4 iws) -

Therefore there exists an integer M > 1 such that
MO =c(l14+iw)(l —iw)(l +iw)(l —iwy)---.
(The exact value M = N(1 + iw,)-N(1 + iwy) - - - is irrelevant.)

Kern’s algorithm is as follows.
o Start with 1 +n2 = p; -+ p;.

« Initially, list_factors is empty. We collect factors 1+ iw associated to each
prime divisor d using

index =1 ;

repeat

w = centered_rem(n, d) ; fn=dg+w, |w| < %d}
if index mod 2 = 1

then list_factors := add(1 + wi, list_factors)

else list_factors := add(1 — wi, list_factors) ;

index = index + 1 ;

d:=((+wd/d;

ni=w

until w =20

 The product of all factors 1+ iw associated to py, ..., p, gives a Machin
formula for the integer n.

Example

Choose n = 1136; since 1 + n? = 1873 -53 - 13 and 1873 < 2n, we know
that n is decomposable and that there exists an adapted factorization 1 +in =
D573 - Ps3 - Dys.

« Apply Kern’s algorithm to the divisor 1873:

1136 = 1 x 1873 — 737 1+ 7372 = 1873 x 290
=737 = =3 x 290 + 133 1 + 1332 = 290 x 61
133 =2 x 61 + 11 14+ 112 =61x2
11 =5x2+1 1+12=2x1
The centered remainders are w; = —737, w, = 133, w3 = 11 and ws = 1. The

norms necessary to compute the w; are N(®") = (1 + 737%)/1873 = 290,
N(DD) = (1+1332)/61 =2, N(®®) = (1 + 112)/6] = 290 and N(d®) =

(1 + 12)/2 = 1. Therefore, there exists an integer M’ > 1 and a unit &’ such
that

Mgz =e' (1 +w)(1 —iw)(I +iw3)(1 —iwy)
=¢&'(1 —737i)(1 — 1330)(1 + 118)(1 =)

» Kern’s algorithm applied to the two other factors gives

1136 =87 x 13+5 145 =13x2
5=2x2+1 1+12=2x1
1136 = 21 x 53 +23 14232 =53 x 10
23 =2x10+3 1+32=10x1

Thus we know that there are formulas
M'®sy =e"(1 +230)(1 = 3i), M'>1,
M’Il¢]3 = 8///(] +5[’)(1 —_ i), Ml// 2 1.

e From M'M"M" (1 + in) = M'® g3 - M"ds3 - M3, we deduce that
there exists an integer M > 1 and a unit € such that

M1 +in) =e(1—i)*(1 = 3i) (1 +5i) (1 + 11i) (1 4 23i) (1 — 1334)(1 — 737i).

We use this to get the following Machin formula where the coefficent of
Arctan(1) collects the unit £ and the factors 1 & i:

Arctan(1136) = A Arctan(1) — Arctan(3) + Arctan(5) + Arctan(l1)
+ Arctan(23) — Arctan(133) — Arctan(737).

A calculator shows that h = 2.

Remarks

1) Kern’s algorithm illuminates the condition p < 2n of Todd’s Theo-
rem9.3.2. As we have already remarked, the factors 1 + iw which appear
satisfy |w| < d. When d = p is odd, we have w < %p < n, which assures us
that 1 4 in is not among the collected factors.

2) We examine the behavior of Kern’s algorithm when n is not decompos-
able: say, for example, when n = 9. The factorization 1 + n?> = 2 x 41 gives
&M = 1+4iand 20? = (149i)(1—i). We get 2(1+9i) = (14i)(1+9i)(1—i)
and this equation is not a precursor of a Machin formula.

3) The first remark also shows that it is not necessary to completely factor
1 + n? into primes. Any factorization which ensures that d < 2n (where the
inequalty is strict if d is even) will work. Take for example n = 1136; we
can content ourselves with the factorization 1 + n? = 1873 - 689 which lifts

to Z[i] as 1 + 1136i = ®,g73 - Pegg. Application of the algorithm to the factor
d = 689 gives:

1136 = 2-689 — 242 1+ 2422 =689 -85
—242 = —3.85+4+13 1+132 =85-2
13=6-2+1 1412 =2-1

Thus there exists M > 1 and a unit € such that
M Dego = (1 — 242i)(1 — 13i)(1 +i).
The Machin formula associated to the factorization 1 + n? = 689 - 1873 is

Arctan(1136) = k Arctan(l) + Arctan(11) — Arctan(13)
— Arctan(133) — Arctan(242) — Arctan(737).

Numerical approximations shows that k = 8.

9.3.6. How to get rid of the Arctangent function

After a series of purely arithmetic calculations, it is frustrating to have to turn to
numerical approximations to guess the precise value of the integer multiplying
Arctan(1), thereby abandoning the absolute precision of arithmetic.

Z =a+bi

b b
(i 9:Arctg; + 6 = Arctg —
a

\‘J Rez <0 Rez >0

To avoid this false note, we choose a determination of the argument of a
complex number and monitor the variation of the argument in the course of
the various multiplications. Let

Z=a+ib, ab#0
be a complex number not on the axes. Choose the argument 6 of Z to satisfy
1

— =T <9<§7r.

2
(This unusual choice minimizes the number of cases we will have to handle.)
If we put
1 ifa>0,
ay = .
0 ifa<0,

we find that the argument of Z is

O(a + bi) = Arctg(g) + (1 —ay)m. (9.15)

Let w # 0 be a real number. Put W = | 4+ iw and
Z =ZW=ad +ib = (a —bw)+ (b + aw)i.
Lemma 9.3.3. If ab # 0 and a'b’ # 0, then:

!

b b
Arctg(-—) = Arctg(—) + Arctg(w) + sgn(b)(a; —a,)m. 9.16)
a’ a

Proof. The derivative of the function

b+ a:) — Arctg(%) — Arctg(w)

weRFH Arctg(
a_

with respect to w is zero. Consequently, this function is constant on every
interval on which it is differentiable; that is, on every interval which does not
contain a/b. Upon letting w tend to oo, we see that this constant equals

c= —’Arctg(%) + Arclg(%)} — sgn(w)%rr = —% sgn (%) + sgn(w)lyr

since
Arctan(x) + Arctan(x ") = sgn(x)%zr, x #0.

But sgn(a/b) = sgn(a) sgn(b) and
a' =a—-bw = sgn(a’) = —sgn(b) sgn(w),
that is, sgn(w) = — sgn(a’) sgn(b). Therefore
¢ = —3{sgn(a) sgn(b) — sgn(a’) sgn(b)}yr

= sgn(b)'i{sgn(a’) — sgn(a)}rr
= sgn(b)(a’, —a,)m. O

Corollary 9.3.1. If ab # 0 and d'b’ # 0, then:
6(Z') = 6(Z) + Arctg(w) + (1 — sgn(b))(a, — a’)m. 9.17)

Proof. By definition

’

’ b !
0(Z)) = Arctg(;) + (1—d)m.

Using (9.20) then (9.21), we get

b
0(Z') = Arctan (5) + Arctg(w) + sgn(b)(@’, —a)m + (1 —al)w
= 60(Z) — (1 —ay)m + Arctg(w) + sgn(b)(ay —a’)m + (1 —a')w

= 6(Z) + Arctg(w) + (a4 —a’,)m + sgn(b)(a, — ay)m. m]

9.3.7. Examples

1) Consider the adapted factorization where M > 1

M1+ 1136i) = e(1 —i)2(1 = 3i)(1 + 5i)(1 + 11§)
(1 +23i)(1 — 133i)(1 — 737i).

As we have already remarked, the factor £(1 —i)? does not interest us because
it only modifies the coefficient of Arctan(1). We start then with

Z,=1-3i

which has argument Arctan(—3), and we multiply it repeatedly by 1+iw with
w =5, 11,23, —133, =737, which gives the Gaussian numbers

Zy, ..., Z¢ =353800(1136 —i).

Ass the complex numbers Z,, ..., Zs all have imaginary part b > 0, formula
(9.17) tells us that we do not need any correction and, since Z¢ and 1136 — i
have the same argument, we find that

Arg(1136 — i) = Arctan(—3) + Arctan(5) + Arctan(11)
+ Arctan(23) + Arctan(—133) + Arctan(—737).

To obtain 1+ 1136, we multiply 1136 — i by i, which increases the argument
by %rr = 2 Arctan(1):

Arctan(1136) = Arg(l + 1136i)
= 2 Arctan(1) + Arctan(—3) + Arctan(5) + Arctan(11)
+ Arctan(23) + Arctan(—133) + Arctan(—737).
2) Now consider the adapted factorization where M > 1:
M1+ 1136i) =2(1 + 11i)(1 — 130)(1 — 133i)(1 — 242i)(1 — 737i).

We begin with
Z,=1+4+1L

which has argument Arctan(11) and we multiply it successively by 1 + iw
with w = —13, —133, —242, —737:

Z, =2(72—-1), Z3 = 122(—1 — 157i),

Z, = 10370(—447 + i), Zs = 3007300(1 + 1136i).

Thanks to formula (9.17), the corresponding arguments are:

6, = Arctan(11) + Arctan(—13),
6; = Arctan(11) + Arctan(—13) + Arctan(—133) + 27,
6, = Arctan(11) + Arctan(—13) + Arctan(—133) + Arctan(—242) + 2,
6s = Arctan(11) + Arctan(—13) + Arctan(—133) + Arctan(—242)
+ Arctan(—737) + 27.

Since 27 = 8 Arctan(1), we have obtained the Machin formula:

Arctan(1136) = Arg(Zs)
= 8 Arctan(1) + Arctan(11) + Arctan(—13)
+ Arctan(—133) + Arctan(—242) + Arctan(—737).

Exercise 3

Transform this theory into a program which calculates Machin formulas for
decomposable integers n € [[1, 100].

Remark

The reader interested in an another approach to this subject might consult the
book Mathématiques et Informatique by J. Berstel, J.-E. Pin and M. Pocchiola,
Mc Graw-Hill (1991).

10. Polynomials

10.1. Definitions

For a mathematician, a polynomial A with coefficients in a ring k is an infi-
nite sequence (a,),en Of elements which are all zero after some point (which
depends on the sequence):

A = (ayg,ay,as,...,a,,0,0,0,...).

Let k[X] be the set of such sequences (the appearance of X will be justified
a little later) One can give this set the structure of a ring by defining the
operations of addition and multiplication as follows:

« for addition, let

A+B=(ay+by,...,a,+b,,0,...)

o for multiplication C = AB, let the n-th element of C be:
Cn = Z apb,.
p+q=n
The ring k can be identified with the constant polynomials using the bijec-
tion:
ao = (a(), 0, ..)

With this identification, we can, in particular, multiply a polynomial by a

constant so that A(ag, ...,a4,0,...) = (,0,...)(ag,...,aq4,0,...) is indeed
the polynomial (Aay, ..., Aay, 0, ...). If we now put
X=(0,1,0,..)),

a straightforward induction shows that for every integer n > 1,
X"=(,...,0,1,0,...), the | being in the n-th place.

Then, every polynomial can be written uniquely in the form

A= ia,Xi
i=0

and one recovers the traditional presentation of a polynomial.

10.2. Degree of a Polynomial

If k is an integral domain (the product of two elements is zero if and only if
one of the factors is zero) then it turns out that k[X] is an integral domain.

Let A be a nonzero polynomial. Its degree is, by definition, the largest
index i such that a; # O:

deg(A) = max{i; a; #0}.

For example the nonzero constant polynomials have degree 0.

This definition does not work if A is zero because the set of indexes i such
that a; # 0 is empty. What degree can we attribute to the zero polynomial?
Several conventions are possible depending on what one wants to investigate.
In general, one wants the formula

deg(A x B) =deg A +degB
to continue to hold if A or B is zero (we suppose that & is an integral domain).

o First convention: one attributes degree —oo to the zero polynomial. This
somewhat surprising convention is best from the point of view of the preceding
criterion because:

deg(A x 0) = deg A — oo = —o0 = deg(0).

e Second convention: the zero polynomial is considered as a constant poly-

nomial of degree zero. With this choice,
deg(A x 0) = deg(0) = 0.

So the formula deg(A x B) = deg A + deg B does not continue to hold! It is
necessary therefore to pay careful attention to the definition of degree that one
uses.

10.3. How to Store a Polynomial

Recall that we use basic Pascal without pointers. Thus we can only use arrays
whose size is fixed once and for all at the moment of compilation. Two natural
solutions present themselves.

» We can consider a polynomial as a vector of fixed dimension
X*+2X+32(3,21,0,0,0,0,0,0,0) (10.1)

using an array A[O..deg_max]:
const deg_max = 10 ;
type poly = array[0 . .deg_max] of integer
var A : poly ;

We then store the polynomial A = X% 4+ 2X + 3 using the code:

for i := 0 to deg_max do A[i] :=0;
A[0]:=3; A[l]:=2; A[2]:=1;

The first statement — the preliminary clearing of the coefficients in the array
is vital.

» We can consider a polynomial as a pair (degree, sequence of coefficients):
X2+2X+3:’degree=2 and (3,2, 1). (10.2)
There is a subtlety here. We try to explain visually:

3,2,1,0,0,0,0,0,0,0),
3,21,2,7%222727 and deg = 2.

X?42X 432

(The question marks signal undefined values; that is, memory contents which
have not been initialized and must be considered random. In other words, they
are litter.)

Convention (10.2) requires that we store the degree at the same time as
the coefficients. For polynomials with integer coefficients, one way to do this,
inspired by the implementation of chains of characters, is for example:

const deg_max = 10 ; deg = —1;
type poly = array|deg . . deg_max] of integer ;
var A : poly ;

The degree is thus A[deg] and the coefficients are A[0Q], ..., A[deg_max].
For example, we store the polynomial A = X% +2X + 3 by typing:

A[0] :=3; A[l]l:=2; A[2] :=1; Aldeg]:=2.

There is no point specifying that A[i] = O for i > deg(A) since we have
defined the degree of A.

Convention (10.2) functions much less well when the coefficients are real.
In effect, although A[deg] is an integer, it is treated as a real number. In this
case, it is better to use a record:

const deg_max = 10 ;

type arr_coeff = array[0 . .deg_max] of real ;

poly = record coeff : arr_coeff ; deg : integer end ;
var A : poly ;

Now, the degree of A is A.deg and the coefficient of X* is A.coef[k].

Convention (10.2) is seductive and furnishes a priori faster programs. But
it is difficult to implement. In effect, when one calculates C = A + B, it is
necessary to be very, very careful:

o If deg(A) = deg(B), and if we work with real coefficients, one can use
the code

for i := 0 to A.deg do C.coeffli] := A.coeff[i] + B.coeffli]

After that, we absolutely must define the degree of C while examining the
C.coeffli] for i < deg(A).
o If deg(A) < deg(B), it is necessary to use the code
C:=B;
for i := 0 to A.deg do C.coeff[i] := A.coeff[i] + C.coeffli]
We do not need to find the degree of C because it is equal to that of B.

The product is still more difficult to write correctly.' Try it!

10.4. The Conventions we Adopt
» We store polynomials using convention (10.1).
o We assign the zero polynomial degree 0.

The degree function

If the coefficients are integers, we can use the test A[i] # O without any
precaution:

function degree(A : poly) : integer ;
var i : integer ;
begin
degree := 0 ;
for i := 0 to deg_max do
if A[i] # O then degree = i
end ;

The statement degree := 0 in the preceding code is vital. If one omits it,
the zero polynomial does not have a degree!

We must modify this code lightly in the case that the coefficients are not
integers because the test A[i] # O is not satisfactory over the reals:

function degree(A : poly) : integer ;
const e = 1E—8;

var i : integer ;

begin

degree :==0;

for i := 0 to deg_max do

if abs(A[i]) > € then degree = i
end ;

! Here is a good illustration of the proverb Above all, no tricks!!

The procedure annul

This is an indispensable procedure. If we forget to initialize our polynomials,
they will contain litter and their degree will not be correct.

procedure annul(var A : poly) ;

var [: integer ;

begin

| for i == 0 to deg_max do A[i] =0
end ;

The add_poly and mult_poly procedures

To add and multiply two polynomials, it suffices to recopy the definitions of
sum and product (we suppose that the coefficients are integers):

procedure add_poly(A, B : poly ; var C : poly) ; {returns C = A + B}
var i : integer ;

begin

|for i == 0 to deg_max do Cli] = A[i] + Bli]

end ;

procedure mult_poly(A, B : poly ; var C : poly) ; {returns C = A - B}

var i, k, temp : integer ;

begin

if degree(A) + degree(B) > deg_max

then writeln('error . degree too large')

else begin

annul(C) ;

for i := 0 to degree(A) + degree(B) do begin
temp =0 ; for k .= 0 to i do temp = temp + A[k] = B[i — k] ;
Cli] := temp

end

end

end ;

For beginners

Suppose that you know A is a polynomial and you want to translate A = 6
into code. Beginners often write A := 6, which elicits the error message type
mismatch (i.e. the types are incompatible). The right code is:

annul(A); A[0] :=6;

It is easy to understand why the compiler is perplexed: the objects “A” and
“6” do not occupy the same place in memory.

We can profitably use this opportunity to reflect on the meaning of the inclu-
sion R C R[X]. When a mathematician says: “I identify the real number a with
the constant polynomial (a, 0, 0, ...)”, what is being said is that henceforth he
or she will pretend that these two objects are equal, thereby allowing him or
her to write A = 6 without blushing. This behavior will not produce catastro-
phes because the canonical injection R — R[X] is a ring homomorphism.
But physically, real numbers and constant polynomials are distinct objects, a
distinction that is not lost on our computer because it is not able to “pretend”.

Comfortable display of polynomials

Suppose that we want to display a polynomial in a visually comfortable manner
respecting the following constraints:

» no more than five monomials are displayed on a line;
» zero monomials are not displayed;

e ‘1X"n’ is displayed as ‘X"n’ ;

o ‘—1X"n’ is dispayed as ‘—X"n’ ;

To display only five monomials on a line, we have to count the number of
monomials, whence:

num_monomials .= 0 ;
for i := deg_max downto 0 do begin

if P[i] # O then begin

write(P[i],’X"",i: 1) ;

num_monomials := num_monomials + 1 ;

if num_monomials mod 5 = 0 then writeln

end
end ;

We now refine this code discussing whether P[i] is positive, zero, or neg-
ative. Pascal does not display the ‘+’ sign before a positive number. The
constants make the code easy to read. Finally, several trials will show that one
must not forget that a polynomial is sometimes zero.

procedure display_poly(P : poly) ;
const plus ="+ " ; minus="— ", exponent ='X",
var i, num_monomials : integer |
begin
num_monomials = 0 ;
for i := deg_max downto 0 do begin
if P[i] # O then begin
if P[i]] > | then write(plus, P[i] : 1) else
if P[i]] = | then write(plus) else
if P[i] = —1 then write(minus) else
if Pli] < —1 then write(minus, —P[i] : 1) ;

write(exponent, i : 1) ;
num_monomials == num_monomials + 1 ;
if num_monomials mod 5 = 0 then writeln
end
end ;
if num_monomials = 0 then writeln('0’) ; {case P = 0}
if num_monomials mod 5 # 0 then writeln
end ;

The last statement ensures the return to the correct line after displaying a poly-
nomial. This precaution allows us to ask that several polynomials be displayed.

write('P =") ; display_poly(P) ;
write(Q =) ; display_poly(Q) ;
write(R =") ; display_poly(R) ;

10.5. Euclidean Division

Let A and B be two polynomials with coefficents in a field. If B is not the zero
polynomial, we know that there exists a unique pair (Q, R) of polynomials
satisfying the conditions:

A=BQ+ R, degR <degB.

We refresh our memory by dividing A =2X°— X*+3X% 4+4X*>— X + 1 by
B=X+2X+3:
2X5— X4 43X34+4X2 - X+ 1| X3+2X+3
— XY - X3 -2X?— X +1|2X?
X3 42X +1 | -X
4X +4| -1
stop

We see that three sequences appear: the remainders R; and partial quotients
Q; in which monomials M; accumulate:

Ro=A B

Ri=Ro—BM, Qi=0+M (Qo=0)

Ry=R —BM, Q,=0+M,

Ry=Ryy—BMy Q,= Q¢+ BM,

The calculation is finished when the degree of the partial remainder is smaller
than that of the divisor B. The three dots represent a loop which must be

specified. Since we do not know the number of steps in advance, we cannot use
a ‘for’ loop (if we divide X® + X* + X2 by X2, the division stops right away).
Thus, we choose a ‘while’ loop, because we should definitely do nothing when
deg A < deg B. A succinct mathematical description of the division algorithm
is then:

Ry:=A; Qy:=0; i:=0;
while deg(R;) > deg(B) do begin
«calculate the monomial M; »

Qi =0, +M:;
Riyi =R, —B-M;;
i=i+1

end

Recall that the monomial M; is the quotient of the highest degree monomials
of the polynomials R; and B. Suppressing the time index i and specifying the
monomial M; we have:

R:=A; 0:=0;
while deg(R) > deg(B) do begin
M := Rideg(R))/Bldeg(B)) X“# M) =des(® ;

Q:=0+M,;
R=R—-B-M
end ;

Remark

If A and B are coefficients in an integral domain (for example, Z), the quo-
tient Q and remainder R have coefficients in the field of fractions of the ring.
But if the coefficient of the highest degree monomial of B is invertible (as
in the example on the preceding page), the algorithm shows that Q and R
have coefficients in the ring because no fractions are introduced during the
calculations. As a consequence, one remains in the integers (that is, one does
not need recourse to fractions) when dividing by a monic polynomial.

procedure unitary_division(A, B : poly ; var Q, R : poly) ;
var i, coeff : integer ; monomial : poly ;
begin {we suppose A, B, Q, R € Z[X) and B monic}
if Bldegree(B)] # 1
then writeln('error : polyomial is not unitary')
else begin
R:=A; annul(Q) ;
while degree(R) > degree(B) do begin
annul(monomial) ;
monomial[degree(R) — degree(B)] := R[degree(R)] ;
Qldegree(R) — degree(B)] := Rldegree(R)] ; {Q := Q + monomial}
mult_poly(monomial, B, monomial) ; {monomial := B - monomial}

|sub_poly(R, monomial, R) {R := R — monomial}
end
end

end ;

We remark that there is no point using the general procedure add_poly to add
a monomial to the quotient Q.

10.6. Evaluation of Polynomials: Horner’s Method

The problem of economically calculating the value of a polynomial was re-
solved in the seventeenth century by Newton during a time when calculations
were done by hand and techniques for economizing on additions and multi-
plications were much appreciated. The technique, however, is called Horner’s
method in honor of W.G. Horner who rediscovered and popularized it in 1819.

To calculate the value at x of the polynomial
A=1+2X+3X*—4x>-5X*,
we could type in our program:
value .= 1+2*xx +3*xxxx —4dxx*xx*xx —Skx*xxxxxx (10.3)
But the situation gets more interesting if we want to calculate
A=ay+ax+ - +ax".
We cannot type something like
value :== al0] + b[1] *x+ - -+ aln]l xx*x - *xx

(which is, unfortunately, what some beginners do) because the compiler does
not understand the three dots ‘... which represent a repetition (i.e. a loop).
We can fix this by defining a Pascal function power(x, i) which returns the
value of x' and entering:

value := 0 ;

for i :== 0 to n do value := value + Ali] * power(x, i)

This code is very clumsy and is a Penelope code: when we calculate x', we

forget that we calculated x'~' an instant earlier.

Let us return to the calculation of v = 1 + 2x + 3x2 — 4x3 — 5x*. If we
isolate the constant term we can treat x as a factor in what remains:

v=1+x(2+3x —4x? — 5x%).

Carrying out this transformation repeatedly on the polynomials in parentheses,
we finally get

v=14x2+x3+ x(—4 + x(=5)))).

The parentheses that appear suggest a very natural sequence of calculations:

vy = =5, vy =2+ xvy,
v, = —4 + xvg, vs =1 + xv3, (10.4)
v, =3+ xvy, value = v,

This strategy presents considerable advantages:
 formula (10.3) requires 10 multiplications and 4 additions;
« in contrast, (10.4) uses only 4 multiplications and 4 additions !

More generally, the value of the polynomial A = ap + @) X + - - + a, X"
at x is the last term of either of the two sequences

Vo = a, Up = ay

V) = ay- + X Up—| = Qn-| + X Uy
UV = Qp2 + X Un—2 = An-2 + X Up_|
Uy, = 4o+ X Uy Vo = ap + X VU

whose translations into code are

value := a, value := a,
fori:=1tondo for i := n— 1 downto O do
value :== a,_; + x - value value := a; + x - value

These two algorithms are called Horner’s method. Experience shows that
the one on the right (with the decreasing indices) is much more natural in
practice.

function value(A : poly ; x : integer) : integer ;
var i, deg_A, temp : integer ;
begin
deg_A = degree(A) ;
temp = Aldeg_A] ;
for i :=deg_A — 1 downto 0 do temp := Al[i] + x * temp ;
value := temp
end ;

10.7. Translation and Composition

10.7.1. Change of origin

Let A(X) =ap+a; X +---+a,X" be a polynomial with coefficients in a ring
and A an element of this ring. Let:

BX)=AX+h)=by+b X+ ---+b,X".

How can one calculate the b; using the a; and h?
Suppose for example that we have A = 1 +2X + 3X? —4X3 + 7X* and
h = 1. To calculate

BX)=14+2X+1D)+3(X+1D*—4X+1)°+7(X + 1),

it is necessary to resist the temptation to expand the terms (X + 1)* because this
strategy produces a very awkward code. Following the idea behind Horner’s
method:

By =7 B =2+(X+1)B,
B; = -4+ (X +1)B,4 By =1+ (X+ 1B,
B, =3+ (X+1)Bs B = By

We have chosen decreasing indexes because they are more natural!

It is necessary to pay close attention to the change in context: we are not
calculating here with numbers but with polynomials; we begin with the con-
stant polynomial By = 7, then we calculate the first degree polynomial Bs,
etc.:

By =1,

B; =3+7X,

B, = 6+ 10X + 7X?,

By =8+ 16X + 17X* +7X?,

By = 9+ 24X +33X2 +24X3 + 7X*.

The adaptation of Horner’s method to calculate B(X) = A(X + h) is:

B:=a,,;

fori:=n—1downtoOdoB:=a;+(X+h) B (10.5)
We insist again: B is a polynomial that one modifies little by little, the op-
erations addition and multiplication taking place in the ring of polynomials.
To implement this algorithm, there are two possibilities.

« Translate algorithm (10.6) directly which leads to the code:

procedure translation(A : poly ; h: integer; var B : poly) ;
var i, deg : integer ; temp : poly ; {returns B(X) = A(X + h)}
begin
annul(B) ; deg = degree(A) ; B[0) := Aldeg] ; {B = Aldegl}
for i := deg — 1 downto O do begin
annul(temp) ; templ0) .= h ; temp[l] = 1; {temp =X + h}
mult_poly(B, temp, B) ; {B = temp - B}
B[O] := B[0] + A[i] {B=B-+a;}
end
end ;

o We dwell a little further on algorithm (10.6) arguing that it is awkward
to call a general procedure for multiplication of polynomials in order to mul-
tiply B by X + h. If we put

BY(X) = b(()i) + b‘li)X 4o DX,
the equality B®) = a; + (X 4+ h)BU*" gives
bY = B b,
pO = pit g g plith

n—1 - n—1 >

: (10.6)
i i+1 i+1

b:)zb(()+)+hb(|+),

by = a;i+hby*".

If we agree to view the index i as representing time, we can consider B
as the state of the polynomial B at the instant i in a reverse count. If we use
the formulas (10.6) in the order b,, ..., by, we find that we can calculate the
polynomial B on the spot which avoids using an array with two indexes:

procedure translation(A : poly ; h: integer ; var B : poly) ;
var i, k, deg : integer ;
begin
annul(B) ; deg = degree(A) ;
B[0] := Aldeg] ;
for i := deg — | downto O do begin
for k := deg downto | do B[k] := Blk — 1] + h x B[k] ;
B[0] := A[i] + h = B[0]
end
end ;

This code is more compact and performs better than the preceding. However,
it is totally incomprehensible unless accompanied by a description of how it
was constructed. Moreover, it is very delicate to implement and very fragile (if
one replaces the internal ‘downto’ loop with a ‘to’ loop, the calculations are
completely false). This is the price one pays for resorting to a programming
trick.

For beginners

A mathematician seldom resists this sort of of pleasure and indulges in all sorts
of shortcuts at the outset. Nevertheless, experience shows that this attitude is
a continual source of catastrophes and loss of time when one programs. One
can never repeat enough: to program is first of all to choose security; tricks
come later. First write a solid, “industrial” program which works; then one
can fine tune it later by modifying certain procedures. Reserve the intellectual
thrills for this time.

10.7.2. Composing polynomials

Let A=ap+---+a,X"and B=by+ --- + b, X" be two polynomials. We
want to calculate the polynomial C = B o A, that is:

C(X) = B(A(X)).
Suppose that we have B = 1 + 2X + 3X? — 5x* so that:
C(X)=1+2A+3A*-5A°

This presentation suggests the following use of Horner’s method:

Gy = =5,

C,=34+A-GC;,
Ci=24+A-C,,
Co=1+A-Cy,

where, once again, the ‘value’ C; is not a number but a polynomial, which
means that the calculations take place in the ring of polynomials.

procedure composition_poly(A, B : poly ; var C : poly) ;

var i : integer ; {returns C = Bo A}

begin

if degree(A) x degree(B) > deg_max

then writeln('error . degree too high')

else begin

annul(C) ; C[0] := Bldegree(B)] ; {C = B[n]}

for i :== degree(B) — 1 downto 0 do begin
mult_poly(C, A, C) ; {C:=C- B}
C[0] .= C[0] + B[{]] {C := C+ Bli]}

end

end

end ;

10.8. Cyclotomic Polynomials

Let n > 1 be an integer and A = e%”/". The n-th cyclotomic polynomial is the
polynomial:

o,(X) = [T x—2H.
octikon)=

We then have
(D,,(X) = X‘p(n) + ct

where ¢ is the Euler phi-function. We shall show a little later that &, is
a polynomial with integer coefficients, which is not at all evident from the
definition. While waiting, and to familiarize ourselves with the these objects,
we calculate the first few cyclotomic polynomials from the definition.

« When n = 1, we have A = 1 and k& = 1, which gives:

O(X)=X—1.
o When n = 2, only k = 1 works, so that A = ¢'™ = —1 and
Dy(X) =X+ 1.

2in/3

e When n = 3, we have L = ¢ = j and k = 1, 2 which gives:

O3 X)) =X - NX—-H=X+X+1.

With patience and a lot of care, one can calculate more cyclotomic polynomi-
als. Happily, there are better ways.

10.8.1. First formula
Suppose, for simplicity, that n = 12. We have
X|2 — 1= (X _ ezink/lZ)'
lglk:llz

The GCD of k and of 12 is one of the numbers 1,2,3,4, 6, 12. We parti-
tion [[1, 12] as

[[1,12]]=1| U]2U13U14U16U1|2
by placing in I, the integers k which satisfy the condition GCD(k, 12) = d

(in other words, the I, are the “level curves” of the function k — GCD(n, k)).
We can regroup the (X — A¥) as:

X|2 — l_[I—[(X 2171k/12

d|12 kely

If, for example, we examine the product associated to /s, we recognize the
cyclotomic polynomial

q)3(X) — I—[— (X _ eZir{4/|2)(X _ eZiﬂS/lZ) — (X _ ezilr/3)(X _ e4iﬂ/3).

k€I4

The trick is simple: one musn’t touch the 2iw when simplifying exponents.
By proceeding the same way with the other subproducts, we encounter other
cyclotomic polynomials and wind up with the formula:

X2 =1 = & (X)D2(X)D3(X)Pa(X)De(X)P12(X).

The generalization is immediate and gives the following result.

Theorem 10.8.1. For all integers n > 1,

X" —1=[]®aX). (10.7)

d|n

Corollary 10.8.1. The cyclotomic polynomials have integer coefficients.

Proof. We prove this by strong induction on #n. First of all, the result is true
if n = 1. Suppose that we have shown that the &, have integral coefficients
ifk <nandletl =d, <d, < ---d, < n be the divisors of n which are
strictly smaller than n. It follows from (10.7) that:

X"—1

X = S PR B (X)

(10.8)

We conclude by remarking that @, is the quotient of two polynomials with
integral coefficients and the denominator is monic. O

Formula (10.8) is very valuable because it allows us to calculate &, very
rapidly a little at a time. We begin with &,(X) = X — 1.

« We now have without effort:

X2—1 _ X>—1

by (X) = = =X +1,
2(X) o,(X) X-—1
X3 -1 X3-1
D1 (X) = = =X’4+X+1,
3(X) o X) X 1 +
X4 —1 X4 —1 5
Du(X) = =X>+1.

>, (X)Dy(X) X2—1
o If p is a prime, the formula ®,®, = X? — 1 gives:

X —1

=X+ +X+1
- + X+

®,(X) =

Putting ¥ = X", one finds that ¥» = X?" and induction on ¢ gives:

Xr -1 Xr'—1 yr—1
Oy (X) = = = =d,(X").
p(X) DD, DDy XPT 1 Y —] P(X7)

In a similar manner, if p does not divide m, one has:

P (X7)
®,,(X)

P pm(X) =

If we want to calculate ®,, ®,, ®3,..., &y in this order, then (10.8) sug-
gests the algorithm:
b, =X-1;
for £ := 2 to N do begin
«calculate Prod .= ®4 P,
C Dy »
&y = (Xt = 1)/Prod
end
To find the divisors d;, we sweep the interval [1, £ — 1]. We can limit the
amplitude of the sweep by remarking that £ = dg and d < € implies d < %E
since ¢ > | means g > 2. The calculation of Prod can be effected as follows:

Prod =1 ;
ford:=1 to £ div 2 do
if £ mod d = 0 then Prod := Prod - &,

Inserting this code into the preceding algorithm gives:

b, =X-1;
for £ := 2 to N do begin
Prod =1 ;

ford ;=1 to £ div 2 do
if £ mod d = 0 then Prod := Prod - ¥, ;
&, = (Xt = 1)/Prod
end

Exercise 1
Transform this algorithm into a Pascal program using the declaration:

type poly = array[0. . deg_max] of integer ;
cyclotomic = array(0 . .deg_max] of poly ;
var O : cyclotomic ;

With this declaration, ®[#n] is the n-th cyclotomic polynomial.

10.8.2. Second formula

We know that the coefficients of @, are equal to 1 when p is a prime number.
If g is a prime distinct from p, one can prove that the coefficients of ®,, are
equal to O or 1. This property also holds for the cyclotomic polynomials of
index less than 105; in contrast, the coefficient of X7 in ®,.s is equal to —2.

It is also possible to prove that there exist cyclotomic polynomials with
arbitrarily large coefficients. The coefficients do not grow rapidly, however,
since for n < 385 the coefficients of @, are all less than or equal to 2 in
absolute value.

If we want to inspect the results while calculating ®,ys, for example, the
formula (10.8) is not so useful because it requires the calculation and storage

of &, ..., dy4. Happily, the Mcebius inversion formula in multiplicative form
tells us that
o, (X) = [Jx! = o, (109)

d|n

the product being taken over all divisors of » including the extremes 1 and n.

This formula immediately suggests an algorithm:

Num :=1; Den =1,

for d := 1 to n do begin
if n mod d = 0 then
case u(n div d) of
+1: Num = (X —=1) - Num ;
—1: Den := (X — 1) - Den ;
end {case}

end ;

&, := Num/Den

Exercise 2
Implement this algorithm.
« Beware, because the degree of the numerator or that of the denominator

may exceed deg_max! Do not omit the error message ‘degree too high’ in the
procedure for multiplication.

« Insert the calculation of the Euler function ¢ (see Chap. 8) into your pro-
gram. This will at least allow you to inspect the degree of the displayed
polynomial.

10.9. Lagrange Interpolation

Let n > | be an integer and consider n + 1 points on the plane with distinct
abcissas. Does there exsist a polynomial whose graph passes through these
points?

Xy &€ €Io In

Theorem 10.9.1. Let k be a commutative field, xg, X1, . . ., X, distinct elements
of k and yy, yy, ..., y, any elements of k. There exists a polynomial A € k[X],

and only one, satisfying the conditions:

degA <n and AXx)=y for i=0,...,n.

This unique polynomial is called the Lagrange interpolating polynomial
associated to the data xg, ..., x, and Yo, ..., Y.

Proof. Consider the polynomial

wi(X)=(X —x0) - (X = xi—))(X — xi31) -+ (X — x).

It is zero at xq, ..., X;_y, Xi41,---, X, and, in view of the absence of x;, does
not take the value O at x;. Consequently, the polynomial
N wi(X)
A(X) = ; 10.10
X)=> o) (10.10)

i=0

is a solution. To prove uniqueness, suppose that A" and A” are two solutions.
Their difference A’'— A” vanishes at the n+1 points xo, . . ., x,. Since the degree
of the difference does not exceed n, it is necessarily the zero polynomial. O

Corollary 10.9.1. Let w(X) = (X — x0)(X —x1)--- (X — x). If A is the
Lagrange interpolating polynomial, all the solutions of the system P(x;) = y;
fori =0,..., n are given by the formula

P=w-0+A, Qeckl[X]
Proof. Divide P by w to get
P=w-Q+ R, degR <degw,

where the remainder satisfies the conditions R(x;) = P(x;) = y;. Since its
degree is less than or equal to n, we conclude that it is a Lagrange interpolating
polynomial for A. O

Formula (10.10) is interesting. It tells us, for example, that the coefficients of
the Lagrange interpolating polynomial are rational fractions, hence continuous
functions in the x; and y;. It also leads to a (very clumsy) algorithm. Return-
ing once again to the seventeenth century: Newton, who calculated without the
knowledge or technique of Lagrange interpolating polynomials, used the fol-
lowing basis (now called the Newton basis) of the vector space of polynomials
of degree < n:

X0 = 1,
X(” = (X —XO),
X® = (X —x0)(X —x1),

X® = (X —x0)(X —x1) -+ (X — Xp_1)-
Notice the absence of the monomial X — x, in this basis. If we put

A(X) =Olo+a|X‘” +Cl2X(2) +"'+(X,,X("),

the conditions A(x;) = y; become:

Yo = «,
3]
Y2 = ag+o(x — xo) + aa(xz — x0)(x2 — x1),

ao + oy (x; — xp),

Yo = ag+ o (x, — xg) + o2(x, — x0) (X0 — xy),

+"'+an(xn_XO)"'(xn_xn—I)'

The vector («y, - . ., @) is then the unique solution of the triangular Cramer
system, which reproves the existence and uniqueness of the interpolating La-
grange polynomial. The solution of a triangular system is an exercise that we
have already studied. Knowing that

_ Ye—0o— o (xy —xo) — -~ — oy (xg — x0) - - - (x¢ — x¢-2)
(xe — x0) -+ (x¢ — x¢-1)

a . (10.11)

our first attempt at solving the system is:

o =Yy
for £ ;=1 to ndo (10.12)
«calculate oy using (10.11)»

When we try to program the numerator of formula (10.11) we encounter a
difficulty
S:=y,—ao;
fork:=1tol—1doS:=8—oy*x77?

because we must find ourselves the coefficients of the system using the x;.
If we delay addressing this problem by naming it

prod(£, k) = (xy — xg) - - - (x¢ — Xx), (10.13)

the solution of the system becomes very simple:

oy =Yy,
for £ := 1 to n do begin
S=y,—ao;

fork:=1tol—1doS:=S—o*xprod(¢,k—1),; (10.14)

ap = S/prod(, £ — 1)
end
We only need to program the function prod, and this is mindless.

This code is certainly correct, but it is a Penelope code because the calcu-
lation of prod(¢, k) does not make use of that of prod(£, k — 1). However, we
can “surf” on the wave of calculations using first order recurrences. Consider

again the numerator of (10.11). To be certain to avoid stupidities, we first pass
into trace mode using sequences:

So = ye — ap, Py = x¢ — xo,
Sy =S —a Py, Py, = Pi(xy — x)),

Sect = So— 1Py, Po= Py (xg — x).
Next we get rid of the time index:

Si=y,—ap; Pi=xy —xp;
for k:= 1 to £ — | do begin

S=S—o*P,;
P:=@Gy—x)*P
end ;

a, :=S/P

If we carry this code into (10.12) we obtain the following very nice algorithm:

oo = Yo

for £ := 1 to n do begin
S=y, —ao; P=xe—Xxo;
for k :=1to £ — | do begin

[S:=S—ax*P; P:=(x;—x)*P (10.15)
end ;

ap:=S/P

end ;

Exercise 3

Transform algorithm (10.15) into a procedure (suppose that the data are real
numbers). Then rewrite the procedure to work over Q supposing that the data
are rational numbers.

Remark

The algorithm above is not the only one possible. If we put to simplfy
T = Xy — X,

and if we effect the division in (10.11) right away we obtain:

Ye

TOTTy - Ty
Qo (9] [25] Qy—|

oy =

oI - - - Ty (S IR 7 Tty Ty TTy—1

This presentation suggests that we use Horner’s method,
introduction of the sequence:

So =

S|_

S =

Sy =

S(_

Yes

Ye —Qp

So — o
ki

T

Ye— 0oy

TTHTT)
Ye — 0
TTHTT T2

Sp—1 — oy

Ty

T
[04] S| —]

T s

= Uy.

We obtain the celebrated method of divided differences:

for £ := 1 to n do begin

which leads to the

fori:=0tofl—1doS:=(S—a;)/(xe —x;);

oy =Yy

S:=y;
oy =S
end

The code is more compact. Nonetheless, it is slower and less precise because
it contains many divisions which make it numerically unstable. Note finally
that one can incorporate the statement « := y, into the loop by beginning the

loop at £ = 0.

10.10. Basis Change

When we calculate the Lagrange interpolating polynomial a la Newton, we
obtain coordinates with respect to the Newton basis. However, we often need
to know the coordinates in the canonical basis. Suppose, then, that we know
the coefficients ¢; of the polynomial

AX) =g+ X+ XP + 4 a, XM,

and that we want to calculate the coordinates a; in the canonical basis

Let us first consider the example:

AX)=ay+a X+ +a, X"

AX)=243(X—-2)—4X —2)(X —=3) +7(X —2)(X = 3)(X = 5).

Horner’s method allows us to view A(X) as the last term of a reverse sequence
where the calculations take place in the polynomial ring:

Ay =17 =17,
A; = —4+ (X —5)A3 = -39+ 7X,

A =3+(X-3)A, 120 — 60X + 7X?,

Ao =2+ (X —2)A; = —238+240X +74X> +7X3.

More generally, A(X) is the last term of a reverse sequence

An = Uy,
An—l = a,— + (X _xn—I)Anv
An—2 = a2+ (X — xn—Z)An—la

AO = g + (X —X())A|.

If we view i as representing time, A; becomes the state of the polynomial A
at the instant i during a reverse count:

A=qa,;

fori:=n—1downto0do A :=c¢; + (X —x,)A

To translate this algorithm to Pascal, we can:
« use the general procedures for manipulation of polynomials:

procedure Newton_to_canonical_basis(a : poly ; x:data ; var A : poly) ;
var i, k : integer ; U : poly ;
begin

annul(A) ; A[0] = «[n]; {A =a,}

for i :== n— | downto O do begin

annul(U) ; U[l] =1; U[0] = —x[i]; {U:= X — x;}

mult_poly(A, U, A) ; {A:=U-A}
A[0] := A[0] + «li] {A:=A+ a;}
end

end ;

o Pull the algorithm apart a bit more and amuse ourselves once again with
sequences. If we put

A (X) =a(()i)—|—a(li)X+...+ar(lf)X"’

the equation A; = o; + (X — x;) A4 gives

() _ U+D i+

a, = a,_, Xia,

)y __ G+D (i+1)

an—l - an—2 — X an—l ’
: (10.16)

(i) (i+1) (i+1)

a,’ = a, — X a ,

i i+1
al’ = o —x;al*".
If we use (10.16) to calculate a,, ..., ap in this order, we can do the calcu-
lations on site i.e. ‘staying inside’ the vector A = (ap, ..., a,):

procedure Newton_to_canonical_basis(c : poly ; x : data ; var A : poly) ;
var i, k : integer ;
begin

annul(A) ; A[0] = «a[n] ;

for i := n — | downto 0 do begin

for k .= ndownto | do Alk] := Alk — 1] — x[i] xA[k] ;

A[0] := «a[i] — x[i] * A[O]

end
end ;

The calculation of (10.16) from bottom to top provokes a catastrophe. Why?

Exercise 4

Find another algorithm for changing basis using the sequences

Bi=ay+a P+ +aPi, Pi=(X—xp) (X —x-1).

10.11. Differentiation and Discrete Taylor Formulas

To simplify the exposition, we suppose henceforth that the interpolation
points x; are the integers 0, 1, ..., n.

We know that the Lagrange interpolating polynomial defined by the con-
ditions P(x;) = y; has degree < n. The maximum degree is not necessarily
attained: if, for example, y; = ax; + b with a # 0, the degree is equal to 1. Is
it possible to determine this degree in advance?

10.11.1. Discrete differentiation
Consider the linear map A : R"™"' — R”" defined by

Ao, Yis oo s) =1 = Y0, Y2 = Yis vy Yn — Yn=1)-

We call it discrete differentiation. Since the dimension of a vector decreases
by one after each differentiation, we can differentiate a vector at most n times:

k| e Ay Ay Ay Aty
0 2 3 4 —17 34
| 5 7 =13 17
2 |12 -6 4
3 6 =2
4 4
If A is a polynomial and if we have y; = A(i) for x = 0, 1,...,n, the

derivatives of order greater than deg A are zero.

k| ye=AKk) Ay Ay Ay Ay
0 3 0 14 6 0
I 14 20 6

2 17 34 26

3 51 60

4 11

Discrete derivatives of the values of A(X) = X* +4X?—5X +3
To explain this phenomenon, define a discrete derivative A : R[X] — R[X]
on the polynomial ring by putting
AA(X) = AX + 1) — AX).
If we evaluate the polynomial AA(X) at the point x, we get:
(AA)x)=Ax+ 1) — Alx).

Since (AA)(x) is the discrete derivative of the vector (A(x), A(x + 1)) € R?,
we see that that the number A¥A(x) can be interpreted in two ways:

o We differentiate k times the polynomial A(X), then take the value at x of
the resulting polynomial.

o« We differentiate k times the vector (A(x), A(x + 1),...,A(x + k)) of
values of A(X) at the points x,x + 1,...,x + k.

The first interpretation shows that A*(A) = 0 since k > deg A.
Knowing that the Newton basis associated to the integers O, ..., n is

XO=1, xU=x, ..., X" "=X(X=-1-Xn+1),

an immediate calculation shows that for k > 0,

AX(k) = (X +])(k) —x®
=X+ (X+k=D[X+k—X]
=k X%,

Theorem 10.11.1. The following discrete Taylor formula holds for each poly-
nomial A € R[X]:

AA0)

A’A(0 A"A(0
AX)=A0) + —— T “)+—#xm+“-+¥X‘"’.

n!
Proof. Expand A in the Newton basis to get
AX)=ag+a XV 4+ X?P 4+ a, X,
Then take the discrete derivative n times in succession:
AX) =g+ XD + XD o fa, X,
AAX) = o) + 20XV + - na, XD,
A?A(x) =205+ 3203 XD 4+ -+ n(n — Da, X2,

A"A(X) = nla,.

Upon putting X" = X = 0 in these equations, we get k!, = A“A(0). O

Corollary 10.11.1. Let A = ap+o, XV 4+, XD+ - - +a, X" be a polynomial
with real coefficients. Then:

c o= AVAWO) k! ;
o the degree of A # 0 is the largest exponent k such that AV A(0) # 0 ;

o the coefficients of A are integers if and only if o, . .., a, are integers.

Proof. The first two assertions follow directly from the discrete Taylor formula.
To establish the third, note that if «, ..., @, are integers, then A clearly has
integer coefficients. Conversely, suppose that A has integer coefficients and
degree d:

A=ay+ - +as X, ay#0.

We already know that o; = a; = 0 for i > d. Comparing the monomials of d,
we obtain o, = a, € Z. We complete the proof by induction on degree. O

We can now determine the degree of the Lagrange interpolating polynomial.
Suppose that we are given x = (0, 1, 2,3,4,5) and y = (7,4, 5, 10, 19, 32).
The polynomial determined by the coefficients A(x;) = y; fori = 0,...,5
has degree 2 because A’y # 0 and A’y = 0.

Remark

We have the following pretty corollary:
If A € R[X], then A(Z) C Z if and only if the A(k)A(O) are all integers.

In effect, if A takes integer values on the integers, so does AA, and it follows
by induction that the A%*)A(0) are integers. Conversely, in the discrete Taylor
formula, the X% /k! are polynomials with integral values on the integers
(their values are O or a binomial coefficient).

10.12. Newton-Girard Formulas

Recall that P(X, ..., X,) is a symmetric polynomial if, for every permutation
s € 6,, of the indices,

P(Xys oo Xsy) = P(X1, ..., Xp).
The symmetric polynomials
o=y Xi,o=) XXj,...,on=X "X,
I<i<n I<i<j<n
are called the elementary symmetric functions in the variables X, ..., X,,.

Theorem 10.12.1. Let P(X,, ..., X,) be a symmetric polynomial with coeffi-
cients in a ring k and o, . . ., 0, the elementary symmetric functions of the X;.
There exists a polynomial Q(X,, ..., X,) with coefficients in the same ring k
such that

P(X|,...,X,,)=Q(U],...,Un).

We use this theorem, which is not difficult to prove. Note especially that P
and Q have coefficients in the same ring, so, for example, P € Z[X] implies
Qe Z[X].

Theorem 10.12.2 (Newton-Girard formulas). Consider the Newton sums

Sk(XI!"'!Xn):Xf+"‘X:, kEO,
which are manifestly symmetric in the X;.
e Ifl <k <n,
Sy —o =0,

S2 — S100 + 205, =0,
S3 — S01 + Sj05 — 303 =0,

Sn - Sn—lal +--+ (_l)n_lslon—l + (—l)"no,, =0;

o Ifk >n, putk =n+i withi > 0. Then
Snti = Spric101 + -+ (=1)" S0, = 0.

Proof. We are going to use formal series, that is, series in which we are not
concerned with convergence but only with algebraic operations on them.

For simplicity, suppose that n = 3. Consider the following polynomial in
the indeterminates X, X,, X5 and T':

o(T)y=0-X\T)(Il — X,T)(1 — X5T). (10.17)

We differentiate ¢(7T") with respect to T in two ways.
« First expand (10.17), then differentiate to get:

¢ (T) = —0y + 20,T — 303T. (10.18)
« Differentiate (10.17) directly to get:
T — { L%]). (10.19)
(1) = l—XT 1 —X,T 1—X3T(p '

Since we have the identity

1
1 - XT

=14+ XT+XT>+ X’T> + X*T* +
we can rewrite (10.19) as:
PM) = —(Xi+X3T+ X;T*+ X{T* + -)o(T)

—(X2 4+ X3T + X3T* + X3T° + - - -)o(T)
—(X3 4+ X3T + X372 + X§T° + -)o(T).

Upon multiplying by T and regrouping vertically, we get:
TQ'(T)+ (SiT + $T° + ST + -)o(T) = 0.
Now replace ¢’ by (10.18) and ¢ by the expansion in (10.17) to get

—oT + 20’2T2 — 3O3T3
H(SI T+ ST?+ T3+)1 —o T +0,T? —03T3) = 0.

It remains only to note that the coefficients of the T* are zero to obtain the
desired formulas. O

10.13. Stable Polynomials

Definition 10.13.1. We say that a polynomial P with real coeficients is stable
if all its zeroes belong to the half-plane Re z < 0.

This definition is essential for an engineer. When we design a wing of a
plane, a shock absorber on a car, or an electric circuit, we want to know how
to be certain that their oscillations decrease rapidly no matter what the initial
conditions. In nice cases, one can show that the oscillations occur among the
solutions of a differential equation with constant coefficients, say

Y +ary" ™ ot ay 1y +ay =0. (10.20)

Let P(X) = X"+a X" "+ .- +a,_, X + a, be the characteristic equation
of the equation and o + iB, its zeroes, so that the solutions of (10.20) are of
the form

Do P e B =3 p(t)[cos(Bur) + i sin(Ber) e,

where the p,(r) are polynomials. If the characteristic equation is stable, that
is, if all o are less than O, we can be certain that all the solutions are damped
sinusoids which die as ¢ tends to +o00.

An immediate consequence of the definition of stability is the following.

Proposition 10.13.1. If A and B are two polynomials with real coefficients,
then

A and B are stable <= A - B is stable.

Recall that a polynomial with real coefficients is a product of irreducible
polynomials of first and second degree:

» The polynomial X + a is stable if and only if a > 0.

o The irreducible polynomial X* + aX + b is stable if and only if both a
and b are positive since the roots are %(—a +iv/—A) with A =a’>—4b < 0.

If we combine these two remarks and the proposition, we see that

« the coefficients of a stable polynomial with real coefficients are either all
positive, or all negative;

« the values of a stable polynomial at x are never zero for x > 0 and have
the same sign as the coefficients of the polynomial.

Remark

The condition ‘all coefficients are positive’ is not sufficient for stability. For
example, x* + x2 4+ x + 1 is not stable because i is a root.

Is it possible to decide if a polynomial is stable without knowing the roots?
The classical response to this celebrated problem uses Routh-Hurwitz deter-
minants. In what follows, we present another method and program.

Theorem 10.13.1 (Sh. Strelitz?). Let A = X" +a, X" + - +a, be a poly-
nomial with real coefficients and roots «,, . .., o, and let

B=X"+bX"""+.. +b,

be a monic polynomial with real coefficients, degree m = %n(n — 1), and roots
aj+aj;forl <i < j<n Then:

A is stable <= all coefficients of A and B are positive.

Proof. Suppose first that A is stable. Since the zeros of A are in the half-plane
Rez < 0, we have Re(a; + ;) < 0, which shows that B is stable with positive
coefficients because it is monic.

Conversely, if A has positive coefficients, the real zeroes of A satisfy the
condition x < 0. Let @ = x + iy be a non-real zero of A, so that y # 0.
Since « is a zero of A different from o, we know that ¢« + o = 2 x is a real
zero of B satisfying x < 0 since B has positive coefficients. o

Examples
e If A= X34+ aX?+bX + ¢, the degree of B is m =3 and

B =X’+2aX?+ (a* + b)X + (ab —).
The polynomial A is therefore stable if and only if a, b, ¢ > 0 and ab > c.

e If A= X*+aX>+bX?+ cX +d, the degree of B is m = 6 and with
much patience, one finds that:

B = X%+ 3aX’ + (3a® + 2b) X* +(a® + 4ab) X3+ (2a%b + b* + ac — 4d) X?
+(a’c + ab? —4ad)X + (abc — a*d — ?).

More generally, if we know how to express the coefficients of B using
those of A without calculating the roots of A, we will obtain a test that tells
us whether or not A is stable. Let S, be the Newton sums of the roots of A:

k

Sk =af + - +af.

2 On the Routh-Hurwitz Problem, American Math. Monthly 84 (1977), pp. 542-544.

Knowing that we have a; = (—1)'o;(a, ..., @,), the Newton-Girard formulas
for the polynomial A are, for k < n,

Sy +a =0,
52 + S,a, +202 =0,

S3+Sza| +S|a2+3a3 =0, (1021)

Sn + Spcray + -+ S1ay- + na, =0,
and, when k = n + i exceeds n:
Sn+i + S,,+,~_|a1 + -+ S,»a,, = 0, i >0. (1022)

Now consider the Newton sums 7, of the roots of B:

T(= Z(C{,’ +(Xj)(.

I<i<j<n

For £ < m, the Newton-Girard formulas of the polynomial B are:

T, +b =0,
T, +Tb +2b, =0,

T3 + Toby + T1by + 3b3 =0, (10.23)

T+ Toiby + -+ Tiby_y +mb, =0,
The formulas (10.21), (10.22) and (10.23) are linked by the following result.

Proposition 10.13.2. For all € > 1:
e .
= 250+ Yo cisise. (1024)
i=0

(Recall that So = n by definition.)

Proof. If we expand the sum

(e + ...+ exz,,)2: ez +_”+e2n,,_+_2z er(z,+:,)’

I<i<j<n
as a (formal) series, we obtain:
I I 1
[Z i) = Z Cr2), o
i=0 i! I<i<j<n °°

It suffices to equate the coefficients of r¢.]

We can find the b; in terms of the a; by using the scheme:

(1021) and (10 22) (10 24)

(10 23)

(ai) > (Sk) > (Te) (b)). (10.25)

If the a; are integers, this scheme shows that the b; are rational. Must we
use the rational type to program the calculation of the b;? Happily, we have
the following result.

Lemma 10.13.1. The coeffcients b; are symmetric polynomials with integer
coefficients in the variables a;.

Proof. We have b; = (—l)ij, where o ; is the j-th elementary function in
them = %n(n — 1) variables «; +« ;. Consequently, o ; is a symmetric polyno-

mial with integer coefficients in the n variables o, ..., a,. Thus, b; is also a
polynomial with integer coefficients in the variables @, = (—1)'0; (¢, ...,).
O

The declarations of the program

Since we are not doing a polynomial operation (addition, multiplication, or
division), we prefer to define a type coefficient. We will also need Newton

sums.
program stable_polynomial ;

const deg_max = 10 ;

type coeff = array(l ..deg _max] of integer ;

Newton_sum = array|0 . . deg_max] of integer ;

var a, b : coeff ; S, T : Newton_sum ; m, n: integer
Attention: with degre_max = 10, we can only test polynomials A of degree
< 5 since C52 = 10. The maximum degree here is that of B, not of A!

The main body of the program
This follows word for word the scheme (10.26).

begin

message ; choose(a, n) ;
m:=(nmx*xn-—1))div2;

coeff _to_Newton_sum(a, S, n, m) ;
change_Newton_sum(S, T, m) ;
Newton_sum_to_coeff (T, b, m) ;
display(b, m)

end .

The procedure coeff_to_Newton_sum
We want to implement (10.21) and (10.22); that is,

for k := 1 to n do «calcultate Sy using(10.21)» ;
for k :=n+ 1 to m do «calcultate S; using(10.22)» ;

the second loop picking up the results of the first. Being a little more explicit,
we have:
Sy = —ar;
for k. =2tondo «S¢ :=—(Sk_ja; + -+ Srar_y + kay)» ;
fork:=n+1tomdo «Sy ;== —(Si_1a + -+ Syak_)»

Translation into Pascal is now a formality. It is worth taking the opportunity
to initialize Sy, an indispensable precaution because (10.24), which expresses
the T; in terms of the §;, explicitly involves S.

procedure coeff _to_Newton_sum(a : coeff ; var S: Newton_sum ;
n, m: integer) ;

var i, k, temp : integer ;

begin

S[0] := n; {do not forget!'}

S[1] := —a[l];

for k := 2 to n do begin

temp :=0;

fori:=1to k— | do temp := temp + S[k — i] x ali] ;

S[k] := —(temp + k x a[k])

end ;

for k := n+ 1 to m do begin

temp :=0;

fori:=1tok — 1 do temp := temp + S[k — i] x a[i] ;

S[k] := —temp

end

end ;

The procedure change_Newton_sum
A first translation of the system (10.23) gives:

for £ :=1 to m do
«Ty := 3(SoSe + CyS1Se—1 + Ci$2Sy—2 + - -+ + CiSeSo — 24 S¢)»

We turn once more to the classical calculation of a sum which we turn into a
loop:

temp = SoSe

for i :== 1 to £ do temp := temp + CLSng_; ;

Ty := 3(temp — 2'Sy)

We could have written our procedure by programming the function (i, £) —
C! which could calculate any binomial coefficient.’> But this would be sloppy
because we do not need the complete Pascal triangle: the line with the number £
suffices for our needs.

Once again, we try to surf on the wave of the calculations by seeking a
recurrence relation relating C; and C,™":

; Le—-1---(—-i+1 =i+
C, = () (.l+).= 2"(1—.4—), i>1.

I x2x---x(@—1)xi i
We benefit from the internal loop which increments i to insert this recurrence
so as to determine the binomial coefficients as we go along:

C:=1; temp:= S50S; ;

for i :== 1 to £ do begin
C:=C-(t—i+1)/i; {now, C=Ci}
temp = temp + CS;S¢_;

end ;

T, .= %(temp - 2(Sg)

Similarly, to avoid programming the function £ — 2% we introduce the
recurrence 2¢ = 2 x 2¢~! in the external loop that increments ¢:

P:=1;
for £ := 1 to m do begin
P:=2P; {now, P =2%)

C:=1; temp:= SyS¢;

for i := 1 to ¢ do begin
C:=C-(—i+1)/i; {now, C=Ci}
temp = temp + CS;S¢_;

end ;

T, .= %(temp — PSy)

end

A little Pascal packaging where “/” becomes as usual “div”’ and our proce-
dure is ready!

procedure change_Newton_sum(S : Newton_sum ;
var T : Newton_sum ; m : integer) ;
var i, £, C, P, temp : integer ;
begin
P=1;
for £ := | to m do begin
]C =1;

* For beginners: in view of the limits on integers in Pascal, the worst way to
program this function would be to use the factorial function and the formula
C,=2¢!/i(¢—i)!. Formula C, =¢(¢{ —1)--- (¢ =i+ 1)/i! is better.

P:=2xP; {now, P =2
temp = S[0] * S[€] ;

for i := 1 to £ do begin
C:=(Cx(—i+1)divi; {now, C=C)}
temp = temp + C x S[i] * S[€ — i]

end ;

T[¢] := (temp — P x S[£]) div 2

end

end ;

The procedure Newton_sum_to_coeff

Writing this procedure is entirely similar to the procedure coeff_to_Newton_sum.

procedure Newton_sum_to_coeff (S : Newton_sum ;
var b : coeff ; m: integer) ;
var i, £, temp : integer ;
begin
b(l] := —-T[1];
for £ := 2 to m do begin
temp = T[] ;
fori:=1tof¢—1dotemp:=temp+ T[£ —i] *b[i] ;
b[€] := —temp div i
end
end ;

10.14. Factoring a Polynomial with Integral Coefficients

Let P € Z[X] be a nonconstant polynomial whose coefficients are integers.
We want to find all decompositions of P (if such exist) as a product of two
nonconstant polynomials with integer coefficients. More precisely, we seek
two polynomials A, B € Z[X] satisfying the conditions:

P=AB, degA >0, degB > 0.

10.14.1. Why integer (instead of rational) coefficients?

If P is irreducible in Z[X], there is no point seeking a factorization in Q[X]
because the result is the same.

Theorem 10.14.1. I[f U,V are two polynomials with rational coefficients such
that UV has integral oefficents, then there exists a rational number k #* 0
such kU and k='V both have integral coefficients.

To show this result, we introduce the following tool.

Definition 10.14.1. The content of a polynomial P € Z[X], denoted cont(P),
is the largest integer k > 1 such that k=" P also has integral coefficients.

It follows immediately from the definition that the content is the GCD of
the coefficients of P and that that « ~' P has content equal to 1.

Lemma 10.14.1 (Gauss’s lemma for contents). If A and B are two polyno-
mials with integer coefficients, then cont(A B) = cont(A) - cont(B).

Proof. Put C = AB. If @ and 8 are the contents of A and B, respectively, the
equation

C =afa'A)B'B),

already shows that the content of C is a multiple of «8. To finish, it suffices
to show that the content of (~'A)(8~'B) is equal to 1, which we reduce to
proving the lemma in the case when the contents of A and B are equal to 1.

Put A =) a; X', B =) b;X’ and let p be any prime number. Since
the contents of A and B equal 1, we have the right to talk of the smallest
indexes iy and jo such that a; and b; are not divisible by p. Knowing that the
coefficient ¢; 4, of X°*% in AB can be writen

Cig+jo :af(>bj() + Zaibj = ai()bj() mod P,
i+j=io+jo
i<igorj<jo
we see that c; 4, is not divisible by p. Since p was arbitrary, the GCD of the
coefficients of AB is equal to 1.]

Proof of the theorem. Let U, V € Q[X] be such that UV € Z[X].

o If U has integral coefficients and if « is its content, we can write UV =
(«~'U)(V) and cont(k~'U) = 1. Since we do not know if «V has integer
coefficients, introduce an integer £ > 1 such that €« V has integral coefficients.
From €UV = (k~'U)(€x V) and Gauss’s lemma, we deduce:

cont(£UV) = cont(k ~'U) - cont(€x V) = cont(€x V).
On the other hand, cont((UV) = €cont(UV) since UV has integral coeffi-

cients. Thus £ divides the content of ¢xV, i.e. kV has integral coefficients.

« If U does not have integral coefficients, let k > 1 be the smallest integer
such «U has integral coefficients. Then UV = (kU)(x ~'V) reduces us to the
preceding case. O

10.14.2. Kronecker’s factorization algorithm
Consider the polynomial
P=3X"+15X"+24X* +21X +9
and let val_P denote the following vector in Z*:
val_P = ((P(0),..., P(4)) = (9, 72,315,936, 2205).
Letting Div(a) denote the set of positive divisors of the integer a, we have:
Div(9) = {1, 3,9}
Div(72) ={1,2,3,4,6,8,9, 12, 18, 24, 36, 72};
Div(315) ={1,3,5,7,9, 15,21, 35, 45, 63, 105, 315};
Div(936) = {1,2,3,4,6,8,9, 12, 13, 18, 24, 26, 36, 39, 52,
72,78, 104, 117, 156, 234, 312, 468, 936};

Div(2205) = {1,3,5,7,9, 15, 21, 35, 45, 49, 63, 105, 147, 245,
315, 441, 735, 2205}.

Consider the set:
P = Div(P(0))x --- x Div(P(4))
= Div(9) x Div(72) x Div(315) x Div(936) x Div(2205),

This is a large set, since Card P =3 x 12 x 12 x 24 x 18 = 186 624.

Suppose that P = AB is a factorization of P. Since

P(x)=Ax)B(x) for x=0,...,deg(P),

the vectors

val_A = (A(0), ..., A(deg(P))) and val_B = (B(0), ..., B(deg(P)))

are two elements of P.

With the notation specified, we can find all factorizations of P using the
following method due to B.A. Hausmann* (called Kronecker’s algorithm): con-
sider all the vectors (ay, ...,a,) € P, calculate the b; = P(i)/a;, construct

4 B.A.Hausmann, A new simplification of Kronecker’s method of factorization of
polynomials, American Mathematical Monthly 47 (1937), pp. 574-576.

the Lagrange interpolating polynomials defined by the conditions A(i) = q;
and B(i) = b; and verify that this is a factorization. For example:

val_A = (1,2,3,4,5), AX) =X + 1,
{ val_B = (9, 36, 105, 234, 441), B(X) =3X> + 12X2+ 12X + 9,
val_A = (1,4,7, 12, 21), A(X) = (X = 3X2+ 11X + 3),
{ val_B = (9, 18, 45,78, 105), B(X) = —-2X3+15X%?—-4X +09.

The first pair is a factorization; the second isn’t for two reasons: the coefficients
of A are not integers and the degree of AB is too high. This last remark will
put us on the way.

Theorem 10.14.2. Let P, A, B be nonconstant polynomials with coefficients
in Z satisfying the condition deg(A) + deg(B) < deg(P). Then, the following
equivalence holds:

P=AB < P(x)=AMx)B(x) for x=0,...,deg(P).
Proof. The direction “="is trivial. For the converse, remark that deg(P—AB)

< deg(P) and (P — AB)(x) =0 forx =0,...,deg(P) forces P— AB =0.
[m]

We can write the Kronecker algorithm very loosely as follows (put p;, =
P (k)):

for (ap,ai,...,a,):=(1,1,...,1) to (py, py,-..,p,) do begin
Lagrange(A, ao, a1, . . ., Qy) ;
(bo, b1, ..., by) = (po/ao, py/ar, ..., p./an) ;
Lagrange(B, by, by, ..., by,) ;

if integer_coefficents(A) and integer_coefficents(B)

and (degree(A) + degree(B) < degree(P))
then begin display(A) ; display(B) end
end

A close analysis of this sketch raises the following questions:

» The use of ‘for’ loop tacitly assumes that we know how to run linearly
over the set P = Div P(0) x --- x Div P(n).

« The definition of the b; is not at all clear: it is incorrect when p; is zero.

« We made a rather daunting implicit hypothesis: we only defined the set

Div(p;) when p; > 0 and we do not have the right to suppose that the values
a; and b; of the factors A and B are positive.

10.14.3. Use of stable polynomials

It P is a stable polynomial, then A and B are also stable; moreover, since P =
AB = (—A)(—B), we know that we can restrict our attention to polynomials
with positive coefficients.

Since the polynomial P that we wish to factor is not necessarily stable, we
translate the coordinate axes horizontally and factor the polynomial Q(X) =
P(X + p) where u is a strict upper bound on the moduli of the roots of P:

P(z) =0 = |z|l < .

The polynomial Q is stable because Q(z) = P(z+u) = 0 implies |z+pu| < u,
whence:
Re(z +p) < lz+pul < p.

If P(X)=P,X"+---+ Py, we put:

O@t) = |Plt" = (I1Paci | 1" - 4 | Pol)

P,_ P
B =R

Since the function ¢ — 1/t* is decreasing for + > 0, the rational function
in parentheses varies from —oo to 1 as ¢t grows from 0 to 4o00. Thus, the
function @ vanishes once and only once on R.

Lemma 10.14.2. If £ > 0 is the unique real zero of the function ®(t), then

Pz) =0 = |z| =§.

Proof. In effect, bounding — P,z" = Puo12"™' + -+ + P, gives
[Pl 2" < | Pucilzl”™" 4+ | Pol,

so that ®(|z|) < 0, whence |z] < &. O

The case P(X) = ®(X) shows that the result is best possible.

Translating these considerations into code is easy. Let P € Z[X] be a
polynomial of any degree n > 0. To determine the integral abscissa xo > &
that will become the new origin, we content ourselves with brute force.

procedure stable_abscissa(P : poly ; var xo : integer) ;
var i : integer ; O :poly ;
begin

&[n] .= abs(P[n)) ;

for i := n— 1 downto 0 do ®[i] := —abs(P[i]) ;

x0:=0;
repeat xo := xo + | until value(®, xy) > 0
end ;

In view of the above, it is clear that Q(X) = P(X + xg) is stable.

Remark

The automatic search for xo > & is not a universal panacea. When P(X) =
(X + 1)?, this algorithm finds xo = 3 although xo = 0 would do because P is
already stable. The result is annoying:

e If xo =3, we have Card(Div(16) x Div(125) x Div(36)) = 180.
o If xo =0, we have Card(Div(l) x Div(4) x Div(9) = 9.

Thus, the time for calculation grows when we replace P by Q ; more-
over, since the coefficients of Q are bigger that those of P, we cannot factor
polynomials whose degree is too big.

10.14.4. The program

We now know enough to begin to write our program. The declaration of types
does not present any difficulty.

const deg_max =5 ;

type poly = array[0 . . deg_max] of integer ;

values = array[0 .. deg_max] of integer ;

var P, Q : poly ; val_P,val_Q : values ; deg : integer ;

We could do with a single type poly. For clarity of exposition, it is preferable
not to confound values and coefficients.

The main body of the program

We begin by entering the polynomial P. The procedure choose is also charged
with eventually modifying the sign of P when the coefficient of the highest
degree is negative. This done, we find the new origin xo = stable_abcissa and
translate axes, which amounts to replacing P(X) by P(X + xo).

begin
message |
choose(deg_P, P) ;
find_stable_abcissa(P, stable_abcissa) ;
translate(P, stable_abcissa, P, deg_P) ;
initialize(val_P, val_A, deg_P) ;
repeat
decomposition_factors(val_P, val_A, deg _P) ;
next(val_P, val_A, finish, deg_P) ;
until finish
end .

Linearly traversing the set P (which is, recall, the product of the sets
Div(P(x)) for x = 0, ..., n) is accomplished by repeated calls of the pro-
cedure next which returns, according to the case, the next vector val_A or the
boolean finish which interrupts the “repeat” loop.

The procedure decomposition_factors

We now show that the stable polynomials have also some qualities. Since A
and B have coefficients > 0, the functions t — A(t¢) and ¢ — B(t) are strictly
increasing on R,. Consequently, the vectors val_A and val_B must satisfy the
draconian conditions

A0 < A(l) <---<A(n) and B(0) < B(l) <--- < B(n)

if they are to have a chance of being among the values of a divisor of P. Since
Lagrange interpolations require rather lengthy calculations, we only launch
them knowingly. For this, we ask the procedure reconstruct:

« to inform us if A has integral coefficients via the boolean int_coeff_A;

« to determine the degree deg_A of A, which can be done, as we shall see
a little later, without entirely calculating A.

If the coordinates a; of A in the Newton basis consisting of the X* are
integers, the procedure reconstruct returns those in A; otherwise, A contains
indefinite values which have no meaning.

procedure decomposition_factors(val_P, val_A : values ; deg_P : integer) ;
var A, B : poly ; val_B : values ; deg_A, deg_B : integer ;
begin

if increasing_seq(val_A, deg_P)

then begin

division_values(val_P, val_A, val_B, deg_P) ;

if increasing_seq(val_B, deg_P)

then begin

reconstruct(val_A, int_coeff_A, deg_A, A, deg_P) ;
reconstruct(val_B, int_coeff_B, deg_B, B, deg_P) ;

if int_coeff_A and int_coeff _B and (deg_A + deg_B < deg_P)
then begin

return_canonical_basis(A, A, deg_A) ;

translate(A, —stable_abcissa, A, deg_A) ;

display(A) ;

return_canonical_basis(B, B, deg_B) ;

translate(B, —stable_abcissa, B, deg_B) ;

display(B) ;

verification(A, B) {compares AB and P}

end

end

end

end ;

The names of the other procedures or functions speak for themselves.

The procedure next
We use the algorithm detailed in Chapter5 to linearly traverse the set P =
Div(P(0)) x - - - x Div(P(n)) in the lexicographic order.

procedure next(val_P : values ; var val_A : values ;
var finish : boolean ; deg_P : integer) ;
var i, k : integer ;

begin
finish := false ;
k:=-—1;

for i := 0 to deg_P do if val_A[i] < val_P[i] then k :=1i;
if k = —1 then finish := true

else begin

val_Alk] .= next_divisor(val_P[k], val_A[k]) ;
fori:=k+ 1 to deg_P do val_A[i] := 1

end

end ;

We ask that the function next_divisor send us the smallest divisor of val_P[k]
which is strictly larger than val_A[k]. (When your program runs successfully,
you can accelerate things spectacularly by pre-calculating once and for all all
divisors of each P(k).)

The procedure reconstruct

When the data are integers, we have seen that the Lagrange interpolating
polynomial has rational coefficients. But since the interpolating points are

consecutive integers 0, ...,n where n = deg_P, we are going to use the
discrete Taylor formula. Recall that if «y, ..., o, are the coordinates of A in
the Newton basis {1, XV, ..., X"}, we have:
AFA(O
o = k '()~ (10.26)

We are going to use this formula to calculate the o, because

« the largest integer k such that A¥A(0) # O is the degree of A ;

« the o are obtained by dividing by k ! — if there were a nonzero remainder,
then A would not be an element of Z[X].

Thus, we can avoid introducing rational numbers in our program, which
simplifies writing a lot! The procedure reconstruct

« stores AFA(0) in A[k];

« deduces the degree of A from A[k] = A¥A(0);

« tries to divide A[k] by k! to make oy = A¥A(0)/k ! If the remainder is
zero, the variable A[k] contains o ; otherwise, the procedure leaves A[k] alone
and informs us via int_coeff_A that A does not have integral coefficients.

procedure reconstruct(val_A : values ; var int_coeff_A : boolean ;
var deg_A : integer; var A : poly ; deg_P : integer) ;

var I, k, fact : integer ;

begin

annul(A) ; A[0] = val_A[O] ;

for k := 1 to deg_P do begin

for i := O to deg_P — k do

val_Ali] == val_Ali + 1] — val_Ali] ;

Alk] := val_A[0]

end ;

for i := 0 to deg_max do if A[i] # O then deg_A =i ;

int_coeff _A :=true ; fact:=1; k:=1;

while (k < deg_P) and int_coeff_A do begin

fact .= k * fact ;

if A(k] mod fact = 0 then A[k] := A[k] div fact

else int_coeff_A = false ;

k:=k+1

end

end ;

Note the second internal loop: we translated a ‘for’ loop into a ‘while’ loop
in order to insert the boolean integer_coeff A which interrupts the loop as soon
as we know that A does not have integer coefficients.

10.14.5. Last remarks

In our days, the algorithms employed by formal computational software are
of a totally different nature (and are infinitely faster). Since these algorithms
are very sophisticated, there is no question of programming them here.

We give, however, a glimpse of a more mature (and more difficult) algo-
rithm. The idea is to reduce to factoring a polynomial with coefficients in a
finite field.

Let p be a prime number and let P — P be the canonical map of Z[X]
to Z,[X] obtained by considering the coefficients of P as classes modulo p.
Smce the canonical map Z[X] — Z,[X] is a ring homomorphlsm every
factorization P = AB in Z[X] gives rise to a factorization P=ABinZ X1

« If P is irreducible in Z,[X1, there is no point of seeking a decomposition
of P into factors in Z[X] ;

« By contrast, if P factors in Z,[X]1, one can try to factor P in other prime
fields. If one finds a prime number ¢ for which P is irreducible, we are reduced
to the preceding case. Otherwise, one collects the information and tries to lift
the factorizations in different Z,[X] to Z[X] using the Chinese Remainder
Theorem. If this is impossible one knows that P is irreducible in Z[X].

Since the Chinese Remainder Theorem finds an infinity of solutions, one
bounds the coefficients of A and B using the coefficients of P to choose a
good couple (A, B).

This method also works with polynomials in several indeterminates.

11. Matrices

11.1. Z-Linear Algebra

In studying vector spaces, one shows that:

(i) every vector subspace V of R" has a finite number of generators (one
says that V is of finite type);
(ii) every vector subspace V of R" has a basis and two bases always have
the same cardinality (whence the notion of dimension) ;
(i) if ey, ..., e, generate a vector subspace V, one can always extract a basis
of V from this set;
(iv) every linearly independent subset of R" can be completed to a basis of R".

We are going to examine what becomes of these results and the algorithms
associated to them, when we replace R” by Z". For example, a subgroup of Z?
other than {0} or Z* resembles one of the following two subgroups:

OOOOOAOOOOO O @€ O O O O O O @ O
O O O O O O O O O O O O O @ O O @€ O O O
O O O 0O O O O O e O O @€ O O O O O O e O
O O O O O O @ O O O O O O e O O @ O O O
O O O @ O O O O O O O O O e O @ O O O
[] O (o) []
0] (@) (o)]
Fig. 11.1. Subgroup x —2y =0 Subgroup x — 2y =0 (mod 4)
Definition 11.1.1. We say that x,, ..., x, generate the subgroup M of 7" if
every x € M is of the form x = ajx| + - -- + a,x,, where all a; belong to 7.
Definition 11.1.2. We say that the vectors x|, ...,x, € 1" are Z-linearly in-
dependent if aj x| + - - - + a,x, = 0 implies that ay = --- = a, = 0 each time

the a; belong to Z.

Proposition 11.1.1. There is an equivalence:

Z-linearly independent <= Q-linearly independent.

Proof. Let x;,...,x, be Z-linearly independent vectors and suppose that
ayx; + -+ ax, = 0 with a¢; € Q. For appropriately chosen large N > 1,
the linear combination (Na;)x; + - - - + (Na,)x, = 0 has integral coefficients.
Thus Na; = 0, which shows that the x; are Q-linearly independent. The con-
verse is clear. m]

This result is important because we can henceforth talk of linear indepen-
dence without having to specify whether we are talking about it with respect
to Z or to Q.

Definition 11.1.3. We say that €\, ...,&, € M form a basis of the additive
subgroup M of Z" if they both generate M and are linearly independent.

Remarks

1) A basis €y, ..., ¢ of a subgroup M of Z" is also a vector space basis of
the subspace Vectg(M) = Qe + --- + Qe, C Q" generated by M. Thus, two
bases of M necessarily have the same cardinality. Hence, we have a notion
of dimension (with respect to Z or Q) once we succeed in establishing the
existence of bases.

2) It is time for a counterexample: the results (iii)) and (iv) do not hold
for subgroups of Z". To convince ourselves of this, consider the subgroup M
of Z? generated by the vectors

e1=2,0), &=1(0,3), &=(5,>73).

Itis easy to see that M = Z? and Vectg(M) = QZ. These three vectors are not
linearly independent because dimg Q® = 2; any two are a basis of Vectg(M),
but do not generate M.

Definition 11.1.4. We say that a matrix is unimodular if it has integral coef-
ficients and if its inverse also has integer coefficients.

Proposition 11.1.2. Let A be a square matrix with integer coefficients. Then:
A is unimodular <= det A = *1.

Proof. If A~' has integer coefficients, then both det A and det(A~') are inte-

gers, and det A -det(A~') = 1 implies det A = %1. Conversely, if det A = %1,

the classical formula A=' = (1/det A)'Adj (A) shows that the inverse of A
has integer coefficients. D

Definition 11.1.5. The unimodular matrices form a group, denoted Gl(n, Z),
under matrix multiplication.

Definition 11.1.6. A matrix is said to be an elementary matrix if it is unimod-
ular and one of the following three types:

e E,j(A)=1+AE;; withi# j; itsinverse is E; j(—A).
e D; =diag(l,...,—1,..., 1) which is its own inverse.

o T;j = the matrix obtained by interchanging the i-th and j-th rows of the
identity matrix; this matrix is also its own inverse.

Manipulation of matrices

Let M be a matrix with integer coefficients and rows Ly,...,L,. A row
operation on M consists of doing one of the following operations:

Matrix Operation New matrix
M Liz=Li+AL; M =E, ;)M
M Li:=—-L; M =DM
M Li2L; M =T ;M

We will see a little later that one does not need to memorize these matrices; it is
necessary only to note that performing row operations on a matrix M amounts
to multiplying M on the left (that is, premultiplying M) by an elementary
matrix.

Transposing the preceding equalities shows that column operations on M
amount to multiplying on the right (or postmultiplying) by an elementary ma-
trix:

Matrix Operation New matrix
M K=K, +)K; M =ME;;(})
M K :=—K; M' = MD;
M Ki 2K, M = MT,;

For beginners
« It suffices to know that elementary matrices exist.

« A mnemonic device to remember the above is the R-C rule: replace the
dash by the matrix M: to perform a row operation on M; one multiplies
before by an elementary matrix; to perform a column operation on M, one
multiplies after.

» Here are two classical errors to avoid. The first is to multiply a line (or
column) by a rational number: the only multiplication allowed is changing the
sign of a row (or column). (Since we are working exclusively with integers, we
only have the right to multiply by the units of Z, that is, by £1— otherwise,
the inverse transformation would not be definited by a matrix with integer
coefficients.) The second error consists of replacing the row L; (resp. the
column K;) by the combination aL; + bL; (resp. aK; + bK;), which is not
allowed when a # £1.

11.1.1. The bordered matrix trick

When one wants to know explicitly the row and column operations used, one
uses a method that we already encountered in Chapter 8 when studying the
Blankinship algorithm.

» Suppose that we want to perform row operations on M. Let

myqy... mp, 1 0 ... O
~ myy... nmyy o1 ... 0
M=M=)

mygp... Mg 0o 0 ... 1

be the matrix obtained from M by bordering it horizontally with the iden-
tity matrix with the same number of rows as M. To perform row operations
on M amounts to multiplying it on the left by (unknown) elementary matri-
ces E, ..., E:

Ei- - E\M = (Ey---E\M,E,--E\I).

If we put E = E; --- E;, we obtain EM = (EM, E): the matrices E; being
multiplied together without knowing each separately!

e In a similar way, if we perform column operations on the bordered matrix

mp, ... mp,
> M m. m. A
M = — r.l r.s ,
< 1) 1 ... O
o ... 1
the operations E|, ..., E; (in this order) automatically give:

~ _(ME,---E\ _ (ME,---E
ME,...E,(_(IE]WEI()_< BB)

11.1.2. Generators of a subgroup

Theorem 11.1.1. Every subgroup M of Z" is of finite type; that is, it is a set
of linear combinations with integer coefficients of a finite number of vectors
inM.
Proof. When n = |, the result is well-known: every subgroup of Z is of the
form dZ, hence generated by an element d of M. Now, suppose that the result
is true for an integer n > 1 and let M C Z"*' be a nonzero subgroup.

If M is contained in Z" x {0}, the result holds (by the induction hypothesis).
Otherwise, consider the projection ¢ : M — Z:

(,D(xla .. -axn+l) = Xn+1-

Since ¢(M) is a nonzero subgroup of Z, we have ¢(M) = dZ with d > 0 and
there exists at least one vector € € M such that ¢(¢) = d. For x € M, one can
write p(x) = k(x)d, so x —ke € ker¢. But, by induction the additive subgroup
kero = M N(Z" x {0}) is generated by ¢, ..., &, € M, which shows that x is
a linear combination with integer coefficients of the vectors ¢, €,...,¢&,. O

Theorem 11.1.2. The vectors ¢\, ..., &, are a basis of 7" if and only if the
matrix of these vectors in the canonical basis is a unimodular matrix.

Proof. First suppose that ¢y, ..., ¢, are a basis. Let e, ..., e, be the canonical
basis of Z" and put

x=xie1+ -+ xen =518+ + &8,

Consider the matrix £ = (e, ...,¢&,) with columns ¢, ...,¢, as well as the
column matrices ¥ = '(xi,...,x,) and € ='(&,, ..., &), so that we have the
change of basis formula ¥ = E .

To say that ¢, ...,¢&, is a basis of Z" means that £ = E'% has integral

coordinates each time that ¥ does. Upon choosing x = e, (the first vector of
the canonical basis), we obtain the vector with integer coordinates E=Ee,
which shows that the first column of E~' has integer coefficients, etc.
Conversely, the columns of a unimodular matrix are a basis of Z" since the
coordinate changes are made over the integers. O

11.1.3. The Blankinship algorithm

We consider how to adapt the method of Gaussian elimination and pivoting to
the integers. We have already encountered this algorithm in the dimension two
case in Chapter &; its generalization is immediate. Let ay, ..., a, be integers
which are not all zero. Suppose that we want to calculate simultaneously the
GCD of the a; and a particular solution u, ..., u, of the Bézout equation:

wiay + -+ uya, :GCD(a|,...,a,,).

We again content ourselves with presenting the generalization by example.
Suppose that n = 3 and a; = 9, a; = 5 et a3 = 7. Begin by bordering the
vector '(9, 5, 7) by the identity matrix, obtaining a matrix My on which we
will perform row operations. The operations (see Table 11.1) are driven by the
first column to which we apply the Euclidean algorithm.

The (1, 1) entry of the matrix M4 contains the desired GCD; across from
it (on the first row) we find the solution of the Bézout equation. Thus, we
obtain GCD(9, 5,7) = 1, which is not surprising since, for example, 9 and 5
are relatively prime. One checks directly that (0, 3, —2) is a solution of the
Bézout equation: 0-9+3-5-2-7=1.

Old matrix Operation New matrix

0 ' M=(50 1 o0
I Ly:=1L;— L, 2.0 —1 1

SO -
I w —
—_ ||
NN
~——

m=(5 00 0) [Tk =)
| . 2=
0 -—1 1 Lz.—L2—2L3 2

01 1 =2
M2=<[I| 0 3 —2> Ly:=Ly—2L, | My =
2 0

S
o - O
oSO -
I v =
~

o |
NN
~————

SO -
(O8]

)
—2> L,2L, M,
-7 5

Il
I~

-1 1
0
M3=<l
0

Table 11.1. The Blankinship algorithm in practice

Here is a very informal description of the algorithm:

M = (a,]) ; {a # 0 is the column containing the a;}
repeat

«seek k such that |a;| = min{a; ; a; # 0} ;

if k # | then «exchange lines Ly and Ly» ;

ifaj <Othen L, :=—L, ;

for k :== 2 to n do

if ap #0 then L, := L, — (a, div a;)L, ({pivoting}

untila, =---=a,=0

11.1.4. Hermite matrices

A matrix with integer coefficients is said to be in row echelon form if it
resembles a staircase with steps of height 1:

The dots represent coefficients which are zero; in contrast, the “corners” of
the steps are not zero:

alvfl;éo’ az.jz;é()’ a3.j17éos~" 15.]|<.]2<.]3<

Remarks
o The steps are of height equal to 1 and their width is > 1.
» The nonzero rows are linearly independent.

« A row-echelon matrix is a triangular matrix in which the corners of the
steps are not necessarily on the diagonal; they are above the diagonal as soon
as a step of width > 2 occurs.

02 1 5 14 1 1 5 0 14
0 07 3 12 03 3 1 8
00 0O 0 0 0|5 0 2
0000 O O 00 00 O

If the matrix ‘A is in row echelon form, we say that A is in column echelon
form. Here are three examples:

3/]0 0 0 O 1{0 0 0 O 0 0
2 710 0 O 0 7,0 0 O 0 0
09 6/00 2 110 0 O 4 0
0 0 0/]0 O 0 0 4/0 0 0 0

For such matrices, the steps are of width 1 and height > 1. The columns
which are not zero are linearly independent.

In what follows, we say that a matrix is a Hermite matrix if it is in row
echelon or column echelon form.

Theorem 11.1.3 (Hermite). Let A be any matrix with integer coefficients.
There exist unimodular matrices E and F such that EA is in row echelon
form and AF is in echelon form. (These are not, in general, unique.)

Proof. We restrict ourselves to the case of rows. The key to the proof is
the repeated application of Blankinship’s algorithm to the columns of A. In
applying this algorithm to the first column of A, we know how to explicitly
construct a unimodular matrix E; such that:

d| *

EA=(7 &

), d| =GCD(a|'|,...,a,,_|).

o If d, # 0, we apply Blankinship’s algorithm to the first column of the
matrix A’, which shows the existence of a unimodular matrix E, such that:

d * x
E,E\A = (0 d =) dy =GCD(a§‘2,...,a;,_2).
O O AI/

o If di = 0, we apply Blankinship’s algorithm to the first column of the
matrix (:,) which establishes the existence of a unimodular matrix E, such
that:

0 d * ’ ’
E;E\A = (0 02 A,,), dy = GCD(a, 5, ..., d),).
It suffices to “clean out” the columns of the original matrix to obtain the
desired result. O

Remark

When we want to obtain explicitly and automatically the unimodular matrix E
such that EA is in row echelon form, it suffices to border A by the unit matrix
and carry out the row operations on the bordered matrix M = (A, I). The
technique for columns is analogous.

Example
Put the following matrix in row echelon form.
6 4 -8 -8 12
9 3 -8 —-16 18
3 1 -3 -7 5
-3 -1 3 7 —1

Clean out the first column of My = (A, I):

A=

3 4-8 -8 121000\ Lj:=L —2L
9 3-8-16 18 | 0100 | Ly:=L,-3L,
1 =3 =7 5[0010| Ly=Li+L;
3 -1 3 7-1/0001 L, = L;

Mo =

We tidy up in the second column

3 1-3-75]10010
00 I 53|01-30

M, = = L
'“lo[2]-2 62| 10-20 pe
00 0 04001 1
to get
31-3-75[00 10
02-2 62|10-20
M, =

00 I 53|01 -30
00 0 04100 11

If we put M, = (H, E), we can check that det E = +1 and H = E A.

Exercise 1

Show that any unimodular matrix E is a product of elementary matrices. (Do
this by performing row operations on E to obtain the identity.)

Exercise 2: Smith reduction (Solution at end of chapter)

Let A be a p x n matrix with integer coefficients. Show that there always
exist two unimodular matrices P and Q, of dimensions p x p and n x n, such
that S = PAQ is a diagonal matrix of the form

d 0 - 0
S=(D O) with p=]9 @ “| and di.....d >o0.
o --. 0 d,

To show this result, alternate row and column operations. To show that the
algorithm terminates, consider the (1, 1) entry after each operation.

Once the diagonal form is obtained, continue performing the operations so
that d; divides d;;,. In this case, one says that S is the Smith reduced form
of A. One can show this reduced form is unique; but P and Q are not unique
(multiply S on the left and on the right by diag(l,...1,—1,1..., 1)).

11.1.5. The program Hermite

Let A be a p x n matrix with integer coefficients. We want to construct a
unimodular matrix E such that H = E A is a Hermite matrix in row echelon
form.

The main part of the program

One encounters the three classical phases: entering the data, treatment of the
data and output of results. The verification of the correctness of the program
is a formality: it suffices to check that the matrix EA — H is zero.

begin

choose(A, row, col) ;

H:=A;

Hermite(H, E, row, col) ,

display(E, row, col) ; display(H, row, col) ;
verification(A, E, H, row, col)

end .

The procedure Hermite

We require the function zero_col(A, ¢, row, k) to tell us if a subcolumn of
the a;, for £ < i < row is zero.

o If the subcolumn is not zero, we “clean it out” using Blankinship’s algo-
rithm; this done, we go to the following column by incrementing ¢ (in other
words, we go down a step);

o If the subcolumn is zero, we go to the next column without modifying £
because we are on a step of width > 1.

procedure Hermite(var A, E : matrix ; row, col : integer) ;
var k, £ : integer ;

begin

unit(E, row) ; £ :=1;

for k := 1 to col do

if not zero_col(A, ¢, row, k) then begin

Blankinship(A, E, ¢, row, k, col) ;

L =0+1

end

end ;

The procedure Blankinship
This procedure “cleans” the k-th column out of the elements between rows £
and row; the subcolumn is cleaned out when A[i, k] = Ofori = £+1, ..., row;
that is, when zero_col(A, £ + 1, row, k) becomes true.

To clean out the subcolumn, we undertake the following actions:

o We begin by locating a pivot, that is, a nonzero element with smallest
possible absolute value.

o We bring the pivot to the head of the column (that is, to the row £) if it
is on a lower row.

» We change the sign of the pivot if it is negative so that we do not have
negative pivots.

o We “erode” the coefficients below the pivot by adding suitable multiples
of the pivot to them.

Of course, each row operation on A is faithfully reproduced without delay
on the rows of E.

procedure Blankinship(var A, E : matrix ; £,row,k, col : integer) ;
var p, J, coeff, pivot : integer ;
begin
while not zere_col(A, £ + 1, row, k) do begin
p = row_pivot(A, £, row, k) ;
if p > £ then begin
swap_row(A, ¢, p, col) ;
swap_row(E, £, p, row)
end
end ;
if A[Z, k] < O then begin
change_sign_row(A, ¢, col) ;
change_sign_row(E, €, col) ;
end ;
pivot := AL, k] ;
for j:= €+ | to row do begin
coeff = Al], k] div pivot ;
if coeff # 0 then begin
add_row(A, j, £, —coeff, col) ;
add_row(E, j, £, —coeff, row)
end
end
end ;

Note that the extreme case where the subcolumn contains only a single pivot
in a row of index > ¢ is treated correctly.

The function zero_col

This function is trivial modulo a subtle trap that some avoid without knowing
it: the code of Blankinship functions correctly only if zero_col(A, £ + 1, row, k)
answers that an empty subcolumn (i.e. when € + 1 > row) is declared zero.
If we do not take this precaution, we can get get into an infinite loop because
an empty column can only make an empty column.

function zero_col(A : matrix ; €, row, k : integer) : boolean ;
var i : integer ;
begin
zero_col = true {to correctly treat the case £ + 1 > row}
fori:={¢+ 1 to row do
if A[i, k] # O then zero_col := false
end ;

The function row_pivot

Here again, we must avoid the trap of believing that we can choose the
head a;; of the subcolumn as the first pivot-candidate (this is correct only
if ag; # 0). This is why we run through the subcolumn twice.'

function row_pivot(A : matrix ; £, row, k : integer) : integer ;
var [, place : integer
begin
for i .= £ to row do if A[i, k] # O then place =i ;
for i :== ¢ to row do
if (abs(Ali, k]) < abs(A[place, k])) and (A[i, k] # 0)
then place :==1i;
row_pivot := place
end ;

The other functions and procedures do not harbor any difficulties.

Exercise 3

Write a program that takes a matrix in echelon form and “scrambles” it up using
elementary operations chosen at random. Then apply the procedure Hermite to
the result. Is the form of the staircase the same? Are the corners of the steps
the same?

Exercise 4: Inversion of a matrix with real coefficients

The pivoting strategy is far simpler when one works over a field since we
can clean out a subcolumn in a single pass (speaking informally, we can
immediately “kill” the coefficients instead of “eroding” them).

' Yes, this is heavy-handed; yes, we could do better and leave after a single run
through. Never forget, however, that the absolute priority of a programmer is secu-
rity. The code must be limpid. Heavy-handedness is not a fault; you can liven it up
later, when everything works well. This industrial logic has nothing to do with the
systematic search for tricks practiced in mathematics.

To invert a matrix with real coefficients, we can row reduce the matrix (A, /)
by cleaning out columns to transform it to the matrix E(A,I) = (I,A7").
Suppose that we are cleaning out the subcolumn k, and that up to this moment
the matrix A has become:

ea= (%' R)

We inspect the first column of A’, that is ay,...,a,,, seeking a nonzero
pivot of largest absolute value for reasons of numerical stability.

« If the pivot exists (which amounts to saying that the first column of A’
is nonzero), we bring the pivot to (k, k) by exchanging rows. We then “kill”
the a; , for i # k in a single pass using the linear combination:

Li:=L;—uLy, p®=ai/ax.

We end by dividing the row k by the pivot to make it equal to 1.

« If the pivot doesn’t exist, we know that the first column of A’ is zero,
which means that A’ is not invertible. But then A is not invertible because
det(EA) =detE x det A =det[,_; x det A’ =det A’ = 0.

procedure invert_matrix(var A, inv_A : matrix ; dim : integer ;
var invertible : boolean) ;

var i, k, place_pivot : integer ; value_pivot, coeff : real ;
begin

k :=1; invertible = true ;

while (k < dim) and invertible do begin
inspect_sub_column(A, k, dim, place_pivot, invertible) ;
if invertible then begin

exchange_rows(k, place_pivot, A) ;

exchange_rows(k, place_pivot, invA) ;

value_pivot := Alk, k] ;

for i := 1 to dim do if i # k then begin

coeff = Ali, k]/value_pivot ;

combination_rows(i, k, —coeff, A) ;
combination_rows(i, k, —coeff, invA) ;

end

divide_row(k, value_pivot, A) ;

divide_row(k, value_pivot, invA)

end ;

k:=k+1

end

end ;

We remark that the principal loop is a “for k := 1 to dim” loop rewritten
as a “while” loop so as to insert the interrupter invertible which interrupts the
work of the procedure as soon as it is known that the matrix is not invertible.

Exercise 5

1) Suppose that A has coefficients in Q (resp. C, resp. Z, with p prime).
Write a program which calculates its inverse.

2) Modify the procedure invert_matrix to calculate the determinant of the
matrix A.

Exercise 6

Let k be a commutative field and A € Gl(n, k) be an invertible matrix. There
exists a lower triangular matrix L and an upper triangular matrix U such
that LAU = S, where S is a permutation matrix; that is, a matrix obtained
from the identiy matrix by permuting rows.

Proof. The idea is to operate on the rows of A rowards the bottom and on the
columns of A rowards the right, which means that the only operations allowed
are (we denote the rows of the matrix by the letter A):

e Aj:=A;+XA; and K; :=K; +AK; withi < j and A € k whatever;
e A == AA; and K; = AK; with A € k*.

In particular, exchanging rows or columns is forbidden.

We start with the matrices Ag = A, Lo =1, and Uy = I,,.

o We go down the first column of Ay and stop at the first nonzero coefficient
ay,1, which we call the pivot. We normalize the pivot by dividing the £-th rows
of Ap and L by the pivot. We then clean out (towards the bottom) the first
column of A using linear combinations of the form A; :== A; + AA, where
J > £. As usual, each operation on the lines of Aq is instantly reproduced
on Lo.

0 * * \ 0 = *
: * * (* * \
0 * * 0 = *
Ay —> 1 ae Agn 1 a, Aen
gy * * 0 * *
: : * *
\a"'l * *) \0 * *)

e We then clean out the ¢-th row of A; using linear combinations of the
form K; .= K; +AK, with j > 1. Of course, these operations are reproduced

right away on Uj.

0 * 0 = *
(f * *\ (* *\
0 =x * 0 x* *
1 ae» Qg.n 1 0 0
0 *x .- % 0 =x *
ok e % D% *
\O * .- *) \0 * *)

After this first wave of operations, the matrices Ao, Ly and U, become
A, L, and U, and we have A, = L, ApU,.

e We then handle the columns &k = 2,...,n and the associated rows in a
similar manner. (We remark that the second pivot exists because A, is invert-
ible and, by construction, it is on a row of index # £.)

» When the algorithm terminates, the matrix A, is the desired matrix S and
we have S=L,---L,AU,---U,. m]

Transform this proof into a program which calculates L, U, S from A (as-
sume, for simplicity, that the initial matrix is invertible). What modifications
need to be made to the program to have it stop when A is not invertible?

Exercise 7: Reduction of quadratic Forms

Let S be a symmetric matrix with real coefficients. Then there exists an invert-
ible matrix P such that 'PAP is a diagonal matrix.

Proof. First suppose that the first column of A is not zero.

o If a;; # 0, we clean out the first column with operations towards the
bottom, let L; .= L; + AL, with i > 1; if we take the precaution of following
each row operation by the column operation K; := K; 4+ AK|, the matrix A
becomes ‘'PAP with P being the product of the corresponding elementary
matrices.

e If a;; = 0, we can be certain that there exists an a,; # 0 since the
first column is not zero. We then perform the operations L, := L, + L, and
K, := K, + K, on A which reduces us to the preceding case.

When we have finished cleaning out the first row and column, or if the first
and row and column are zero, we pass to the submatrix consisting of the a; ;
for which 2 < i, j <n. m]

Transform this proof into a program which takes the upper part of A and
completes it to a symmetric matrix.>

2 Never forget that the machine must serve humans; the user should only have to
enter the minimum number of coefficients.

11.1.6. The incomplete basis theorem

Let ¢/, ..., & be vectors in Z": do there exist vectors &4, ..., & such that
(e1,...,&,) Is a basis of Z"?

Definition 11.1.7. A vector € # 0 of Z" is said to be visible from the origin
if there does not exist a rational number t €)0, 1[such that te has integer
coordinates. (Think of trees in an orchard and look at Fig. 11.2)

A
O @€ O @ OO O e ® O OO @ O @ O
® ¢ ¢ O 0 0 0 o ® 6 & &6 O 0 0 o
O ®©@ O @ O @ O @ ® O ¢ O @ O @ O
® € O © ¢ O 606 O @ @O 0 0 O o0 o
O @ O e O e Oe O @O @O @ O @O
® © 6 06 06 06 06 0 6 06 0 0 0 0 0 0 0
® © 06 06 06 06 06 0 6 06 0 0 0 0 0 0 0
O @ O e O @ O e ® O ¢ O @ O @ O
® ¢ O ¢ ¢ O 0 o ® ¢ O 6 ¢ O 0 o
O @ O e O @ O e ® O @ O @ O @O
® ¢ 6 O 0 0 0 O ® 6 6 6 O 0 0 o

Fig. 11.2. Visible points from the origin

Lemma 11.1.1. A vector with integer coordinates € # 0 is visible from the
origin if and only if its coordinates are relatively prime.

Proof. Let d > 0 be the GCD of the coordinates of ¢.
o If d > 1, the vector d~'e has integer coordinates and hides .

o If d =1 and if ¢ were hidden by the vector ¢’ = re with 0 <t < 1, then
by considering a nonzero coordinate of €, we obtain t = p/q with0 < p < g
and GCD(p, q) = 1. The equality g¢’ = pe and Gauss’s lemma shows that g
divides all coordinates of €, which is contrary to the hypothesis thatd = 1. D

Proposition 11.1.3. A vector ¢ # 0 in Z" can be a member of a basis of 7" if
and only if it is visible from the origin.

Proof. Let (g,...,€,) be a basis of Z" such that ¢, = &; we know that
the matrix £ = (¢y,...,¢&,) is unimodular. If we expand det E along the
first column, we obtain a linear combination with integer coefficients of the
coordinates of ¢ which is equal to £1. By Bézout’s theorem, the GCD of the
coordinates of ¢ is equal to 1, and hence ¢ is visible.

Conversely, if ¢ is visible, Blankinship’s algorithm explicitly gives us a
unimodular matrix E such that Ee = e,. The vector ¢ = E~'e, then belongs
to the basis of Z" formed by the columns of E~!. 0

We can also state the proposition as follows: a vector € # 0 is the first
column of a unimodular matrix if and only if it is visible from the origin.

The case of r vectors is more technical and cannot be interpreted so intu-
itively. A necessary condition to belong to a basis of Z" is — of course — to
be visible from the origin. But this does not suffice.

Theorem 11.14. Lete,,...,&,, withl <r < n, be nonzero vectors in Z" and
put M = (g, ...,¢,). Let E be a unimodular matrix such that EM is in row
echelon form:
d| * *
T . .
EM=(O) with T =1} " %
0 ... 4
The vectors €, ..., &, are part of a basis of Z" if and only if the diagonal

coefficients of T satisfy d; = £l fori =1,...,r.

Pay attention to the statement: the coefficients d; in question are not neces-
sarily the corners of the steps of the matrix EM in echelon form; they are the
diagonal coefficients of T.

Proof. Suppose that one knows how to complete ¢y, ..., ¢, toabasis (gy, ..., &,)
of Z", so that the matrix P = (&y,...,&,) = (M, &4 ...,&,) is unimodular.
We can write:

EP = (EM, Ee,,,, ..., Eg,) = (g *)

Taking the determinant, we obtain £1 = det(E P) = det T x det Q which first
implies detT = d,---d; = £1 and then d; = %1 since the coefficients are
integers.

Conversely, suppose that d; = 1 fori = 1, ..., r. One round of pivoting
towards the head of the rows of EM shows that there exists a unimodular

matrix E’ such that E‘'EM = (0’) whence:

M= (E’E)"(g).

This formula says that the columns of M coincide with the r first columns of
the unimodular matrix (E’E)~".]

The incomplete basis algorithm

Let €, ...¢& be vectorsin Z" and put M = (e, ... &). Blankinship’s algorithm
allows us to find a unimodular matrix E such that

T
en=(5)
The vectors ¢, ... &, comprise the first » elements of a basis of Z" if and only

if the diagonal coefficients of T are +1. When this is the case, a second round
of operations towards the top allows one to make a unimodular matrix E’ such

that
E'EM = (6)

The desired basis is then the columns of A~! if A = E'E.

To calculate the inverse of A, we can perform row operations on (A, I') to
bring it to the form (/, A~"). But this process seems a little strange: we start
with / on which we perform row operations to obtain A, then we perform
more operations on A to recover /.

Let us look a little more closely at what happens. Let E,, E,, ..., Ey be
elementary matrices which transform / into A:

A=Ey---E

Then,
A" =TE["- Ey,

so we see that we can calculate A~

on the matrix /.

For this, we begin with the identity matrix /. Each time that we perform
a row operation on M, we do a column operation on / using the following
dictionary to translate between them:

in parallel by suitable column operations

Row operation (matrix EM) Column operation (matrix ME™")

L,'I=L,'+)\.Lj Kj:=Kj—)\.K,'
(D) L :=—L, K;:=—K,
Li*_—)Lj KJ:KJ

Notice the behavior of the indices and the change of sign in the first line.
With this specified, the incomplete basis algorithm goes as follows. Let
M=1(,...e,) and N =1,.

We do (row) operations on M to obtain a matrix in row echelon form; in
parallel, we perform column opeartions on N using our dictionary (D). If, at
some moment, we get a diagonal coefficient d; of M which is not equal to 1,

we stop because we know that the given vectors can not be extended to a basis
of Z". Otherwise, we continue our operations until M is transformed into the
identity matrix. At this point, the first » columns of N are the vectors with
which we began and the last (n — r) columns, together with the first r, form
a basis of Z".

Example 1

Consider the vector € = '(3, 4, 8). Since it is a vector visible from the origin,
we know that can be extended to a basis. To complete the basis, we start with

the matrices
1 00
M0=(4), N0=(o 1 0).
8 0 0 1

The choice of pivot leads to the operations

Row operation (on M) Column operation (on N)
L,:=L,—L, K, =K, +K,
L3I=L3—-2L| K| Z=K|+2K3

which gives the matrices:

3 1 00
M,=(m), N.=(1 | 0>.
2 2 0 1

The new pivot having been chosen, we perform the operations

Row operation (on M) Column operation (on N)
L| = L|—3L2 Kz = K2+3K|
L3 = L3—2L2 Kz = K2+2K3

and we wind up with the matrices:

0 1 3 0
M2=(|I|>, N2=<l 4 0>.
0 2 8 1

It remains only to interchange rows 1,2 of M, and columns 1,2 of N, to

finally obtain:
1 310
M3=<O), N3=<4 1 0>.
0 8 2 1

The vector ¢ from the outset reappears in the first column of N; as the theeory
predicts. The completed basis is formed by the three columns of Ns.

Example 2

Now consider the vectors:
6 ="'3,2,7,9), & ="02,5,3,6).

A first round of operations gives the matrices:

1 -3 311 6 0
0 1 2 11 6 0
M=1o o> N=|7 24 13 0
0 0 9 33 18 1

Since d| = d, = 1, we know that the vectors &, are &, part of a basis of Z*.
To extend them to a basis, we finish by doing row operations on M towards
the top so as to “kill” the coefficient —3 (and we perform the corresponding
column operations on N). We get:

1 0 32 6 0O
0 1 25 6 0
M=1o o] N=173 130

0 0 9 6 18 1
The desired basis is formed by the columns of N.
Exercise 8
Transform this algorithm into a program.
11.1.7. Finding a basis of a subgroup
Let M = (g,..., gn) be the subgroup of Z" with generators g, ..., gy and
consider the matrix whose columns are the generators:

G = (817---»8N)-
We perform column operations on G to obtain a matrix G’ in column echelon

form
G' =GF, F eGln,2Z).

Theorem 11.1.5. With the preceding notation, the nonzero columns of G’ are
a basis for the subgroup M.

Proof. We already know that the nonzero columns g, ..., g, of G’ are inde-
pendent. Since F has integer coefficients, the g} are linear combinations with

integer coefficients of the g;. Conversely, since F~' also has integer coeffi-
cients, the g; are linear combinations of the g’ with integer coefficients. O

Corollary 11.1.1. Every subgroup of Z" has a basis, since every subgroup is
of finite type.

Example 1
We return to the subgroup M of Z* generated by the columns of the matrix
2 0 5
G= (0 35)

Performing column operations on the matrix G = (g, g2, g3), we obtain:

100)

GlzGFz(o 1 0

Thus a basis of M is formed from the canonical basis of Z2, which is not
surprising since M = Z2.

Example 2

Consider the subgroup N of Z* generated by the columns of the matrix

3 5 20
G=\|1 2 4 7>.
4 -6 8 2

By performing column operations on G, we obtain the matrices:
4 -5 3 83

I 0 00
G/=GF=<—3 I 0 0>, F=|"1 3 -1 23

-3 0 -2 67
0 -38 4 0 1 0 | =33

Therefore, a basis of N consists of the first three columns of G’:

Verifying these calculations is easy. We have

g =48 — g — 38 + g4,
8, = —58 +3g,
gy =381 — & — 28+ &a.

Conversely, knowing that

35 2 0
por_ |10 17 10 7
1o 160 97 67)"
35 3 2
we have
& = 3g, + 10g; + 96g;, g3 = 2g, + 10g; + 97g3,

g =5g, + 17g, + 160g;, g4 = 0g, + 7g; + 67g;.

Exercise 9

Convert this algorithm to a program. But be careful because very large integers
can easily appear in the intermediate calculations.

11.2. Linear Systems with Integral Coefficients

Consider the general linear system with p equations in n unknowns

apaxi+ -+ apax, = by,
Ax =b, e (11.1)
ap 1X| + -+ ap,nxn = bp-
Suppose the a; ; and b; are integers and that we want to find integer solutions
of this system; that is, all vectors x € Z" satisfying the system.

11.2.1. Theoretical results
We begin by recalling a result which is as indispensable as it is trivial to prove.
Lemma 11.2.1. If X € Z" is a particular solution of (11.1), then all other

solutions are of the form x = X + &, where & € 7" is the general solution of
the associated homogeneous system A& = Q.

Students traditionally learn to solve linear systems by performing row opera-
tions because this does not change the value of the x;. But when one programs,
it turns out to be preferable to perform column operations which do change
the unknowns. The following result justifies this practice.

Proposition 11.2.1. Let F be any unimodular matrix and put B = AF. The
map

y— x=Fy
is a bijection between solutions y € Z" of the system By = b and solutions
x € 7" of the system Ax = b.

Proof. Tt follows from Ax = b that AFy = b and conversely. Moreover,
x = Fy and y = F~'x show that the coefficients of x are integers if and only
if the coefficients of y are integers. O

11.2.2. The case of a matrix in column echelon form

Solving the system

2x = b|,
s = bz, 1.2
3x + 2y = b3, (11.2)

x—2y+5z = by.

in integers is especially easy because we are dealing with a matrix in column
echelon form. If we solve the equations successively, working first over the
field of rational numbers, we obtain:

x = %b. = %bz,
y = 3(bs — 3b)), (11.3)
z= %(ba - %bl + (b3 — %bl))-
These calculations show that the system has a solution (x, y, z) € Z* if and
only if the following conditions hold:
« 3by and 1b, are equal integers;
e 1(bs— 2b) is an integer;
o 3(bs — 3by + (b3 — 3by)) is an integer.

Since our goal is to program the solution of the system, we present the cal-
culations somewhat differently. To simplify, suppose that the second member
is the vector b ='(4, 14, 8, 15) so the solution is the x = (2, 1, 3).

We write K, K3, K3 the columns of the matrix of the system; below we
write the identity matrix. This done, we write the vector 8y = —b bounded
below by the zero column (see Table 11.2). We then try to make the vector
Bo = —b zero by adding suitable integer multiples of the columns of the
system:

Bi=B+2K,, B=B+K: Bi=p+3K;=0.

Note that these linear combinations are unique because the K; are independent:
the first linear combination is the only one capable of killing —b,, etc.

system Bo=-b Bi=po+2K) P=pi+K2 Bi=p2+3K;

—_—N— —— —— —_——N— —N—
2 0 0| 4 0 0 0

7 0 0] -14 0 0 0

3 2 0| -8 -2 0 0

1 -2 5| -15 -13 -15 0

1 0 O O 2 2 2

0O 1 O 0 0 1 1

0O 0 1 0 0 0 2
———— ——
identity matrix solution

Table 11.2. Practical resolution of the system (11.2)

o If we succeed in making By = —b vanish, it is clear that the corresponding
linear combinations of the columns of the identity matrix (below the horizontal
line) are a particular solution of the system.

« If we fail, the system does not possess an integer solution because b does
not belong to the subgroup generated by the columns of the sytem.

11.2.3. General case

Blankinship’s algorithm allows us to explicitly compute a unimodular matrix
F such that B = AF is in column echelon form. We then solve the system

By = b. (11.4)

Finally, we return to the solutions of the original equation by the transformation
x = Fy. But, as we will see, this last step can be done automatically if we
organize our calculations well.

Consider for example the system defined by

1 2 01 3 5
A=<0 1 -1 1 2), b= 4).
1 -1 2 0 -1 =5

e To find B and F, we border A below by the identity matrix. We then
perform column operations on this large matrix until A is in column echelon
form:

(;1)}% (’;) B=AF, FeGln2).

In our example, we find the following matrices F and B = AF.

Bo B B Bs

1 O 0 O o0|-510}|0]O

B 0 1 0 0 O0|—-4|—-4|0]0
1 -3 1 0 Ofl5)|10|-2]0

1 =2 -1 3 305 |-3|-5

0 | 0 -1 =21 0| 0| 4| 4

F 0 O 1 =2 =21 0| 0| 0|2
0 o0 1 -1 =2{0| 0| 0] 2

o 0 o0 o 1{fO0O|O0|O0]|O

e We write the vector 8y = —b to the right of B and the zero vector to the

right of F. To this big vector, we add appropriate multiples of the columns
of B and of F, which gives the vectors 81, B2, 83 = 0. We find therefore:

> a particular solution ¥ of the initial system Ax = b which is the
vector X = (-5, 4, 2, 2, 0) situated below Bs;

> a basis of the subgroup of solutions of the homogeneous system
which is formed by the vectors & = (4, —1,—-2,—1,0) and & =
", 1, -2, 1, 1) situated below the zero columns of B.

The solutions in integers of the system Ax = b are thus the vectors
X=i+)‘fl+ﬂ§2»)‘-s:uEZ‘

To explain this minor miracle, we let r denote the rank of A and write out
the columns of our matrices:

(B)_(B. B, ... B. 0 ... O)
F) \F Fb ... F, F,y ... F/J
If the system By = b has a solution in integers, there exist integers y; satisfying

in other words, By = b has integer solutions if and only if it is possible to
zero out the vector By = —b by adding to it integer multiples of the columns
B,...,B,.

We now turn to the columns of F. The vector which appears under the last
vector B, is y; F) + --- + y, F,, where the y; satisfy (8.5). This allows us to
write

Akt FB)=nAF+ -+ y.AF, = 0B+ -+ y.B, =D,

which shows that the vector ¥ = yF; + --- 4+ y.F, is indeed a particular
solution of the complete system Ax = b.

Finally, it is clear that By = 0 is equivalent to y ='(0,...0, A.41, ..., Ay).
Returning to x = Fy, we find that the solutions of Ax = 0 are the vectors

€=A'r+lFr+l+"'+)‘-nFn- o

11.2.4. Case of a single equation
Suppose that we want to solve the equation:

12)C|—6X2+9X3—21)C4=b. (11.6)

Since the matrix of the system has a single row, pivoting is very rapid:

12 -6 9 =21 0 -6 3 3
1 00 0 1 0 0

0O 10 0 +— 2 1 1 -4
0 0 1 0 0O 01 O
0 00 1 0 0 0 1

Basis of the subgroup Az = 0

Particular solution of Ax = b

Fig. 11.3. Algorithm for solving the system Ax = b in integers

00 3 O 300 O

1 00 O 001 O

— 2 3 1 -5 1 3 2 =5

0 2 1 -1 1 2 0 -1

0 0 0 1 0 00 1
Thus, we have GCD(12, —6,9, —21) = 3. In view of the simplicity of the
situation, it is pointless to border the matrix with the vector 8o = —b: the given

equation has solutions in integers if and only if the condition b = 0 (mod 3)
is satisfied. When this is the case, all the solutions are:

0 0

S
(= =

+

>

1
g +u (2) +v __—? , A, i,V € Z arbitrary.
0 0 1

11.3. Exponential of a Matrix: Putzer’s Algorithm

Let A be an nxn matrix with complex coefficients. One defines the exponential
e in the classical way by the series

00 Aktk
Z—' (11.7)

k=0

This pretty formula wreaks much havoc because it is often presented to
students who have not yet mastered ordinary series.

Because of the Cayley-Hamilton theorem, we know that — in a certain sense —
series of matrices do not exist! For there is an equation of the form A" = p(A),
where p is a polynomial of degree less than n, so that A", A"V etc., are
polynomials in A of degree not exceeding n. If we replace these matrices
in (11.7) by the corresponding polynomials we find that the exponential of A
is of the form

eM =ao)] + a1 (DA + -+ (DA™,

where the ¢; are functions defined by series (these are the remnants of the
initial series). The explicit determination of the ¢; is due Putzer.> We fix the
following notation:

o LetX,..., A, denote the eigenvalues of A. We do not make any restrictive
hypotheses: the eigenvalues may be multiple, and we do not suppose that A
is diagonalizable.

« Put (notice the shift in the indices):

By =1,
B, = (A—MI)B,
3 = (A=A 0)By, (11.8)
= (A— A,)B,_.

With this notation, we can write the Cayley-Hamilton theorem as:

B,y =(A—-X1,1)B,=0. (11.9)

3 E.J. Putzer, Avoiding the Jordan canonical form in the discussion of linear systems
with constant coefficients, American Mathematical Monthly 73 (1966), pp. 2-7. This
appeared over thirty years ago. .. The diffusion of this algorithm into the teaching
world has been very, very slow.

e Let y, ..., y, be the solutions of the following differential equations:

i =My, y(0) = 1;
b= A , 0) =0,
¥a . 2y2 + ¥ y0(0) ‘ (11.10)

y;, =)‘-nyn + Yn-1, yn(O) = 0.

Here, there is no shift in indices; on the contrary, the first equation keeps to
itself (it does not have a second term and the initial condition is different from
the others).

Theorem 11.3.1 (Putzer, 1966). With the notation above,
e =y (1)B1 + y,(1) By + - - + yu(1) B, (11.11)

Proof. Let E(t) be the term on the right of (11.11). It suffices to show that
E©)=1 and E'(t) = AE(t) since these two conditions characterise the
matrix (11.7). It is clear that E(0) = I, Diferentiating E gives:

E'=yBi+---+y.B,.
Use (11.10) and then (11.7) to get:

E, = A.'lel
+Ay2By + yi By
+A3y3B3 + y2 B3

FAn-1Yn-1Bu1 + yu2Bu_
+A0yn By + yu-1By
=My B
+A2y2B2 + yi(A — 1 1) B,
+A3y3B3 + y2(A — A1) B,

+)-n—lyn—l Bn—l + yn—Z(A - An721)Bn72
+AuYn By + Yn-1 (A - An—11)B,_
After simplifying, we are left with E' = yyABy + -+ Yo 1 ABu_1 + AuYu Bus
that is,
E, = _YIABI +---+ yn—lAanl + ynABn

since (11.9) is written A, B, = AB,,.

Example

If Ais a3 x 3 matrix with a triple eigenvalue A, its exponential is:
et =Ml +r1eM(A— Al + 1P eM(A— A

(Whether or not A is diagonalizable doesn’t matter.)

Remark

Formula (11.11) is an algorithm in a theoretical and academic sense only; it is
poorly behaved numerically* because it requires knowledge of the eigenvalues
of the matrix. (The main difficulty is the precise calculation of these numbers.)

Exercise 10

Write a Pascal program which calculates the matrices B; knowing the matrix A
and its eigenvalues. The calculation can be done over Z, R or C.

Remarks

1) You can try to calculate the eigenvalues of the matrix from its charac-
teristic polynomial (Chapter5), but you should not expect miracles because
getting good precision in all circumstances is very delicate.

2) To make a matrix with integer coefficients and integer eigenvalues, we
begin with a triangular matrix with integer coefficients

A * *
A=10 . «
0 0 A,

and complicate it using row and column operations of the form A — EAE~'.
For translation, you can use the algorithm of the incomplete basis (§1.6) as a
dictionary.

3) If you have become enchanted by integers, you might wonder if the
preceeding method can manufacture all matrices A € M (n, Z) whose integers
are eigenvalues.

Theorem 11.3.2 (Leavitt and Whaples, 1948). Let A be an n x n matrix with
integer coefficients. The eigenvalues of A are integers if and only if there exists
a unimodular matrix E such that U = E~'AE is an upper triangular matrix.

4 C.Moler and C. VanLoan, Nineteen dubious ways to compute the exponential of
a matrix, SIAM Review, 20 (1978), pp. 801-836.

Proof. Let A be a matrix with integer coefficients and integer eigenvalues.
Since the eigenvalues are rational, we already know how to find a matrix
P € Gl(n, Q) such that U = P~"AP is upper triangular. We write AP = PU
and multiply P by a suitable integer to ensure that this matrix has integer
coefficients.

By performing row operations on P in accord with Blankinship’s algo-
rithm, we know that we will eventually find a unimodular matrix E such that
U' = EP is upper triangular. We get

(EAE""YEP =EPU.

The identity EAE~' = U'UU’~" then shows that EAE~' is upper triangular.
On the other hand, EAE~' has integer coefficients since E is unimodular.
The converse is clear. O

11.4. Jordan Reduction

Jordan’s theory always intimidates apprentice mathematicians and many others
as well. The origin of this malaise is easy to diagnose: needlessly abstract
explanations culminating in deceptive exercises in which the transition matrix
is not in general made explicit. We are going to detail here an elementary
algorithm® which:

« proves the existence of the Jordan canonical form;

o explicitly furnishes the Jordan canonical form as well as the transition
matrix.

Like the Putzer algorithm, this algorithm is of academic interest only; it is
not adapted to numerical calculation because it requires that one know in
advance the eigenvalues of a matrix (which is, we recall again, the numerically
difficult part).

11.4.1. Review

Let f : E — E be an endomorphism of an n-dimensional vector space E over
a field k which has all of its eigenvalues in k. Let Ay, ..., A, be the distinct
eigenvalues of f, with multiplicities m,, ..., mp, sothat m; +---+m, = n.
The characteristic spaces of f are the vector subspaces of E:

E; = ker(f — A;id)™.

We accept without proof the following elementary results (which are not at all
difficult to prove):

5 U. Pittelkow and H.-J. Runckel, A short and constructive approach to the Jordan
canonical form of a matrix, Serdica 7 (1981), pp. 348-359. Added in proof: for
an even simpler algorithm, see also A. Bujosa, R. Criado, C. Vega, Jordan normal
form via elementary transformations, SIAM Review, 40 (1998), pp. 947-956.

() E=E & ---®E,
(ll) dim E,‘ =m;,
(iii) E; is mapped to itself by f;
(iv) the map u; = f — A;id : E; — E; is nilpotent.

Thus, the characteristic subspace E; contains the eigenspace asociated with
the eigenvalue A;. It results from (i) that A is not diagonalizable when some
characteristic subspace strictly contains an eigenspace.

The Pittelkow-Runckel algorithm finds a basis e!”, .. ,e) of each charac-

teristic subspace E;. In this basis the matrix of the nllpotenl endomorphlsm u;
is:

0 £
0 &2
. e =01 (11.12)
0 &,
Consequently, in the basis e() B AP ef”), ...,ef"”: of E (see (i)), the
matrix of f is:
Ji A &
J . Al &2
with J; =)) . (11.13)
J,, A'i Em,

11.4.2. Reduction of a nilpotent endomorphism

Let u : E — E be a nilpotent endomorphism of a finite dimensional vector
space. When x € E is not zero, we consider the iterates x* = u*(x) of x
under u:

x@2£0, xV#£o0, ..., x©x£0, x“V=0.

Definition 11.4.1. The last exponent of a vector x # 0 is the greatest integer
€ > 0 such that x® # 0.

For example, £ = 0 if and only if x € keru.

These iterates are a natural tool in Jordan theory: when x©, ... x© are a
basis (note the decreasing indices), the matrix of the endomorphism u in this
basis is a Jordan matrix (11.12) with g; = 1.

Definition 11.4.2. Let x,, ..., x, be nonzero vectors and £, ..., %L, their last
exponents. Put:
Y = {x“'),...,xim},
) (0) .
s = {x, DX ,...,xi“,...,xr(o’}.

We say the the system o of vectors is deployed over the system ¥.

Proposition 11.4.1. The system ¥ is linearly independent if and only if the
deployed system X is linearly independent.

Proof. To avoid a deluge of indices which will teach us nothing, we content
ourselves with a particular case:

B e @ 0
—{x, s Xy X3, Xy Xs e

Consider the following linear combination of the vectors of b

0 |
O_aoxf)+a|x()

+box‘°’ +byxS" + byxl? + byx

+eoxy +c|x3"+cx‘2’ (11.14)
+dox(0) + dlx(” + dzx

+€0x40)

and associate to it the array on the left below:

3) b; @) B

@ by|cy|dy @) y |38

mla|bi|c|d 0| o

O |ag|bo|coldy|eo| © €
X1 X2 X3 Xg X5 X1 X2 X3 X4 Xs

The condition that ¥ be independent tells us that each time that we have
a linear combination symbolized by the tableau on the right, the coefficients
o, B, v, 8, € are necessarily zero.

However, if we apply u°® to the linear combination (11.14), we move the
coefficients towards the top in the left tableau: those that leave disappear and
the “holes” which appear are filled with zeroes. Thus, we obtain the right
hand tableau with « = 0, 8 = by, y = § = € = 0, which rquires that
bo = 0. Applying u? to (11.14), we get @ = 0, B = by, ¥ = co, 8 = do,
¢ = 0, from whence by = ¢y = dp = 0. If we apply u, we likewise obtain
ay=b, =c) =d, =0. We are leftwilha=a,,,3=b3, Yy =c¢, § =d; and

€ = eo which are necessarily zero. O
Proposition 11.4.2. Let x,,...,x, and y be nonzero vectors whose last expo-
nents £y,...,¢, and € satisfy €¢; > € fori =1,...,r and
[4
yO =ax{ 4+ a,x) ax),

If the vector
y =y (a x:Z' O, +a,xr“"0),

is not zero, its last exponent £’ satisfies £’ < €.

Proof. In effect, y'© is zero by construction.]

11.4.3. The Pitttelkow-Runckel algorithm

The Pitttelkow-Runckel algorithm finds a Jordan basis of a nilpotent endomor-
phism. To do this, it manipulates the system X in a loop (steps 2 to 4) until
the system becomes linearly independent.

1) Initialization: Choose nonzero vectors xi, ..., x, such that the deployed
system associated to

=[x, ... x®)
generates E (for want of better, one can choose the x; to be generators of E
since the deployed system X contains the x;).

2) Exit test of the loop: If ¥ is linearly independent, the algorithm teminates
and the deployed system X is the desired Jordan basis.

3) Body of the loop: If X is not independent, we can suppose, upon renum-
bering the vectors, tha ¢, > ¢, > ... > ¢,. Thus, there exists an index
k € [[1, r] such that:

¢ ¢ (798
x,ﬁ W +a|x: v + - -I—ak_lx,i_‘,') =0.

Set:
(U) —¢;) (Ce—1—E)
y_xk)_l_alxll “+...+ak_|xk_"|1 k.

If ¢, =0 or if y is zero, remove the vector x,ﬁe‘) from X; otherwise, replace
x{™ by y©, where € is the last exponent of y. (In practice, remember that it
is the vector with the smallest exponent that disappears.)

4) End of the loop: return to 2).

Example

Consider the 5 x 5 nilpotent matrix:

2 6 -3 5 =2 -1 =3 4 =2 1
1 3 16 9 -1 4 12 5 15 -4

A=]|1 3 5 5 —1],A2=1] 1 3 2 4
-2 -6 —13 —11 2 -3 -9 —6 —12 3
-1 -3 3 =2 1 1 3 -1 3 -l
2 4 8 =2

A® =

=

I
SO oo Oo
SO oo o
S o oo Co
S o oo O
SO o OO

6
-3
0O 0 O
0
-3

o The algorithm begins® with the system:

2 6 4 8 -2
-1 -3 -2 -4 1

={ei”. e, e, e’ e’} =l 0 0 0 0 0
0 0 0 0 O©

-1 -3 -2 -4 1

+e(,0)
2 6 4 8
-1 -3 -2 —4
T ={e e, e e x® =10 0 o0 o0
0 0 0 0

-1 -3 -2 —4

Since em + eI =0, we put x = e(o)

and replace es by x:

—_ 0 O O -

« Since eff) = 4e(3) puty = efto) 4e§0) and replace e4 by y:
2 6 4 2 1
-1 -3 -2 -1 0
= {ef”, e, e, y2,x% =l 0 0o o o0 of.
0 0 0 0 O
-1 -3 =2 -1 1
* Since em = 2e|3), put z = e3 2e§0’ and replace e; by z:
2 6 6 2 1
-1 -3 -3 -1 0
2y ={ef”,ef,22,y?x% =1 0 0o 0o o of.
O 0 0 o0 O
-1 -3 -3 -1 1
« Since z® = ¢, put 1 = 2 — €} and replace z by 1:
2 6 —4 2 1
-1 -3 2 -1 0
Zy={el, e,y x® =0 0 0o 0 of.
0 0 0 0 0
-1 -3 2 -1 1
. Since y@ = ¢, put u = y©@ — ¢!" and replace y by u:
2 6 —4 -2 1
-1 -3 2 1 0
Zs={ef”, e, 10 u® x® =l 0 0 0 0 0
0 0 0 0 O
-1 -3 2 I 1

® We deliberately chose a redundant system to lengthen the dlgorlthm But it is pos-
sible to do better by choosing the vectors so that by generates R’

Since u" = —e'®, put v = u® + ¢! and replace u by v:

2 6 —4 -7 1
-1 -3 2 3 0
To = {e”, e, 10O x@ =10 0 0 0 0
0 0 0 0 O
-1 =3 2 2 1
Since —e!” + el +1M =0, put w = 1 — ¢ + ¢{? and replace ¢ by w
2 6 —-10 -7 1
-1 -3 5 3 0
2 ={ef”, e, w?®v®x% =0 0 0o o0 0
0 0 0 0 O
-1 -3 5 2 1
Since €5 4+ v + x© = 0, eliminate v:
2 6 —10 1
-1 -3 5 0
T ={ef, e, w®x® =0 0 0 o0
0 O 0 0
-1 -3 5 1
« Since 26! + ¢ + w® = 0, eliminate w:
2 6 1
-1 -3 0
To={e”. el x% =] 0 0 0
0 0
-1 =3 1
« Since e = 3e!”, put p = e — 3e!” and replace e, by p:
2 =3 1
-1 1 0
So=1{e, p?x® =10 0 0
0 0 0
-1 0 1
« Since ¢! + p©@ + x© =0, we eliminate p:
2 1
-1 0
{e() (0)} — 0 0
0 0
-1 1

o The last system is manifestly linearly independent, and the desired Jordan
base is the deployed system

2 =1 2 1 1
-1 4 1 00
P ={e®e® e e®x®) =] 0 1 1 00
0O -3 =2 0 0
-1 | -1 0 1

and the Jordan reduction is:

01 000
001 00O
J=]10 0 0 1 O
00 0 0O
00 00O

One can check that P~'AP = J as well (to avoid a painful calculation of the
inverse of P, it is preferable to check that AP = PJ).

11.4.4. Justification of the Pittelkow-Runckel algorithm

The algorithm does not loop indefinitely because the cardinality of ¥ decreases
by at least once each time through the loop.

Note that if the vector x belongs to the subspace Vect(fl), then all its iterates
belong to this subspace by definition of the deployed system.

With the notation above:

« if the vector y is zero or if £, = 0 (which means u(x;) = 0), let £’ be
the new system obtained by removing x,ﬁm from X;

« if y is not zero, let £’ be the system obtained by replacing the vector x,ﬁe‘)

in £ by y©.

In each of the two cases, since x,io) belongs to the subspace Vecl{f)’}, one de-
duces that Vect{i’} = Vect(i), which shows that the assertion “the deployed
system X generates £ is an invariant of the loop.

The algorithm stops when ¥ becomes independent. It follows from Propo-
sition 11.4.1 that X is also independent. But since ¥ never stops spanning E,
we consclude that it is a basis. By virtue of the preceding remarks, X is a
Jordan basis.

11.4.5. A complete example

Consider the 7 x 7 matrix

whose eigenvalues are A = 2 (with multiplicity 3) and u = 1 (with multiplic-

ity 4).

e« Put B = A — 2/, so that the characteristic subspace E, associated to the
eigenvalue A = 2 is the kernel of B3:

BZ

BS

We recall’ that B : E; — E, is nilpotent and we seek a Jordan basis of this

endomorphism.

7 The same letter is used to denote a matrix and the associated endomorphism in the

canonical basis.

2
B
0
—1
-1
=2

\ 1

—_ 00O = O =

—~

S oo ocoOoo

14

|

4
—6
2
—14
2

-2
9
—10
2
—18
8

8

8
~17
6
-2
34
~10
—4

—— N

-1
-1
-1

1

2
1
-1
-1
-1
-1
1

-1

0
0
2
-2
1
-2
3
-1
0
—6
3
0

4 7
2 1
2 2
-1 =3
-2 2
-4 -7
0 1

4 7
21
2 2

-3 -3

-2 0

-4 -7
0 1
2 -1
0 4

—4 -5
11
0 -8
0 4
4 4
0 4
0 -8
2 3

-1 -1
0 16
0 -5

-2 =2

—_———— O O W
|
N— OO — OO

3 0
0 0
0 -1
-1 0
1 0
-3 1
1 0
0 1
2 -1
-1 1
0 0
-4 2
1 =2
1 0
1 =2
-3 3
0 -1
0 0
6 —6
-1 3
0 0

Examining the powers of B shows that the vector e, belongs to E, and that
its last exponent is 2. Consequently the vectors eé ’,eé”,ez are independent
because they form a deployment of the system X' = {e;)}.

This remark allows us to take a shortcut. Since E, is of dimension 3, the

deployed system
T = (e, e, e)
is a basis of E,. Now, we are perfectly within our rights to begin the algorithm

with the system X’. But since this system is linearly independent, the algorithm
terminates immediately and tells us that X’ is desired Jordan basis.

e« Put C = A — I, so that the characteristic subspace E, associated to the
eigenvalue u = 1 is the kernel of C*:

3 14 2 4

1 2 1 2

0 4 0 2
C=]-1 -6 -1

-1 2 -1 =2
-2 —14 -1 -4 -
1 2 1 0

|
[\
I
—_ - W N =
|

6 26 6 10 13 6
2 12 1 4 6 2 -
-1 =2 -1 0 -1 -1 -
c’=|-2 -10 -2 -4 -5 =2

1

1

1

01,
-2 -4 0 -4 -7 =2 2
-4 -20 -4 -8 -—-10 -4 0

1

)

3 12 3 4 6 3
(10 44 10 18 22 10

1
3 14 3 6 7 3 0
-3 —-12 -3 -4 -6 -3 -l
c’=|-3 -14 -3 -6 -7 =3 0|,
-3 —-14 -3 -6 -7 =3 0
-6 —-28 —6 -—12 —14 -6 0
\6 26 6 10 13 6 1)
(15 66 15 28 33 15 L)
4 18 4 8 9 4 0
-6 —-26 -6 —10 -—-13 -6 -1
c*=|-4 -18 -4 -8 -9 —4 0
-4 —-18 -4 -8 -9 —4 0
-36 -8 —16 —18 -8 0
1

\ 10 44 10 18 22 10

A basis of this subspace is formed by the vectors

fi = e —es, last exponent = 2,
fr = 2e3 — eq — 2e7, last exponent = 0,
3 = e3 — e, last exponent = 2,
fa = ey — 2es, last exponent = 0.

The first system examined by the algorithm is

0 0 0 0

| 0 -1 |

0 2 0 0

5 ={ A% AL =] 0o -1 0 0
-2 0 2 =2

0 0 0 0

0 -2 0 0

. 2 . .
Since f4(0) = f,(), we can already eliminate the vector f;o’:
n_ [£2) 0 £2)
L= {f 1o Ja s T3 }

Since f,(z) + f3(2) =0, we put fs = f,“) +f3“) and we replace f3 by fs5 in Xy,
which gives the system

0 0 0
| 0 |
2 0 0 0 2 0
Eg:{fl()a 2(), 5()}= 0 —1 0
=2 0o =2
0 0 0
0 -2 0
Since f,m = 5‘0), we can eliminate fs:
= ={r? 1"

Since X7 is independent, the desired Jordan base is ig’.

By taking the union of the bases ¥’ of E, and Eg of E,, we define the
transition matrix

1 2 1 0 1 1 0

0 1 0 1 0 0 0

-1 0 0 0 0 -1 2

P= 0 -1 O 0 0 0 -1
o -1 0 =2 0 0 0

0 -2 0 0 -1 0 0

1 1 0 0 0 0 =2

and the desired Jordan form is then:

S oo oOooOoN
S oo oOoOo N~
S o oo NN—O
S OO —~ OO O
SO — = OO O
O = = OO OO
=l =N e N e R e R en)

We check the validity of these calculations by verifying that PJ = AP.

11.4.6. Programming
Everything depends on your level.

« If you are a beginner, you can write a program to carry out the matrix
operations.

« If you are seasoned, you can introduce a procedure to solve the linear
system in the preceding program so as to make carrying out the algorithm
more automatic.

We recall once again that the Pittelkow-Ruckel algorithm is not an algorithm
for numerical calculation; it is only a demystification of Jordan’s theory. Do
not try to automate the entire program. Program instead some instructional
software which reserves the thoughtful part (that is, the oversight of the cal-
culations and the decisions to take) for the user of the program; if the user
remains passive, he or she will learn nothing and carry away the impression
that the theory is difficult.

« In order to obtain matrices with a given Jordan form prescribed in advance,
start with the prescribed form J and complicate it with succesive elementary
operations A — E~'AE.

12. Recursion

12.1. Presentation

Certain mathematical objects are inherently fascinating. Consider, for example,
the integers or differential equations. What can be more banal than the integers?
Yet, what riches they hide! Differential equations are genuine “black holes™:
with the seven characters x” + x = 0, we define the number 7 and all of
trigonometry; with one character more, the equation x” + x> = 0 defines
periodic functions on R with distinct periods!

Recursion is another “black hole”: several lines of code can lead to a pro-
cedure seemingly impossible to describe iteratively. It is also a very fruitul
programming discipline: a recursive procedure contains its own proof. When
necessary, standard techniques of derecursifying' allow one to automatically
transform a recursive code into an otherwise inaccessible iterative code.

Despite these qualities, recursion frequently inspires fear in beginners.

« It seems mysterious: what does the machine do? How can one understand
and execute a code that refers only to itself, so that the least imprecision leads
to a crash?

» Beginners forget that recursion is simply reasoning by induction adapted
to a computer, and requires only that one know some very simple techniques.

12.1.1. Two simple examples

On can translate the definition of the function n! that mathematicians use
directly into Pascal:

function fact(n : integer) : integer ;

begin

|if n < I then fact =1 else fact := n * fact(n — 1)

end ;

' See D. Krob, Algorithmes et structures de données, Ellipses (1989). Some individu-
als seek to introduce recursion into every new problem, even if it seems artificial at
first; one can also explain formidable algorithmes in this manner. If this manner of
thought also fascinates you, I recommend the very original J. Arsac, Foundations
of programming, Academic Press (1985)

The first time that one sees code like this, one is is incredulous.?

How can a machine — a set of condensers, interrupters and a clock — under-
stand this summit of the human spirit that is induction, this stupefying means
that we conceived to master the infinite? We shall explain this later at length.
In the interim, we remark on some features of the syntax.

o Consider the statement
fact := n xfact(n — 1)

and note the following nuances:

» The left of the assignment symbol is concerned with the definition of the
value of the function; thus one finds only the name of the function;

« To the right of the assignment symbol, one finds an arithmetic expression.
An arithmetic expression can contain one or more function calls, including
calls to a function which is in the process of being defined: the compiler
sees nothing inconvenient here. Note that here the name of the function
is necessarily followed by its argument in parentheses.

« The following test is essential
ifn<1then...

If you forget it, to find the value of fact(3), your program will first try to
calculate fact(2), fact(1), fact(0), fact(—1), fact(—2), etc., and will crash when
its memory is entirely filled by the incessant recursive calls.

o The call parameter » is passed by value, that is, “without var”. In fact, if
we put n in “var”, the compiler will not accept fact(n— 1) since (n — 1) is not
the address of a variable in memory.*

A procedure can be recursive; that is, it can call itself. If we like, although
it is of no practical interest, we could calculate n! using a procedure:

procedure factorial(var y : integer ; n: integer) ;
begin {returns n! in y}
ifn<1theny:=1

else begin

factorial(y,n — 1) ; {y=m—- 1!}
yi=nxy {y = nl}

end

end ;

2 Examine your memories: didn’t you feel the same uneasiness when you first en-
countered the definition of the factorial function in mathematics?

3 But you could put everything back in order by declaring a local variable temp
and replacing the faulty code fact = n x fact(n — 1) by temp := n— 1 ; fact .=
n * fact(temp).

The body of the procedure contains the statements; now a call to a procedure
which itself consists of the procedure which is in the process of being defined
is a statement like any other! This is the reason that this code is accepted.

We can define the Fibonacci series as a function

function Fib(n : integer) : integer ;

begin
if n <1 then Fib:=n {not Fib:= 1, because Fib(0) = 0}
else Fib := Fib(n — 1) + Fib(n — 2)

end ;

or as a procedure:

procedure Fibonacci(n : integer ; var u : integer) ;
var y, z : integer ; {returns F, in u}
begin
ifn<1thenu:=n
else begin
Fibonacci(n — 1,y) ; {y = Fu-1}
Fibonacci(n — 2,7) ; {2 = Fa2}
u:=y+z
end
end ;

12.1.2. Mutual recursion

Suppose that we want to write two procedures A and B each of which calls the
other, meaning that the code for A contains a call to B and that of B contains
a call to A. How do we type this? Knowing that A contains one or more calls
to B, we ought to type the code for B before that of A. But the same rule
requires that the code for A appear before that of B. We find ourselves in the
computer science version of the classical chicken and egg paradox.*

To resolve this dilemma, we use the statement “forward” which allows us
to detach the declarative part of a procedure from the body of the procedure.
So, we can write

procedure A(var x,y : integer) ; forward ;
procedure B(u : real ; var v : integer) ; forward ;

Having made the declaration, you can type the following in the reserved
parts of the procedures.

procedure A{(var x,y : integer)} ;
{constants, types, local variables, etc.}
begin

4 Which appeared first?

code which may eventually contain
calls to B or to procedures calling B
end ;

procedure B{(u : real ; var v : integer)} ;
{constants, types, local variables, etc.}
begin

code which may eventually contain
calls to A or to procedures calling A
end ;

o The code for A need not precede that of B. You could, if you wish, write
the body of B before that of A.

» Note the comments which allow one to keep in sight the parameters of both
procedures. This is a very useful technique when the heading of the procedure
is several screens distant from the body! (Some compilers are tolerant and
allow repetition of arguments.)

» You can use the “forward” procedure with any procedure or function,
even if there are no mutual calls: some programmers, in fact, systematically
use forwards so as to never have to move code.

We shall see soon a magnificent example of mutual calls (the time-waster).
In Chapter 13, we will encounter much more elaborate examples.

12.1.3. Arborescence of recursive calls

To understand what a program does during a recursive call, we construct a tree
which represents successive procedure calls. Its root is the calling procedure
and its branches are the procedures called. For example Figure 12.1 displays
the tree diagramming the recursive calls associated to the statement Fib(4): to
execute Fib(4), the program first calculates Fib(3) and Fib(2) before adding
them. But calling Fib(3) and Fib(2) starts the calculation of Fib(2), Fib(1) and
Fib(0).

Precisely what these calculations are does not matter: the tree of recusive
calls and the route (computer scientists speak of a visit) allow us to understand
the history of the calulations.

12.1.4. Induction and recursion

What follows is the code for the aptly named procedure, mystery. What does it
do? Do not cheat and look up the answer that follows! Try to discover yourself
(without turning to a computer or looking at Fig. 12.3) what mystery(4) does.

Also observe your own behavior: one of the goals of the exercise is to
observe your own reactions.

! Fib(3) V Fib(2)
7 Fib(2) Fib(1) { Fib(1) __Fib(0) }

Vs 2 AR Yy TeeeeenT ==
.

s AsS

. N

’ .

Fig. 12.1. Recursive calls associated to the statement Fib(4)

procedure mystery(n : integer) ;
begin

ifn=0

then writeln(n : 3)

else begin write(n : 3) ; mystery(n — 1) ; writeln(n : 3) end
end ;

When one poses this question to a beginner, one discovers that he or she
will reason as follows: “Let’s see, mystery(4) writes 4 then calls mystery(3),
which writes 3, then calls mystery(2), etc.” Our beginner then guesses that the
procedure begins by writing 4, 3, 2, 1, 0 on the screen. A careful beginner will
even specify that these numbers are written on a line because the statement
write comes into play and not writeln. But then, the intellectual mechanics
screech to a halt.

To understand the problem, we sketch the tree of recursive calls (using the
notation “m” for mystery, “w” for write and “win” for writeln).

We find that the naive method of the beginner consists of plunging into the
left half of the tree. Unhappily, this error is easy to make: the human mind,
unlike a program, does not easily remember statements which remain in wait:
the climb back to the root of the tree is difficult, even impossible! Experience
shows that simply reading the code will not suffice: most of the time, the tree
is too complicated to be sketched ...

What moral should we draw from this experience? One should refuse to
plunge into a recursive call tree and replace this suicidal plunge with an
induction hypothesis so as to never leave the code of the procedure.

To imagine the induction hypothesis, it suffices to simulate (by hand!) the
calls mystery(0), mystery(1), mystery(2) and mystery(3) in this order.

« The first call writes O on the screen and leaves the cursor on the following
line.

- m(l) win(2)
_____ ’ >
Y.
w(l) ~ m(0) win(l)
..... ST

Cowo

Fig. 12.2. Traversing the tree of recursive calls in the case mystery(4)

« Knowing this, it is not at all difficult to convince oneself that the second
call writes 1, 0 on the line, then a 1 on the following line, and leaves the cursor
on the second line.

o« When we pass to mystery(2), we must execute the statements write(2),
mystery(1) and writeln(2), which writes 2, 1, 0 on the first line, 1 on the second
line, 2 on the third line and leaves the cursor on the third line.

We are now in known territory: induction.

0 1 0 210 3210 4 3210
1 1 1 1
2 2 2
3 3
4

Fig. 12.3. Solution: What the calls mystery(0), mystery(1), mystery(2), mystery(3) and
mystery(4) do. The dot indicates the position of the cursor.

Exercise 1

Try to discover without cheating — that is without using your computer —
what the following procedures do.

procedure mystery,(n : integer) ; procedure mystery,(n : integer) ;
begin begin
if n < 0 then writeln if n < 0 then writeln
else begin else begin
write(n : 3) ; write(n : 3) ;
mystery,(n — 1) ; mystery, (n) ;
writeln(n : 3) end
end end ;
end ;
Exercise 2

Same question with the procedures:

procedure mystery;(n : integer) ; procedure mystery,(n : integer) ;
begin begin
ifn<0 ifn<0
then writeln then writeln(n : 3)
else begin else begin
write(n : 3) ; write(n : 3) ;
mystery;(n — 1) ; mystery,(n — 1) ;
mystery,(n — 1) end
writeln(n : 3) end ;
end
end ;

12.2. The Ackermann function

Another celebrated classic of recursion theory is the Ackermann function. This
is a function or two variables x, y € N and a parameter n € N which controls
its complexity:

«c A, x,y)=x+1;

x if n=1,

0 if n=2,
PAm 0 =1 TS

2 if n>4;

. A(n,x,y)=A(n— I,A(n,x,y—l),x) ifn>0and y > 0.

The translation into Pascal code follows the definition step by step and
presents no difficulty. The interest of this function lies elsewhere: it is barely
calculable in a sense that we will not try to make precise.

function Ackermann(n, x, y : integer) : integer ;
begin
if n = 0 then Ackermann = x + 1 else
if y = 0 then
case n of

1 : Ackermann := x ;

2 : Ackermann =0 ;

3: Ackermann =1 ;

else Ackermann := 2

end {case}
else Ackermann := Ackermann(n — 1, Ackermann(n, x,y — 1), x)
end ;

If you program this function, expect surprises as your computer goes nuts
very rapidly.

Theorem 12.2.1. The Ackermann function is defined on all of N° and:

A(l'x'y)=x+y, A(2,x,y)=_x.y,
A(3,X,y) :x}’y A(4’x’ y) :2“-\)‘
Proof. Before showing that this function is defined on N* (which is not at all

evident), let us explicitly work out the cases n = 1, 2, 3, 4.
« A(l, x, 0) = x by definition. Thus,

A(l,x,1) =A0,A(L, x,0),x)=x+1)+0=x+1,
A(l,x,2) =A0,A(L,x, D), x) =+ 1)+ 1=x+2,
A(l,x,3) = A0, AL, x,2),x)=(x+2)+1=x+3.
Induction on y then shows that A(l, x, y) =x + y.
e A(2,x,0) = 0 by definition. Thus,

A2, x, 1) = A(l, A2, x,0), x) = A(1,0, x) = x,
A2, x,2) =A(,A2,x, 1), x) = A(l, x,x) = 2x,
A2,x,3) = A(1, A2, x,2),x) = A(],2x, x) = 3x.
Induction on y then shows that A(2, x, y) = xy.
« A3, x,0) = 1 by definition. Thus:

AG,x, 1) =A2,AG,x,0),x) = A2, 1,x) =x,
AG,x,2) =AR,AG, x, 1), x) = A2, x,x) =x - x,
A3, x,3) =AR2,AQB.x,2),x) = A2, x%, x) =x - x - x.

Induction on y then shows that A(3, x, y) = x*.

o A(4, x,0) = 1 by definition. Thus:

A4, x, 1) = A3, A4, x,0), x) = A3, 2, x) = 2%,
A, x,2) = AB, A4, x, 1), x) = A3, 2%, x) = (2°)* = 2%,
A4, x,3) = AB, A4, x,2),x) = AG3, x2,x) = 27)* =2~

We end with an induction on y.

Now let us determine the domain of definition: do the recursive calls stop
at each triple? We will prove this using transfinite induction (Chap. 2) on N*
endowed with the lexicographic order.

Let D be the domain of definition of the Ackermann function, that is the
set of triples at which the recursive calls stop. Choose a triple (N, X, Y) and
suppose that A(n, x, y) is defined for all triples (n,x,y) < (N, X,Y). We
want to prove that A(N, X, Y) exists.

e« If N=0orY = 0, we know that A(N, X, Y) exists because there is
no recursive call. In other words D already contains the triples (0, X, Y) and
(N, X, 0).

« If N >0 and Y > 0, the induction hypothesis assures us that the number
o= A(N, X, y — 1) exists because (N, X, y—1) < (N, X, Y). Since we also
have (N — 1, a, X) < (N, X, Y), the induction hypothesis now implies that
A(N, X,Y)=A(N — 1, a, X) is defined.

12.3. The Towers of Hanoi

Consider a board on which three equidistant pegs, called A, B, C have been
stood vertically. At the outset, n disks with decreasing radii are positioned on
rod A so as to form a pyramid. We want to move disks from rod A towards C
respecting the following rule: one can take a disk from the top of a rod in
order to put it on another rod subject to the condition that it does not cover a
disk of smaller radius (in other words, the disks must always form pyramids.

This problem appears difficult, but is very simply solved when one reasons
inductively. Let us call Hanoi(A, B, C, n) the operation which consists of
moving the n upper disks of A to C using B as an intermediate rod.

o If n = 1, it suffices to move disk A to C.

o If n > |, we can begin by moving the n — 1 upper disks of A to B (see
Fig. 12.4) using C as an intermediate peg. We then move the largest disk of
A to C, Next, we begin again and move the n — 1 top disks of peg B to C
this time using A as an intermediate peg.

The translation into a program is now child’s play.

(1) o—

0 ———— —
i
=—— L
(C) —
e
(d) [= =]

Fig. 12.4. Tower of Hanoi: (a) initial situation, (b) after Hanoi(A, C, B, n—1), (c) after
move(A, C) (d) after Hanoi(B, A, C,n — 1)

program fowers_of _Hanoi ;
var A, B, C : char ; n: integer ;
procedure move(X, Y : char) ,

begin
| writeln('move disk from peg ', X,' to peg ', Y)
end ;
procedure Hanoi(A, B, C : char ; n: integer) ;
begin
if n =1 then move(A, C)
else begin
Hanoi(A,C,B,n— 1) ;
move(A, C) ;
Hanoi(B,A,C,n— 1)
end
end ;
begin
write('number of disks ="') ; readln(n) ;
A:='A"; B:='B; C:='C; {this is not a joke!}
Hanoi(A, B, C, n)

end .

If we sketch (Fig. 12.4) the tree of recursive calls for Hanoi(A, B, C, 3), we
can foresee what the computer will do. But, as we have already mentioned,
the limits are quickly attained: try, for instance, to completely sketch the tree
of calls for Hanoi(A, B, C, 5) !

Never forget: it is an induction hypothesis which allows us to write the
procedure. The tree of recursive calls simply allows us to understand the
Pandora box that we have opened ...

.. HABG3)

- H(A.C,B2) m(A,C) H(BAC2) -
HAB.CI1) mAB) HCABI) ' | HBCAI mBO HABCI
mAC) Some SN mBA) ;om0
o . S S g

Fig. 12.5. Tree of recursive calls of Hanoi(A, B, C, 3)

Exercise 3
Sketch the tree of recursive calls for Hanoi(A, B, C, 4).

Exercise 4

Our program is nevertheless frustrating because it indicates only how one
needs to move the disks. Why not show the movements of the disks on the
screen? To do this, we must know the state at each time of the system: that is
the composition of each of the pyramids on each of the pegs A, B, C. Hence,
the declaration:

type peg = record

name : char ;

ht : integer ;
ray : array[1..10] of integer
end ;

var A, B, C : peg ;

You initalize the towers with the code:

with A do begin

|name ='A"; ht =n; fori =1 to ht do rayli] =i
end ;

with B do begin name :='B’ ; ht:=0end ;

with C do begin name :='C' ; ht :=0end;

It is not necessary to modify the procedure Hanoi, other than the types. In
contrast, it is necessary to entirely rewrite the procedure move which modifies
the composition of the pegs (do not forget the “var”!) and animates the screen.

12.4. Baguenaudier

Bauguenaudier is a centuries old puzzle consisting of interlaced rings and a
looped double rod which one wants to remove. By pulling the rod to the left
and passing the rightmost ring into onto one side of the rod. one can free the
ring on the right.

GEEEEEEDD

— « -

AT T
|_ e = 4

4

Fig. 12.6. A baguenaudier

More generally, on numbering the rings from right to left, one finds that to
free (or interlace) the ring k, it suffices that the &k — 2 first rings are free and
that the (k — 1)-th is in place. This remark allows us to formalize this puzzle
simply using a ruler with holes and n balls. The holes are numbered from 1
to n. One has to fill the n holes respecting the following rules (where to play
means placing or removing a ball):

« the ruler is empty at the outset;

« a hole can contain only a single ball;

« one can always play hole number [;

 one can always play the hole that follows the first filled hole.

To better grasp the nuances of the game, we detail the passage from the last
row of the array on the left to the first row of the array on the right where
each row has five holes (see below). At the bottom of the array on the left,
the first occupied hole is hole 2. Thus, we either can play hole 1 (adding a
ball) or hole 3 (removing a ball), Since playing hole 1 leads us backwards we
remove a ball from hole 3.

To summarize, we alternately use the two rules since using the same ones
twice in a row does nothing.

® OO0 OO OO0 e eO0 O O0O0Oeo
® @ O0O ® Oe @O OO0OO0Cee
O e®@O0O0O0 ® 00 00 ®eO0OO0Cee
O e e@®O0O0 Oe e e O [N BNORN BN]
® ® e 0O O e O eoO0 COeoee
® O ® 0O ® 0 00 Ce e o0 o0
OO ®@0O0 ® OO eO0 o 0000

Fig. 12.7. How to play baguenaudier with five holes

When one plays baguenaudier with three, then four, then five holes, etc., one
discovers (involuntary) strategies for filling or emptying the segment formed
by holes 1 to p. We formulate an induction hypothesis by supposing that we
know:

 how to fill the segment consisting of the first p holes (supposed empty);
» how to empty the segment consisting of the first p holes (supposed full).

If p > 3 and if the segment of holes 1 to p is empty (we make no assumptions
about the other holes), we can fill our segment by:

(i) filling the segment of holes 1 to p — 1;
(ii) emptying the segment of holes 1 to p — 2;
(iii) playing hole p;

(iv) filling the segment of holes 1 to p — 1.

To empty the same segment — supposed full this time — we can:

(i) empty the segment of holes | to p — 2;
(ii) play hole p;
(iii) fill the segment of holes 1 to p — 2;
(iv) empty the segment of holes 1 to p — I.

The programming is immediate. This is a splendid example of mutual re-
cursion(where several procedures call one another).

This example also shows that it is practically impossible to sketch the tree
of recursive calls once the situation is complicated. We are forced to rely on

induction.

Declarations
We represent the baguenaudier by an array of booleans. The constants empty
and full make the program more readable and make it unnecessary to memorize
conventions.

const empty = true ; full :=false; n=75;

type table = array|1..n] of boolean ;

var baguenaudier : table ;

The main body of the pogram is the simplest part.

begin

message ;

for i := 1 to n do baguenaudierli] := empty ;
fill_segment(n)

end .

The procedures fill_segment and empty_segment

These procedures faithully translate the strategy we have written. Since the
procedures mutually call one another, we use the “forward” statement.

procedure fill_segment(p : integer ; var baguenaudier table) ;
forward ;

procedure empty_segment(p : integer ; var baguenaudier : table) ;
forward ;

We now write the bodies of the procedures.

procedure fill_segment ;
begin {the holes 1 to p are empty ; afterwards, one doesn't know)
case p of
1 : play_hole(1, baguenaudier) ;
2 : begin
play_hole(l, baguenaudier) ;
play_hole(2, baguenaudier) ;
end
else {now, p > 3}
fill_segment(p — 1, baguenaudier) ;
empty_segment(p — 2, baguenaudier) ;
play_hole(p, baguenaudier) ;
fill_segment(p — 2, baguenaudier)
end {case}
end ;

The separation of cases n = 1,2 from the general case n > 3 is neither
capricious nor happenstance; rather it is a consequence of attentively exam-
ining the strategy employed. Since it needs a segment that contains at least
three holes, we are obliged to treat the cases with one or two holes separately.

procedure empty_segment ;
begin {the holes 1 to p are full ; afterwards, one doesn't know}
case p of

1 : play_hole(1, baguenaudier) ;

2 : begin

play_hole(2, baguenaudier) ;

play_hole(1, baguenaudier) ;

end

else {now, p > 3}

empty_segment(p — 2, baguenaudier) ;

play_hole(p, baguenaudier) ;

fill_segment(p — 2, baguenaudier) ;

empty_segment(p — 1, baguenaudier) ;
end {case}
end ;

Programming is straightforward: it remains to write the procedure play_hole
(several lines of code to modify and display the new baguenaudier).

12.5. The Hofstadter Function

The Hofstadter function® is defined as follows:

0 if n=0,

n— G(G(n — l)) if n>1.

Here are its first values; it is not at all clear that this function is defined on all
of N!

G(n) =

n |0[1]2|3]|4(5|6[7|8[9]|10]|11]|12
Gn)|0|1|1(2]3|3(4(4|5|6|6 | 7|8

This function has a surprising interpretation. Recall (Chap. 8) the Zeckendorf
decomposition of an integer > 1:

n=F+F,+--+F, 4>0L0>» ->§>»0.
Theorem 12.5.1. With Zeckendorf decomposition as above, we have
G("l) = F‘l’]fl + Ezfl + Tt + P‘ikfl'

5 See Chapter 5 of the book Douglas R. Hofstadter, Gidel, Escher, Bach: an eternal
golden braid, Basic Books (1979).

Proof. This theorem is proved rather simply by induction on n. Try it!

Proposition 12.5.1. The Hofstadter function is defined on N.

Proof. Upon trying to reason by induction, we suppose that p = G(n — 1)
exists, so G(n) = n — G(p). We then realize that we also need precise infor-
mation about G(p), we leads us to formulate a strong induction hypothesis:

The function G is defined on the interval [0, n] and

(Fn) I <Gk) <k—1 forall k € [2,n].

The rest of the proof is left to the reader.

Exercise 5

The values of the function G for n < 12 suggest that the function is increasing
and does not grow very fast since G(n + 1) — G(n) < I. Is this true? What
about the same conjecture with the inequality G(n + 2) — G(n) > | which
says that G cannot take the same value more than twice in a row?

12.6. How to Write a Recursive Code

Suppose that we want to write a recursive procedure toto(x, n) depending on
two integer parameters x, n > 0.

o We begin by examining the general case, trying to express toto(x, n) with

the aid of one or several calls to toro. Suppose, in the first approximation, that
our analysis gives us five statements

A(x,n);
toto(x — I, n + 1);
toto(x,n) = { B(x,n); (12.1)
toto(x,n — 1);
C(x,n)

where A, B, C are three procedures that do not modify the values of x and n
and which do not call roto (directly or indirectly).

« This rough sketch shows us that we do not have the right to use (12.1)
when x — 1 <O orn—1 < 0: we must treat the pairs (0, n), (x, 0) separately.
We must assure ourselves that A, B, C function correctly. Suppose that A
and C do not require anything, but that B(x, n) does not function for n > 2,
which now prevents us from using (12.1) with the pairs (x, 0) and (x,).

o We treat the exceptions separately. Suppose that:
> toto(x, 0) is the procedure a(x) if x > 0;

> toto(x, 1) is the procedure 8(x) if x > 0;

> toto(x, 2) is the procedure y(x) if x > 0;

> toto(0, n) is the procedure §(n) if n > 0.
(We again suppose that the procedures «, 8, v, § do not call roto either directly,
or indirectly.)

« It suffices to assemble the pieces taking care to treat the pair (0, 0) which
is common to the pairs (0, n) and (x, 0) separately:

procedure roto(x, n : integer) ;
begin

case n of

0: ifx > 0 then a(x) else §(0) ;
1:B(x);

2:y);

else {henceforth n > 3}

if x =0 then §(n) else begin
A(x,n); totox—1,n+1);
B(x,n) ; toto(x,n—1);
C(x, n)

end

end {case}

end ;

As you can see, the appearance of stops in recursive calls does not happen
at random, as beginners very frequently think; it results from a careful analysis
of the impossible cases of the general case.

Exercise 6

Show that the recursive calls of the procedure toro stop. (Use transfinite in-
duction.)

12.6.1. Sorting by dichotomy

We examine a more concrete case, We are required to sort® a vector containing
integers. If we start with

U=(5,6,1,1,1,5,5,2,3,9,7,8, 8)
the sorted vector is:

u=@,1,12,3,515,56,7,8,8,9).

® Sorting algorithms are essential in management, which explains the considerable
number of algorithms proposed.

We can sort this vector by dichotomy, which means that we cut the vector into
two equal parts (up to a unit):

u =@6.61115), U,=(5,23,91728,8).

We then sort the lower part U, and the upper part U, separately, which gives
us the vectors:

u=(,1,1,55,6), U,=(2,3,57138,8,9).

We now merge the vectors U; and U, to obtain the sorted vector U’. This
operation is very simple: we consider the first elements of U, and Uj. Since
1 < 2, we know that the first element of U is 1; we strike out the first element
of U, and we begin again.

To obtain a recursive formulation, we suppose that we have a procedure
sort(U, p, q) capable of sorting the subvector (U, ..., U,) without modifying
the other entries. To sort U, it suffices to type the statement sort(U, 1, n).

Now, a rough sketch of our algorithm is:

m:= (p+q) div2; ({splitting the vector}

sort(U, p, m); {sorting the lower part}
sort(p,q,x) = .
sort(U,m + 1, q); {sorting the upper part}
merge(U, p,m, q)
Consider now the problem of stopping. To speak of the subvector U,,, ..., U,

implicitly assumes that 1 < p < g < n. As a result, the conditions p <m < g¢q
and m + 1 < g must hold in order to sort the lower and upper parts correctly.

» These conditions do not hold when g = p; happily, there is nothing to do
in this case.

« When g — p = 1, it would be stupid to use a dichotomy to exchange two
coordinates.

e« When g — p > 2, the condition p < m < q is realised.
We now know enough to write out our sorting algorithm.

procedure sort(var U : vector ; p,q : integer) ;
var m : integer ; {hypothesis | < p < q < n}
begin
if (9 —p=1) and (Ulp] > Ulgl)
then exchange(U, p, q)
else if g — p > 1 then begin
m:=(p+gq) div2;
sort(U,p,m) ; sort(U,m+1,q) ; merge(U, p, m, q)
end
end ;

Recall that the test ¢ — p > 1 is indispensable because it is especially
essential to do nothing when p = q.

You see that this was not too hard! It suffices to be rigorous; that is, to reflect
a little and to ask ourselves (just as we would for mathematics) whether the
objects we employ exist and if they satisfy the conditions necessary to function
well.

Exercise 7

Finish the program by writing the procedures merge and exchange.

Exercise 8: The Count is Good

Instead of the clumsy approximation in Chapter 6, this time we want to re-
ally program the popular French TV game. Recall the rules: one wants to
calculate an integer which we call the goal drawn at random between 100
and 999. For this, we are given six numbers chosen at random from among
the numbers 1,2, 3,4,5,6, 7, 8,9, 10, 25,50,75 and 100. The intermediate
calculations happen in N* (no negative numbers or zero; divisions must have
remainder zero). Finally, one is not obliged to use all the numbers to reach
the goal.

Suppose that we want to “realize” b with the integers ay, ..., a;:
« if one of the g; is equal to b, we are done;

« otherwise, and if k > 2, we suppress the numbers a; and a; in the list
a,...,a and we add in one of the numbers a; +a;, a; —a; if a; > aj,a;—a;
if aj > a;, a; *xaj, a;/a; if a; divides a; or a;/a; if a; divides a; and a; # q;
(this avoids repeating the preceding case).

It is of course necessary consider all possible pairs 1 <i < j < k.

To display a solution, each a, is accompanied by the string sol;, which is its
“history” that is, the recipe to manufacture a.

« At the outset, sol; is the result of converting the integer a, into a chain
of characters. When one replaces, for example, a;, by a; — a;, one must, at
the same time, replace sol, by the concatenation of the chain sol;,” — (', sol;
and ’)’. One does the same with the other operations.

In this manner, the value of the chain sol,, which involves only the opera-
tions between the a; at the outset, is always equal to the current value of .

We use constants to name the four operations

const max = 6 ; {first test your program with max = 4}
addition = 1 ; substraction =2 ;
multiplication = 3 ; division = 4 ;

type vector = array[l..max] of integer ;

string100 = string[100] ;
history = array[1..max] of string100 ;
procedure realize(a : vector ; h : history ; nb : integer) ;
var i,], k, op, temp, new_nb : integer ;
new_a : vector ; new_h : history ;
begin

i:=1 tonbdo
if ali] = b then display(h[i]) ;
if nb > 1 then begin
for i := 1 to nb do
for j := 1 to nb do
for op := addition to division do begin

new_a :=a,
new_h :=h;
new_nb :=nb —1;
case op of

addition, multiplication : begin
if i < j then combine(a, new_a, h, new_h, i,j, op, new_nb) ;
{commutative laws : test i < j avoids repetition}
end ;
substraction : begin
if ali] > alj]
then combine(a, new_a, h, new_h, i, j, op, new_nb) else
if ali] < al]j]
then combine(a, new_a, h, new_h, j, i, op, new_nb) ;
end ;
division . begin
if a[i] mod a[j] =0
then combine(a, new_a, h, new_h, i, j, op, new_nb) else
if (a[j] mod ali] = 0) and (alj] # ali])
{test al j] # ali] avoids repetition}
then combine(a, new_a, h, new_h, j, i, op, new_nb)
end ;
end ; {case}
realize(new_a, new_h, new_nb) {recursive call}
bnd
gnd

end ;

The procedure display tries not to write the same solution twice.
The procedure combine is straightforward : let
ind_min := min(i, j); ind_max = max(i, j).

We replace gjnq_min by a;iop a; and we shift all a, for k > ind_max to the left;

procedure combine(var a, new_a : vector ; var h, new_h : history ;
i,j,op, new_nb : integer) ;

var k, ind_min, ind_max : integer ;

begin

if i < j then begin ind_min :=1i; ind_max :=j end
else begin ind_min = j; ind_max =i end ;

case op of

addition : begin {i < j satisfied at the call}

new_alind_min] := ali] + alj] ;

new_h(ind_min] := parenthesize(h[i], "+, hlj]) ;

end ;

substraction : begin {one has i < j orj < i}

new_dalind_min] := ali] — alj] ;

new_hlind_min) := parenthesize(hli],’ —', h[j])

end ;

multiplication : begin {i < j satisfied at the call}

new_alind_min)] := ali] x a[j] ;

new_hlind_min)] := parenthesize(hli], *', h[j]) ;

end ;

division : begin {one has i < j or j < i}

new_alind_min) := ali] div a[j] ;

new_hlind_min] := parenthesize(hlil,’/’, h[j])

end ;

end ; {case}

for k := ind_max to new_nb do begin

new_alk] = alk + 1] ;

new_hlk] := hlk + 1] ;

end

end ;

13. Elements of compiler theory

For a beginner, the compiler is a mysterious being, at once very intelligent
(“Incredible, it understands my program!”) and abysmally stupid (“How could
it not accept an otherwise correct program that is missing a tiny semicolon!”).
You should understand that a compiler is only one program among others.
Its role is to faithfully translate the text submitted to it into another text com-

prehensible to the microprocessor:
——— | Compiler Executable
code

——— | Compiling by hand -
code

Fig. I3.1.

We are going to sketch answers to the following questions:

o What does the compiler’s translation look like? How does it handle pro-
cedure and function calls? How does recursion function?

» How does the compiler translate a program?

13.1. Pseudocode

In Chapter 6, we presented a model for how a procedure passes parameters.
Given the declaration

procedure toto(a : parameter);

we supposed that the program created the variable x_toto each time it encoun-
tered the statement toto(x) and modified the code of the procedure by replacing
the occurrences of a by x_toto suitably initialized.

This very convenient model is not realistic for at least two reasons.
« A program written in Fortran, Pascal or C cannot modify its own code.

» A microprocessor can only carry out one addition or one multiplication
at a time. We have not explained what becomes of complicated statements
suchas y:=axxxx+bxx+c.

When you want to understand the reactions of another individual, an ef-
fective technique is to ask yourself: “What would I do in his or her place?”
To understand what a compiler does, we are going to put ourselves in its place
and translate our programs into a language called pseudocode.

13.1.1. Description of pseudocode

We return a last time to our unrealistic model and suppose that toro is recursive:
the statement toro(x) then results in the creation of the variable x_toto. But
since toto calls itself, the statement torto(x_toto) results in turn in the creation
of the variable x_roto_toto, etc.:

X_toto — Xx_toto-toto — x_toto_toto_toto — x_toto_toto-toto_toto > - - -.

Thus, we see the appearance of a stack structure beloved by computer scien-
tists.

Our pseudocode will resemble — but be much simpler than — the statements
emitted by a true compiler; it is a a very rudimentary assembly language. We
are are going to give orders to an imaginary microprocessor which only knows
how to add, subtract and multiply two integers. For this, the microprocessor
runs a stack.

add
sub
3 mult
(0]
[-1] push
—
[-2] > al|lb|c 7
pop
Program variables
Stack
o The available variables are a, b, . .., z; all of integer type;

« The stack stores certain information and intermediate calculations.

We do not translate programs which use complex objects such as arrays.

Let stack[i] denote the plate that is at height i in the stack and let stack[top]
denote the top of the stack. The plate stack[top — £] is noted [—£]; one says
that the integer € is the offser of the plate with respect to the top of the stack.
Thus, the top of the stack is denoted [0], the plate below by [—1], etc.

To start, one can consider a program as a long chain of characters. To
facilitate the discussion we agree on the following terminology:

« a constant is a chain of characters which represents an unsigned integer:
1999 is a constant;

e a variable is one of the characters q, ..., z;
e a stack reference is a chain of characters such as [0], [—1], etc.;

« a term is a chain of characters which is a constant, a variable or a stack
reference: 1515, a, [0], [—2] are terms;

« a signed term is a term potentially preceded by a minus sign: the chains
1515, —1515, a, —a, [0], —[0], [—3] and —[—3] are signed terms;

Syntax Meaning

read a grab the value of a
write a write the value of a
write ... write the chain of characters which

follows “write” if it is of length > |
a=12 a:l2
a=b a=»>b
a=-b a:=-—b
push ? top ;= top + | (stack indefinite value)
push Qa top = top + 1 ; stack[top] .= @a (stack the address of a)
push T top ‘= top + 1; stackl[top) :=T

(stack the value of the signed term T)

pop top :=top — 1 (remove once from stack)
pop n top :=top —n (unstack n > 1 times)

pop a, pop Qa | a := stack[top]; top := top — 1

pop [-i] stack[top — i) .= stack[top); top ;= top — 1

add stack[top — 1] := stack[top — 1] & stack[top] ; top := top — 1
sub stack(top — 1] := stack[top — 1] © stack[top] ; top := top — 1
mult stack[top — 1) := stack[top — 1] @ stack[top] ; top := top — 1
end return control to the system

Table 13.1. A first set of pseudocode statements

The push statement

This statement stacks a value or an address: “push x” stacks the value of the
variable x, “push 7 stacks the values of the signed term 7 and “push @x”
stacks the address of x.

Suppose that the top of the stack contains the number 12. Is this a value or
an address? We suppose that our imaginary microprocessor knows; when we
program we will solve this little problem using a record.

The pop statement
This removes plates from the stack and is inflected in two ways:

« When one does not need to keep the contents of the plates, one writes for
example “pop 3” to remove three plates. The statements “pop” and “pop 1”
are equivalent.

« When one wants to recover the top of the stack, one writes:
> “pop x” to transfer the top of the stack into variable x before re-
moving it from the stack (in Pascal this is written x := stack([top];
top :=top — 1);
> “pop[—2]” to transfer the top of the stack to the level top — 2 before
removing it from the stack (in Pascal, this is written stack[top—2] :=
stack[top]; top :=top — 1).

The statement add

The idea is the remove the two first plates, add their contents, and place
the result in the top of the stack. But, since the stack can contain both val-
ues and addresses and since adding two addresses or a value and an address
does not make sense, the statement “add” uses the operation @ instead of the
usual “+4”. This modified addition first converts possible addresses to values.
Consequently,

« if the two plates contain values, @ adds them without further ado;
« if one plate contains an address, @ first replaces the address by the value

of the corresponding variable before taking the sum (thus, 5@ @b means add 5
and the value of the variable b).

We specify: the first operand is always the plate [—1], the second is [O].
The interpretation of the symbols © and ® is similar (see Fig. 13.1).

Examples

1) To translate the statement x := a + (b — ¢) * x + 15 into pseudocode,
we note (without touching the stack) that the final result must be put in the
variable x; we then run through a 4+ (b — ¢) * x 4 15 from left to right which
leads us to stack a, b, ¢, x, 15 and to perform the additions, subtractions and
multiplications at the appropriate time:

@b

@b

@a

100 push a
101 push b
102 push c
103 sub

104 push x

105 mult
106 add

107 push 15
108 add
109 pop x

Fig. 13.2. Effect of “sub” on the top of a stack (the first operand is below). There are
Sfour possible configurations (here, a =5 and b = 7)

When the translation of a + (b — ¢) * x + 15 is finished, we transfer the
result to the variable x using a “pop” (which empties the stack). To better
understand the meaning of the pseudocode, we sketch the successive states of
the stack whena=1,b=10,c=7 and x = 12.

7 12

10| [3]|3][36 15
[1] LI][]][37](37] [52}>x
100 101 102 103 104 105 106 107 108 109

The final value is thus x = 52 (and the stack is empty).

2) We end this first encounter by examining the tranlation into pseudocode
of the statement x .= (a —u—v)— (b—v —w) — (c — w — u).

100 push a | 200 push b |300 push c |400 pop x
101 pushu | 201 pushv |301 pushw
102 sub 202 sub 302 sub
103 pushv | 203 pushw |303 pushu
104 sub 204 sub 304 sub
250 sub 350 sub

The first column contains the translation of a — u — v and the second that
of b — v — w; the “250 sub” stacks the difference (@ —u — v) — (b — v — w);
the fird column contains the translation of ¢ — w — u« and the “350 sub” stacks
(@a—u—v)y—(b—v—w))—(c—w—u).

Recall that addition, subtraction and multiplication are associative from the
left, which means that evaluation is made from left to right; in other words,
the translation of a + b+ c+d + e is the same as that of (((a+b)+c)+d)+e.

Branching statements

You have certainly noticed the integers which precede each statement in the
preceding examples. These integers are called addresses. They form an increas-
ing sequence which allows us to better structure our pseudocode by cutting it
into segments of consecutive integers.

The program which executes the pseudocode uses a global variable which
we call the control variable and which contains the address of the statement
to execute.

As a general rule, the program executes statements sequentially, that is, one
after the other. This effect is obtained simply by suitably incrementing the
control variable after each statement.

There are, nevertheless, cases where the program must branch to a statement
which is not the one immediately following. This can be realized in three ways.

The if goto statement

This statement compares plates, variables or constants. When it compares two
plates, they must be [0] and [—1]; when it compares a plate and a variable or
constant, the plate must be [0].

100 if [0] > [-1] goto 200 | 103 if [0] # n goto 200
101 if x = [0] goto 201 104 if x > y goto 201
102 if [0] < 37 goto 202 105 if a < 9 goto 202

The if goto statement is executed as follows:
o the program performs the indicated test;

« it then removes the plate or plates to be used (the statement 100 removes
two plates, the statements 101-103 remove a single plate and the last two
statements leave the stack intact because the test does not use any plate);

« if the test succeeds, the program leaves to execute the statement whose

address figures after the gotro (in other words, the contol variable stores this
address);

« if the test fails, the program goes to the following statement.

The ifx goto statement

This statement is a variant of the if goto statement. Since the sequence in-
creases the translation into pseudocode of a little program can be fairly long.
So sometimes we may find ourselves cheating a little by optimizing certain
translations — that is, by writing a shorter, more intelligible pseudocode than
that produced by a compiler.

100 ifx [-2] > 0 goto 200
101 ifx [0] = [-3] goto 201
102 ifx a < [0] goto 202

[T 1}

In contrast to the preceding statement, the ifx variant (where “x” signals
exception) allows us to directly compare plates, a variable or a constant. This
command does not remove any plates and thus leaves the stack intact.

The goto statement

This statement results in a mandatory branching (that is, without a preliminary
test): “goto 200 means control := 200; there is no change to the stack.

The return statement

One can translate this statement in a vivid, but illegal, way as “pop control”
(this is “illegal” because control is not one of the variables a, b, . .., 7). How-
ever, it does make clear that it means that the program transfers the number
at the top of the stack into control and then removes the top plate.

The programmer must arrange, however, that the top of the stack contains
the address of an statement at the moment of a “return”.

13.1.2. How to compile a pseudocode program by hand

Since our goal is to understand how a compiler functions, we are going to
imitate its behavior as faithfully as possible.

The compiler reads the program from left to right and translates it as it goes
along without waiting.

We need to beware of thinking of ourselves as compilers. A compiler has
no global vision of the text: it only sees a single word (or token) at a time,
it systematically forgets what it has read (but consults notes that have been
taken: the value of a variable, the type of a variable, the dimensions of an
array, etc.), it never sees the word following or the word preceding, it never
backs up to reread something. A compiler advances inexorably without pauses
towards the end of the program.

A compiler is a program. In other words, it is a set of reflexes released
by reading the current word, or even the current character (a parenthesis, for
example). We must learn to do the same.

The stack serves to store certain information (the parameters of a function
or procedure, local variables, the address of a variable, return address) or
intermediate results (to calculate a + b x ¢, we must first find and store the
value of b * ¢ before adding it to the number a).

Each time that we finish translating a sequence, we emit the necessary
instructions which will clean up (notice the future tense) the stack by removing
plates which have no further use so that the program restores (when it is
functioning) the stack to the state in which it found it. The examples that
follow will make this precise.

A last remark: in our explanations, we will mix the compilation (the present)
and the execution of the pseudocode (the future) because it is difficult to give
a order without trying to imagine the result it provokes.

13.1.3. Translation of a conditional
Consider the following fragment of code:

ifx+a>yxy+ythenx else 8; y

We suppose that the translations of o and B leave the stack intact:

i
Stack [

——

Execution of alpha and beta

When the compiler meets an “if”, it knows that it is going to encounter one
or more tests that it must translate as it goes along. We imitate it faithfully.

« We begin by translating the expression x + a; we let P denote its value
(which will stay in the stack). This done, we memorize mentally (without
emitting code) the fact the comparison is “>", then we translate the expression
whose value we denote Q and stack above P.

« When we meet the “then”, we emit the code that compares P and Q using
the opposite test P < Q which allows branching to the code of § (beginning
with statement 300). But since we have not yet translated o« or 8, we hold
in reserve the address after the goto of statement 300. (Recall that the test
“if [=1] < [0] goto” results in the removal of the plates containing P and Q.)

100 push x 300 if [-1] < [0] goto 600
“push P” { 101 push a 400

102 add } code for o

499

200 push y 500 goto 700 (skip B)

201 push y 600
“push 0”7 { 202 mult . } code for B

203 push y 699

204 add 700 start of the code for y

» We then read and translate the fragment of code «.

» When we meet the “else”, we know that the translation of « is finished; we
emit an unconditional “goto” (statement 500) which allows us, at the moment
the pseudocode is executed, to skip over to the translation of 8. But since we
still do not know where this translation ends, we hold in reserve the address
of this “goto”. By contrast, since we now know where the translation of 8
begins, we return backwards in the pseudocode to complete the “goto” at 300
before beginning to translate .

« When we meet the semicolon, we know that the translation of 8 is finished;
we then return once more backwards to complete the “goto” in 500 before
passing on to what follows.

Remarks

o When the execution of the pseudocode ends, we can be certain that the
stack is intact since @ and 8 each leave it intact.

» Recall that a compiler never goes backward in the program source code.
In contrast, we see that it does so as often as necessary in the pseudocode to
complete the addresses that are left standing by after the “goto’s.

« Why use the opposite test? Try it: if you translate the conditional while
keeping the test intact, you will be obliged to put the translation of 8 before
that of «. Since the compiler cannot go backwards in the program source code,
this strategy would oblige it to store some part of the translation of a while
waiting to be able to write it.

e The mechanical translation of the embedded conditionals makes “flea
jumps” (statements 300 and 500 below) appear. A good compiler knows to
avoid this by writing directly “goto 700” in 300.

100 if p < 0 goto 600
. 101 if q # 1 goto 400
f 0
' p>. 200 ... 299 code for o
then if g = |
then o — 300 goto 500
en
else f 400 ... 499 code for B
Is 5 500 goto 700
else y;
4 600 ... 699 code for y
700 ... code for &

Exercises 1
1) Translate the embedded conditionals into pseudocode:
ifp>0
then if g =1
then x :=x+ (@xb—c)+y
else if u =2
thenu:=u+v—w
else z:=x+y— Ww+v—w)x(a+>b)

2) When the test is complicated
if (p > 0) or (g =2) then o else 8
use the following scheme:

if p <0 goto (next test)
goto (start of o)

if g # 2 goto (start of B)
(start of the code for a)
goto (after B)

(start of the code for B)

Reading an “or” or an “and” then elicits the same reaction as meeting a
“then” does: emission of the opposite test and emission of a “goto” that is
provisionally incomplete and that branches to certain sections of code.
3) Translate:
if(p>0or(g=2) and (r <3) or(s>4
then if u = 5) and (v = 6)
then o else 8

13.1.4. Translation of a loop

Consider the loop:
while i xi 4+ 1 <i+m do «

We suppose that the translation of a restores the stack to what it was at the
moment of execution

100 push i | 107 add

101 push i | 108 if [-1] > [0] goto 201 {exit of the loop}
102 mult 109

103 push 1
104 add .
105 pushi | 199

106 pushm | 200 goto 100 {return of the loop}

code for a {body of the loop}

o When the compiler meets a “while”, it stores the number of the statement
that it is going to write (note the future), because this is where the loop will
begin.

e We are familiar with the translation of i xi + 1 < i + m (remember that
the plates P =i *i + | and Q =i + m are automatically removed after the
test 108).

o The statement 200 effects the return of the loop using the address stored

while reading the “while”. By proceeding this way, we are certain to leave the
stack intact.

Exercise 2

Translate the two loops

fori:=1ltonxn+1ldos:=s+1i;

repeat d :=d+ l untild*xd > n

13.1.5. Function calls

In order to familiarize ourselves with this mechanism, we analyse the transla-
tion of statement

s = x + square(y) + 2z

where square is the function which squares its argument. (The snapshot of the
stack after 1002 to the left of the code will help you to understand and check
the offsets.)

. 1000 push [0]
Y 100 push x 105 add 1001 push [-1]
Y 101 push 7 106 push z | 1002 mult
125 vack y2 | 102 push 105|107 ada 1003 pop [-3]

) ' 103 push y 108 pop s 1004 pop
* 104 goto 1000 | 200 end 1005 return

The sequence 101-104 comprises the function call:

» We begin by stacking an indefinite value (symbolized by the question
mark); this value will ultimately be replaced by the value of the function.

o We stack above the return address; that is, the address of the statement
to execute when the function code finishes (i.e. when the question mark is
replaced by the value of the function). This address (unknown for the moment)
is that which follows the “goto 1000”.

» We stack the value of the parameter y of the call.

Note the (indispensable) presence of the “end” (statement 200). If one for-
gets it, the program would penetrate into the function code instead of stopping.

The compilation of this function is easy to understand:

o Throughout the entire time during which the function call lasts we keep
the plates ?, 105, y intact (by working above the stack).

o When we finally find the value of square(y), we transfer it to where the
question mark is and remove the plates needed to free the return address.

To summarize, the sequence 101-104 amounts simply to saying:

”»

“stack y-.

105] | 105| |105| |105] [105||105||105||105

A2 (b2 b2l 2] 22y 2]]y?
XXXXXXXX.XX

101 102 103 104 1000 1001 1002 1003 1004 1005 105

Fig. 13.3. The number at the base of each column is that of the next statement

Remark

This translation is deliberately awkward because we are trying to emit a “me-
chanical” pseudocode which ressembles that which a compiler would produce.
It is possible to do better by suppressing the statement 1001 and replacing the
“pop [—3]” by a “pop [—2]” in 1003, which has the effect of destroying the
value of the call parameter y. But such clairvoyance is unavailable to a com-
piler.

Local variables

Call parameters

Return address

? = Future value of f f(x)

yyy yyy yyy

XXX XXX XXX

Before the call During the call After the call

Fig. 13.4. Steps that follow a function call: the code of the function must work in the
stack above the local variables in order not to destroy them; the value of the function is
transferred above the old stack which must not be modified; the return address permits
the program to return to the code right after the function call

We now refine our understanding by translating a somewhat more elaborate
statement:

s =axF(FQxx+1)+b
Recall that the compiler reads the source text from left to right and translates
as it goes along without pauses. The “reflexes” put into play are as follows:

« Reading the name of a function followed by an open parenthesis results in
the immediate emission of a sequence which stacks ? and the return address.

o The arithmetic expression in the parentheses is translated from left to right
as usual.

o Reading the closed parenthesis which ends the function call results in
bringing the return address to the fore and branching of the pseudocode to
that of the function.

100 push a 106 push x 112 mult
101 push ? 107 mult 113 push b
102 push 112 108 push 1 114 add
103 push 7 109 add 115 pop s
104 push 111 | 110 goto 1000

105 push 2 111 goto 1000

When we read the chain of characers “a * F (", we emit the statements 100—
102 by holding the return address in 102 in reserve (it will be known when
we read the corresponding closed parenthesis).

We then compile the argument of the function which is “F(2 x x + 1)”.
Thus, we emit the statements 103—-109 by leaving the return address in 104
on standby.

When we meet the first closed parenthesis, we know that it is time to call
the function F (statement 110) and that the return address in 104 is equal
to 111.

When we encounter the second closed parenthesis, we call the function F
anew (statement 111) and complete the return address (now equal to 112) on
standby in 102.

We now compile the body of the function that we take to be:

ifxxx <athen F.=x—aelse F:=a—x

We are familiar with the translation of the fragment “if x x x < a then”: we
stack the value of x twice in a row (statements 1000 and 1001) in order to
calculate x xx in 1002 (thus, we work systematically above the call parameter).

When the compiler deciphers the statement F := x — q, it takes note that
it is dealing with the name of a function (and not the name of a variable). It
then translates classically the calculation of x — a by replacing the references
to x by the corresponding plate.

When it encounters the “else”, the compiler knows that it has finished the
calculation of the value of F and that it is time to perform the assignment.
Since it remembers that it is dealing with a function call and not a normal
assignment, the compiler emits the necessary orders to transfer the value of F
to a good spot and free the return address which allows it to leave the function
code.

1000 push [0] 1005 push a 1011 push [-1]

1001 push [-1] 1006 sub 1012 sub
1002 mult 1007 pop [-3] | 1014 pop [-3]
1003 if [0] > a 1008 pop 1015 pop

goto 1010 | 1009 return 1016 return
1004 push [0] 1010 push a

Remark

This code is somewhat optimized because we cheated a bit by not issuing at
1010 the “goto” which allows jumping to the code of 8 once the translation
of o is complete. In contrast to the compiler, we know that we are leaving the
function code.

13.1.6. A very efficient technique

Let us describe a technique which makes compiling function and procedure
calls easy and sure. Suppose we want to compile a := x + square(y) + z.

» We write down a first approximation of the code:

read x | push square(y) |popa

ready |add
read z | pushz
push x |add

Note the absence of addresses and the use of the illegal command “push
square(y)”.
o We now write the code for “push square(y)”:

push ? goto (square)
push (R1) | (R1)
pushy

The labels (R1) and (square) represent unknown addresses. The last line con-
tains only the symbolic address (R1).

o We assemble these two codes; that is, we replace “push square(y)” by its
code; the symbolic address (R1) becomes the address of the statement which
follows.

read x push 7 (R1) add
read y push (R1) push z
read z pushy add
push x goto (square) pop a

o All we have to do now is introduce addresses to get the pseudocode of
the previous paragraph.

To test this technique, let us compile the more difficult statement
s=flxr—gly+2)*xg(fx + g0y +2)—x)

« The first draft is

read x |push f(A) |mult
ready |pushg(B) |pops
read z
o The first details for £(A) are
push ? push g(y+z) | (R1)
push (R1) | sub
push x goto (f)
We now expand the call g(y+z).
push ? push (R2) |goto (g)
push (R1) |pushy (R2) sub
push x push z goto (f)
push ? add (R1)
o The first details for g(B) are
push ? push x (R3)
push (R3) sub
push f (x+g(y+z)) |goto (g)

We introduce more details into g(B) by expanding the call f

push ? push x (R4) push x
push (R3) |push g(y+z) |sub

push ? add goto (g)
push (R4) | goto (f) (R3)

We expand the last call g(y+z):

push ? push ? goto (g) goto (g)
push (R3) |push (R5) | (R5) add (R3)
push ? pushy goto (f)

push (R4) |pushz (R4) push x

push x add sub

» We assemble these fragments to get the final code:

read x push z push x (R4) push x
read y add push ? sub
read z goto (g) push (R5) |goto (g)
push ? (R2) sub push y (R3) mult
push (R1) |goto (f) push z pop s
push x (R1) push ? | add
push ? push (R3) goto (g)
push (R2) |push? (R5) add
push y push (R4) goto (f) end
All we have to do now is to put in the addresses:
10 read x 107 push z 304 push x 500 push x
llready 108 add 305 push ? 501 sub
12read z 109 goto 2000 | 306 push 400 502 goto 2000
101 push 7 200 sub 307 push y 600 mult
102 push 300 | 201 goto 1000 | 308 pushz 601 pop s
103 push x 300 push ? 309 add
104 push 7 301 push 600 310 goto 2000
105 push 200 | 302 push ? 400 add
106 push y 303 push 500 401 goto 1000 [700 end
Exercise 3

Translate the following statements into pseudocode
s=0; fori =1tondos:=s+ F(@i);
t:=0; fori:=1tondot:=t+ F@()+ FQ2=x*1i);
v:=0; fori:=a+btoaxbdou:=FFQR=x*i+1));
v:i=0; fori:=1tondov:=v+ F(GF@i),F2=xi+1))—1)

knowing that F and G are the following functions

2 : _ 1
F)=(x+ Dx +2), Gu,v)= {“ futl ifu—v=1,
u? —v? if not.
13.1.7. Procedure calls
Now consider the program fragment
procedure toto(x : integer ; vary : integer) ; begin
var i : integer ; a=1;
begin b:=5
|x=y*xy; i:=x+y; y=i+1 toto(a, b)
end ; end .

and its translation into pseudocode. The first column below contains the trans-
lation of the principal part of the program. The two following columns contain
the translation of the procedure zoto.

100a=1 1000 push [-1] 1008 push [0]
101b=5 1001 push [-2] | 1009 push 1
102 push 107 1002 mult 1010 add
5 103 push a 1003 pop [-3] 1011 pop [-2]
- 104 push @b 1004 push [-2] | 1012 pop 3
@b 105 push 7 1005 push [-2] | 1014 return
a 106 goto 1000 | 1006 add
107 107 end 1007 pop [-1]

Local variables

Call parameters

Return address

yyy yyy yyy

XXX XXX XXX

Before the call During the call After the call

Fig. 13.5. Steps that follow a procedure call. The routine is the same as for a function
call, but simpler because it does not have to return a value. The code for the procedure
must work above the parameters of the call and must leave the original stack intact.

The method used to call a procedure is the same as that for a function call
except that there is no need to reserve a place in the stack to return the value
of the function. To prepare a procedure call, we stack successively (and in this
order):

« the return address (address of the statement that follows the “goto 1000™);
« the arguments of the procedure;
« the local variable (or variables) of the procedure;
« we call the procedure and complete the return address.
The way of stacking an argument depends on its nature:
« if it is passed by value, we stack its value;
« if it is passed by address, we stack its address.

To translate toto(a, b), we proceed as follows:

« When we read “toto(”, we issue a “goto” at 102 which must be followed
by a return address, an address which will only be known when we read the
closed parenthesis of roto(a, b) ;

» Reading a results in stacking the value of a (statement 103) and reading b
stacks the address of b (statement 104);

» Reading the closed parenthesis results in the stacking of the local variable i
(statement 105). Since i still does not have a value, we stack an indefinite value
symbolized by a question mark. This done, we call the code of the procedure
and complete the return address.

The compilation of the body of the procedure is easy to follow:

« We especially avoiding touching the plates which have been stacked by
statements 102—-104 in order to keep the return address, the value of a and
the address of b intact. This is because we cannot know in advance how
many times we will need this information. Thus we work above these plates.
In contrast, we have the right (and the duty) to modify the plate stacked by
statement 105 since it pertains to the local variable i.

e Once the procedure compiles, we clean up the stack in order to free up
the return address.

The array that follows represents how the stack evolves during the exe-
cution of toto(a, b). The number at the base of each column is that of the
statement which has just been executed. (Recall that the statements “pop @b
and “pop b” have the same effect.)

i ? ? ? ? ? ? {30]30|30] 30

y @b | @b | @b | @b| @b | @b | @b | @b | @b | @b

X 1 1 1 | 25252512525 |25]| 25
Return | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107

Fig. 13.6. Evolution of the stack and the contents of a, b during the call of toto(a, b)

When a parameter passed by value is an arithmetic expression, we evalu-
ate it. Thus the translations of toro(a, b), toto(a, a) and toto(a + 7, b) are

push address | push address |push address
push a push a push a
push @ push Qa push 7
push ? push ? add
goto 1000 goto 1000 push @b
push ?
goto 1000

Even in the third case, the height of the stack increases only by four units
(address, x =a+71, y = @b, z =?) as in the preceding cases. The arguments
are always at the same level in the stack when one reaches the procedure.

Exercise 4

Compile in pseudocode the calls
toto(a + F(b), a); toto(y + G(x, y), x)

where F' and G are the functions in the exercise in the preceding section.

13.1.8. The factorial function

We now know enough to be able to translate recursive programs. We shall see
that recursion is a natural consequence of the administration of a stack. We
begin with the archetype, the factorial function:

if n < | then fact :=1 else fact := fact(n — 1) * n.

The pseudocode below takes the value of n and returns y = n!.

10 read n 1000 push [0] 1008 push 1013

100 push ? 1001 if [0] > 1 1009 push [-3]

101 push 104 goto 1006 | 1010 push 1

102 pushn 1002 push 1 1011 sub

103 goto 1000 | 1003 pop [-3] 1012 goto 1000

104 pop y 1004 pop 1013 mult

105 write y = | 1005 return 1014 pop [-31]

106 write y 1006 push [0] 1015 pop

200 end 1007 push ? 1016 return
Remember, never forget the “end”!

o To understand how one gets the code for the factorial function, we write
down our first approximation:

(n =)t (F) push [0] pop pop [-3]
n if [0] > 1 return pop
n goto (R1) | (R1) push [0] return
104 push 1 push fact(n-1)
? pop [-3] mult

The snapshot of the stack on the left side of the code will help you to under-
stand and check the offsets.

« When we compile fact(n — 1), we must be very careful: the correct value
of n is the value which is at the top of the stack. We cannot use the variable n
of the program.

" push ? sub
n (R2) push (R2) | goto (F)
104 ? push [-3] | (R2)
: n push1

(When the stack is broken, you must read it from bottom to top and from left
to right.)
« We now assemble our pieces of code:

(F) push [0] (R1) push [0] |goto (F)
if [0] > 1 goto (R1) |push? (R2) mult
push 1 push (R2) pop [-3]
pop [-3] push [-3] pop

pop push 1 return
return sub

All we have to do now is to introduce addresses.

Theorem 13.1.1. The proposed code correctly calculates the value of the fac-
torial function.

Proof. The proof is by induction on the integer n. The statement is true when
n=0orn =1 (one need only execute statements 1000—-1005). Now suppose
that n > 2 and make the following induction hypothesis: each function call
for a value k < n places k! at the top of the stack after finite time. When
the program executes statement 1000 for the first time, the top of the stack
contains n; the induction hypothesis then assures us that the sequence 1006—
1012 puts (n — 1)! above n and the statements 1013-1016 transfer n! to the
right place in the stack and free up the return address.

Exercise 5

1) Execute by hand the calculation of n! forn =0, ...,5.

2) Translate “if n < 1 then fact := 1 else fact := n x fact(n — 1)” into
pseudocode and use it to calculate n! when n = 1, ... 4. Notice the exchange
of factors: fact := n x fact(n — 1) instead of fact := fact(n — 1) x n.

3) For n =1, 2, 3, 4, execute statements 100—106 of the example in which
calling n! has been replaced by the following pseudocode.

1000 ifx [0] > 1 goto 1003
1001 pop [-2]

1002 return

1003 push ?

1004 push 1009

1005 push [-2]

1006 push 1
1007 sub

1008 goto 1000
1009 mult

1010 pop [-2]
1011 return

This code has been optimized. Do you see how?

13.1.9. The Fibonacci numbers

The following code takes the value of n as input and displays the value

of Fib(n):

99readn

100 push ?
101 push 104
102 push n
103 goto 1000
104 pop y

106 write y

n 200 end
104

1000 push [0]

105 write Fib(n) =

1001 if [0] > 1
goto 1006
1002 push [0]
1003 pop [-3]
1004 pop
1005 return
1006 push ?
1007 push 1012
1008 push [-2]
1009 push 1
1010 sub

1011 goto 1000
1012 push ?
1013 push 1018
1014 push [-3]
1015 push 2
1016 sub

1017 goto 1000
1018 add

1019 pop [-3]
1020 pop

1021 return

Once again, note that the final “end” which stops the program from penetrating
unduly into the code of the function Fib beginning at 1000.

We use the following definition of the Fibonacci function:

ifn <1then Fib:=nelse Fib:= Fib(n — 1) + Fib(n — 2)

e To understand the code of the Fib function, we write down the first ap-
proximation for Fib.

(Fib) push [0] (R1) push Fib(n-1)
Fln—-2) if [0] > 1 goto (R1) |pushFib(n-2)
Fin—1) push [0] add
134 pop [-3] pop [-3]
. pop pop
- return return

« We now translate the call Fib(rn — 1). One must be very cautious: due to
the recursive call, the variable n in which we are interested belongs to the
function Fib, so its value (at the begining of the compilation) is in the top
plate. But the offset of the plate which contains this value augments as we
push new plates on the stack!

push ? sub
n " push (R2) |goto (Fib)
104| | (R2) push [-2] | (R2)
? ? push 1

» When we translate the call Fib(n — 2), the variable n is already deeper in
the stack as F(n — 1) now lies on the top of the stack.

n push ? sub
n (R?3) push (R3) |goto (Fib)
104 . push [-3] | (R3)
2 F(n—1) push 2

« We now substitute the calls Fib(n — 1) and Fib(n — 2) into the first
approximation and introduce addresses to get the translation.

(Fib) push [0] |return goto (Fib) goto (Fib)
if [0] >1 (R1) push ? | (R2) push ? | (R3) add
goto (R1) push (R2) push (R3) pop [-3]
push [0] push [-2] push [-3] pPop

pop [-3] push 1 push 2 return

pop sub sub

Exercise 6

1) Execute this code when n = 0, 1, 2, 3 (after this, it becomes painful).

2) Inspired by the proof of the correctness of the code for the factorial
function, show that statements 1000 to 1021 correctly calculate the Fibonacci
numbers.

3) Translate the following into pseudocode:

ifn<1then Fib:=n

else begin
u:=Fibn—1); v:=Fib(n-12);
Fib:=u+v

end

13.1.10. The Hofstadter function
Recall the definition (Chap. 12) of the Hofstadter functions:
G0)=0, Gn)=n—-G(G(n—-1) if n>1.

The following code takes the value of n as input and displays the value of G (n):

100 read n 1000 ifx [0] > 0 1009 push 1014

101 push ? goto 1005 | 1010 push [-5]

102 push 105 1001 push O 1011 push 1

103 push n 1002 pop [-3] 1012 sub

104 goto 1000 1003 pop 1013 goto 1000

105 pop g 1004 return 1014 goto 1000

106 write G(n) = | 1005 push [0] 1015 sub

107 write g 1006 push ? 1016 pop [-3]
1007 push 1015 1017 pop

200 end 1008 push ? 1018 return

» To compile the Hofstadter function, we write our first approximation.

(G) ifx [0] > 0 goto (R1) | push G(G(n-1))
GG — 1) push 0 sub
- pop [-3] pop [-3]
n
pop pop
135 return return
: (R1) push [0]

» We now get a first approximation for G(G(n — 1)).

push ?
n Gn— 1 push (R2)
105 (R2) push G(n-1)
? ? goto (G)

(R2)

» We improve the previous code by expanding the call G(n — 1): we must
not forget that n is deeper in the stack now.

push ? push1
n push (R2) |sub
n " push ? goto (G)
105| | (R2) | | (R3) push (R3) | (R3) goto (G)
? ? ? push [-51 | (R2)

» All we have to do now is to assemble the fragments

(G) ifx [0] > 0 goto (R1)
push O

pop [-3]

pop

return

(R1) push [0]

push ?

push (R2)
push ?
push (R3)
push [-5]
push 1
sub

goto (G)

and introduce addresses to get the final code.

13.1.11. The Towers of Hanoi

(R3) goto (G)
(R2) sub

pop [-3]

pop

return

Our last example consists in translating the towers of Hanoi into pseudocode.
The vertical pegs are represented by the integers 1, 2 and 3.

procedure Hanoi(a, b, c : integer) ;
begin

if n =1 then move(a, c)

else begin

Hanoi(a,c,b,n—1) ;

move(a, c) ;

Hanoi(b,a,c,n — 1)

end
end ;

begin

end ;

procedure move(x, y : integer) ;

| writeln(x,” t0 ', y)

The translation of the main body of the program is simple: we ask for the
value n, then initialize a, b, ¢ with 1, 2,3 and call the procedure Hanoi whose

translation begins at 1000. We do not push any question mark (indefinite value)
because a procedure does not have a value and Hanoi does not have a local
variable.

100 read n 103 push 2 | 106 goto 1000
101 push 107 | 104 push 3
102 push 1 105 pushn | 200 end

« The first approximation for Hanoi(a, b, c, n) is

(H) ifx [0] > 1 goto (R1) (R1) Hanoi(a,c,b,n-1)

n move(a,c) move(a,c)
07 Z pop 4 Hanoi(b,a,c,n-1)
o return pop 4
. a return

(Note that we cheated a little by using an “ifx”.) Recall that a procedure
must restore the stack intact. When n = 1, and if we suppose that move(a, c)
restores the stack we need the “pop 4” before the “return” to clean the stack
and free the return address. If » > 1 and if Hanoi(a, ¢, b, n — 1), move(a, c¢),
Hanoi(b, a, ¢, n — 1) leave the stack intact, we need again a “pop 4" to clean
the stack.

» One must avoid confusion at this point. Here, we are asking the program
to execute statements, we are not defining Hanoi: therefore, we must not use
a pop. The code for Hanoi(a, ¢, b, n — 1) is:

push (R2) |sub

- Z push [-4] | goto (H)
push [-3] | (R2)
¢ ¢ push [-5]
107 b a push [-4]
? a | [(R2) push 1

« Remark again that no pop is necessary because Hanoi(a, ¢, b, n—1) leaves
the stack clean. Thus the code for move(a, c¢) is

push (R4)
n push [-4]
¢ ¢ push [-3]
107 b a goto (move)
? a (R4) (R4)

e The code for Hanoi(b, a, c,n — 1) is:

SRS

107

ESTAN R N

—_
=
W

~

 We assemble the fragments and introduce addresses to get the final

pseudocode.

1000 ifx [0] > 1
goto 1007

1001 push 1005

1002 push [-4]

1003 push [-3]

1004 goto 2000

1005 pop 4

1006 return

1007 push 1015

1008 push [-4]

push (R3)
push [-3]
push [-5]
push [-4]
push [-4]
push1

1009 push [-3]
1010 push [-5]
1011 push [-4]
1012 push 1
1013 sub

1014 goto 1000
1015 push 1019
1016 push [-4]
1017 push [-3]
1018 goto 2000

sub
goto (H)
(R3)

1019 push 1027
1020 push [-3]
1021 push [-5]
1022 push [-4]
1023 push [-4]
1024 push 1
1025 sub

1025 goto 1000
1027 pop 4
1028 return

The code for the procedure move is simpler because it does not contain a
procedure call. We simply display the disks to move, then leave the procedure
after having freed in advance the return address.

2000 write [-1]
2001 write to
2002 write [0]

2003 pop 2
2004 return

For beginners

A common error consists in unstacking after the calls Hanoi(a, ¢, b,n — 1)
and Hanoi(b,a,c,n — 1). We absolutely do not undertake this task: it is the
calls Hanoi(a, c,b,n — 1) and Hanoi(b, a,c,n — 1) which do it. The same
argument applies after calling move(a, c¢). We unstack only once, in order to
free the return address (statements 1005 and 1027).

Exercise 7
o Execute the code when n = 3.
e Prove that this code is correct.

13.2. A Pseudocode Interpreter

To better understand the mechanism of procedure calls and recursion, it is
indispensable to translate some small programs into pseudocode and to run
them by hand. As you realize by now, this is a long and tedious mechanical
activity which is very prone to error.

Thus, we are going to write a pseudocode interpreter; that is, a program
which will execute pseudocode in our stead, but without error. This will allow
us to focus on the intellectually most interesting part, the action of the compiler;
that is, the translation of a given program into pseudocode.

Consider for example the following program which is the translation into
pseudocode of the instruction s := a * F(F(2 *xx + 1)) + b where F is the
function defined by F(x) :=x —a if x *xx < a and F(x) = a — x if not.

10 read a 107 mult 1000 push[0] 1009 return
11 read b 108 push 1 1001 push[-1] 1010 push a

12 read x 109 add 1002 mult 1011 push [-1]
100 push a 110 goto 1000 | 1003 if [0] > a 1012 sub

101 push ? 111 goto 1000 goto 1010 | 1014 pop [-3]
102 push 112 | 112 mult 1004 push [0] 1015 pop

103 push ? 113 push b 1005 push a 1016 return
104 push 111 | 114 add 1006 sub

105 push 2 115 pop s 1007 pop [-3]

106 push x 116 end 1008 pop

The execution of this pseudocode by our interpreter when a = 10, b = 100
and x = 5 is exhibited in Table 13.2.

Writing such an interpreter is also a very interesting programming exercise,
because it is a very pretty example of the minutiae and rigor that is necessary
to bring to bear each time that one deals with the recognition of forms and the
treatment of chains of characters.

Since the program is quite long, we will not always adhere to our method
of developing a program. We group the procedures by themes in order to
facilitate their comprehension.

Declarations

The program to be interpreted is stored in the array code. A line of code is a
pair (number of statement, statement).

10: a=10, 11: b=100, 12: x=5

100:
101:
102:
103:
104:
105:
106:

: return 111

111: goto 1000

112:
113:
114:
115: s

=-10; the stack is empty

: return 112

111]
111]
111]
111]
111
111]

111]
111]
111
111]
111]
111]
111]
111
111

-1
-1

|

_1|
_1|
-11]

I
112

112
112]
112
112
112
112
112]

112
112
112
112
112]
112]
112
112
112

112
112
112
112
112
112
112
112
112

116: end of program; the stack is empty

7|
?|
7|
7|
7|
?|
?|
7|
?|

?|
7|
?|
?|
7|
7|
7|
-11|
-11|

10
10|
10|
10]
10
10|
10|
10|
10]
10|

10
10
10
10|
10|
10|
10|
10
10

10|
10
10
10|
10|
10
10
10
10

|-110]
100|-110]
| -10]

Table 13.2. Execution of pseudocode for s :==ax F(FQ2xx+1))+b

Here, the stack is a pair (height, array). Since a plate contains either a value
or an address' we represent it as a pair (integer, boolean) so as to distinguish
values and addresses when we must perform an arithmetic operation.

const empty =" ; vert ="|";
space ="' ' ; max =100 ;

type
_string80 = string[80] ;
_value_or_address = record
value : integer ;
address : boolean
end ;
_stack = record
top : integer ;
plate : array[l .. max] of _value_or_address
end ;
_code_line = record
num : integer ;
statmt : _string80
end ;
_code = array(l .. max] of _code_line ;
_variable = array[d' ..'7'] of integer ;
var code : _code ;

variable : _variable ;

stack : _stack ;

The main part of the program

The program begins by transferring and displaying the contents of the file con-
taining the pseudocode into the array code. It then executes this pseudocode.

begin
load_program(code) ;
interpret_pseudocode(code)
end .

The procedure load_program

We could arrange to have the pseudocode interpreted as we type it in, but
this would be awkward. Not only would it be painful, but in case of error all
would be lost and it would be necessary to begin again.

This is why we will — for the first and last time in this book — make use
of a file into which the program to be interpreted will be typed. The procedure

' The address part is reserved for single variables; and destined for arithmetic op-
erations. When we stack the address of a statement, we stack the number of this
statement; that is, an integer considered as value.

opens this file, reads it, transfers the statements into the array code, and closes
the file again according to the following scheme.

open(the_file, file_name) ;
while not eof (the_file) do begin
readln(the_file, line) ;

end ;
close(the_file) ; {never forget!}

The treatment of a line consists of separating the address of the statement
(variable num_statmt) from the text of the statement (variable statement). To
avoid future recognition problems, we clean up each line before treating it by
suppressing the spaces at the beginning and end of the line.

procedure load_program(var code :_ code) ;

var file_name, line, num_statmt, statement : _string80 ;

the_file : text ; € : integer ;

begin

£ =0 {no line has been read}

write('name of file to open ') ; readln(file_name) ;
open(the_file, file_name) ;

while not eof (the_file) do begin

readln(the_file, line) ;
suppress_spaces(line) ;
separate(line, num_statmt, statement) ;

£:=¢€+1; {one makes a place for the upcoming line}
with code[f] do begin

num = convert_constant(num_statmt)

statmt := statement ;

writeln(num,’ : ', statmt) {one displays the line}
end
end ;
close(the_file) ; {never forget!}

writeln('— end of program —') ;

writeln('execution of the program’) ({serious things begin}
end ;

We also take this opportunity to have the procedure display the pseudocode
that will be interpreted. In this way, we will see the code and the evolution of
the stack on our screen.

The interpret_pseudocode procedure

The interpreter begins by isolating the prefix (that is, the first word) of the
statement to be executed, which allows it to know — via a long discussion —

which action to undertake, i.e. which procedure to call. We are obliged to fall
back on a succession of “if then else” statements, which obscures somewhat the
legibility because the statement “case” does not accept a string of characters
as a control variable.

procedure interpret_pseudocode(code : _code) ;
var num_line, control, address : integer ;

prefix, suffix ;. _string80 ;

Sfinish, branching, see_stack : boolean ;
begin
empty_stack(stack) ; num_line =1 ;
control := code(1).num ; finish := false ;

repeat
branching = false ; see_stack = true ;
write(control = 4," : ') ;

with code[num_line] do begin

separate(statmt, prefix, suffix) ;

if prefix = ‘end’

then execute_end(finish, branching) else

if prefix = 'push’

then execute_push(stack, suffix) else

if prefix = 'pop’

then execute_pop(stack, suffix, variable) else

if prefix = 'write'

then execute_write(suffix, see_stack) else

if prefix = 'read’

then execute_read(suffix(1], variable, see_stack) else

if prefix = 'goto’

then execute_goto(suffix, address, branching, see_stack) else
if prefix = "return’

then execute_return(stack, address, branching, see_stack) else
if prefix ="if’

then execute_if (suffix, address, branching) else

if prefix ="ifx’

then execute_ifx(suffix, address, branching) else

if prefix = 'add'

then execute_add(stack, suffix) else

if prefix = 'sub’

then execute_sub(stack, suffix) else

if prefix = 'mult

then execute_mult(stack, suffix) else

if prefix[1] ="'['

then execute_assign_stack(stack, prefix, suffix) else

if prefix(1] in ['a’ ..'Z]

then execute_assign_variable(variable, prefix, suffix, see_stack) ;

if branching
then seek(num_line, control, address)
else next_statement(num_line, control) ;
if see_stack then display(stack)
end {with code[num_line]}
until finish
end ;

The procedures execute_goto, execute_return and execute_if which give rise
to branching communicate the address of the next statement as a string of
characters which must be converted into an integer.

To keep track of, and above all t0 see, what happens — because what else
justifies this program? — we ask that the number of the statement which
has just been executed be displayed, as well as the state of the stack when
necessary.

Note that a statement can be decoded and translated several times in the same
program. The chosen solution is not the most rapid; this has no importance
because we are not investigating performance.

One last note: in order not to lengthen the program, no protection is provided
against erroneous statements. You are strongly urged to perfect your code.

The procedures for manipulating strings of characters

The first procedure suppresses the undesirable spaces that one finds at the
beginning or end of a string of characters.

procedure suppress_spaces(var line : _string80) ;
begin

if line # empty

then while line[l] = space do delete(line, 1, 1) ;

if line # empty

then while line[length(line)] = space do delete(line, length(line), 1) ;
end ;

The second cuts the string of characters into the substrings prefix and suffix.
The substring prefix begins with the first character, because there is no space
at the beginning of szring. In contrast, it is necessary to remember to suppress
the spaces which can appear at the beginning of the substring suffix.

procedure separate(line : _string80 ; var prefix, suffix : _string80) ;
var i : integer ;
begin

i=1;

case line[l] of

'0..'9 : while line[i +1]1in['0..'9)doi =i+ 1;

‘a’..’7 . while line[i + 1] in['ad’..'Z]doi:=i+1;

|'l': repeat i :=i+ 1 until line[i] ="]';
end ;

prefix :== copy(line, 1, i) ;

delete(line, 1, 1) ;

suffix := line ;

suppress_spaces(suffix) ;

end ;

If line[1] begins with a character which is neither a digit, nor a lower case
letter, nor an open bracket, the character stands all alone in the prefix. This is
produced when stzring begins with a “—" sign.

The next_statement and seek procedures

The first procedure is activated when there is no branching.

procedure next_statement(var num_line, control : integer) ;
begin

num_line := num_line + 1 ;

control := code[num_line].num ;
end ;

The second is activated by procedures which result in branching.

procedure seek(var num_line, control : integer ; address : integer) ;
begin

num_line =0 ;

repeat

| num_line := num_line + 1

until code[num_linel.num = address ;

control := address
end ;

Conversion functions

The first function receives for example the string “1999” and returns the cor-
responding integer. This is an ultra-classical exercise.

function convert_constant(the_string : _string80) : integer ;
var i, temp : integer ;
begin
temp :=0;
for i := 1| to length(the_string) do
temp = 10 *x temp + ord(the_string(i]) — ord('0’) ;
convert_constant := temp
end ;

The following function converts a string of characters between brackets into
the corresponding offset.

function convert_offset(the_string : _string80) : integer ;
begin
if the_string = '[0]
then convert_offset := 0
else convert_offset := —convert_constant(
copy(the_string, 3, length(the_string) — 3)) ;
end ;

The function convert_ref_stack converts a reference to a stack such as
“[—2]” to the corresponding integer. For this, it calls the function plate_value
which will be written later (when we deal with primitives for stack manipula-
tion).

function convert_stack_ref (stack_ref : _string80) : integer ;
begin

|convert_stack_r€f := plate_value(convert_offset(stack_ref))
end ;

To convert a term, it suffices to look at its first character to determine if it
is a constant, a stack reference or a variable.

function convert_term(the_string : _string80) : integer ;
begin
case the_string[1] of
'0"..'9 : converi_term := convert_constant(the_string) ;
'[': convert_term := convert_stack_ref (the_string) ;
‘a’..'7 : convert_term := variable[the_string[1]]
end {case}
end ;

To determine whether a term is signed, we look at its first character. If we
encounter the sign “—"" (the only case allowed beyond a digit), we separate
this sign from the nonsigned term that follows.

function convert_signed_term(the_string : _string80) : integer ;
var sign, non_signed_term : _string80 ;
value : integer ;
begin
if the_string[1] ="—'
then separate(the_string, sign, non_signed_term)
else begin
sign :=="4";
non_signed_term := the_string
end ;

case sign[1] of
'+’ : convert_signed_term := convert_term(non_signed_term) ;
'—': convert_signed_term := —convert_term(non_signed_term)
end {case}

end ;

Primitives for stack manipulation
The first two functions are clear.

function is_full(stack : _stack) : boolean ;

begin

| if stack.top = max then is_full = true else is_full := false
end ;

function is_empty(stack : _stack) : boolean ;

begin

| if stack.top = 0 then is_empty = true else is_empty := false
end ;

We also need a procedure which create an empty stack.

procedure empty_stack(var stack : _stack) ;
begin

| stack.top = 0

end ;

When we stack an integer, we do not forget to specify whether it is a value
or an address.

procedure push(var stack : _stack ; x : integer ; c: char) ;
begin

if is_full(stack)

then writeln('thestackisfull’)

else with stack do begin

top :=top+1;
plate[top].value := x ;
ifc='@'

then plate[top].address := true {one pushes an address}
else plate[top).address := false {one pushes a value}
end

end ;

When we pop, we must take the same precautions. If the popped plate
contains a value, we collect this value directly. If not, we use the address
(which is the ASCII code of the variable) to seek the right value among the
variables a, . .. z.

function pop(var stack : _stack) : integer ;
begin

if is_empty(stack)

then writeln('thestackisempty')

else with stack do begin

if plate[top).address

then pop := variable[chr(plate[top].value)]
else pop := plate[top].value ;

top :=top — 1

end

end ;

The procedure transfer_value modifies a plate which need not be at the top
of the stack. We use this procedure to modify a parameter passed by value
which is somewhere in the stack. Note that we will always transfer a value,
never an address.

procedure transfer_value(var stack : _stack ; offset, new_val : integer)
var target : integer ;
begin
with stack do begin
target = top + offset ;
plate(target].value == new_val ;
plate(target].address .= false
end
end ;

The function plate_value begins by testing whether a plate contains a value
or an address, and reacts accordingly.

function plate_value(offset : integer) : integer ;
begin
with stack do
if plate(top].address
then plate_value := variable[chr(plate[top + offset].value)]
else plate_value := plate[top + offset].value ;
end ;

A binary operation (addition, subtraction, multiplication) exclusively con-
cerns the top of the stack and the plate just below. It is necessay to correctly
treat the plates which contain an address (a call to the function plate_value).
Note that result is always a value.

procedure binary_operation(var stack : _stack ; op : char) ;
var operand_\, operand_2 : integer ;

begin

| with stack do begin

operand_| := plate_value(—1) ;

operand_2 := plate_value(0) ;

case op of

'+' : plate[top — 1).value := operand_1 + operand_2 ,
'—": plate[top — 1].value := operand_1 — operand_2 ;
"s" : plate(top — 1].value := operand_1 x operand_2 ;
end ; {case}

plate[top — 1).address := false ;

top :=top — 1

end

end ;

The last two procedures concern the display of the contents of the stack.
Recall that we have chosen the integer —32,000 to represent an indefinite
value (the question mark in pseduocode) that we insert into the stack to free
up a place in which we eventually want to put the value of a function. The
probability is very small that —32,000 is a true value.

procedure display_plate(offset : integer) ;
begin
with stack do begin
if plate[top + offset].address
then write(chr(plate(top + offset].value) : 5, vert)
else if plate[top + offset].value = —32000
then write('? : 4, vert)
else write(plate[top + offset].value : 4, vert)

end
end ;

Given the size of a screen, we never display more than ten plates.

procedure display(stack : _stack) ;

var i, humber_plates : integer ;

begin

if is_empty(stack)

then writeln('the stack is empty’)

else begin

number_plates := stack.top ;

if number_plates < 10 then begin

for i := 0 to 9 — number_plates do write(vert : 5) ;
for i := 0 to number_plates — 1 do display_plate(—i) ;
writeln

end

else begin {number_plates > 10}

for i := 0 to 9 do display_plate(—i) ;

writeln('..." : 5)

| end
end
end ;

Procedures which execute a statement

The first such procedure hands control back to the system by having the
program properly leave the “repeat until” loop in which the interpreter works.
We take the opportunity to signal whether or not the stack is empty.

procedure execute_end(var finish, branching : boolean) ;
begin
finish == true ;
branching := true ;
write('end of program ; ') ;
if not is_empty(stack)
then writeln('caution : the stack is not empty!")
end ;

We we encounter a “push” followed by a question mark, we must stack an
indefinite value. We choose again the number —32,000 to play this role.

In this context, an address is the ASCII code of the variable referenced by
one of the letters a, ..., z. The choice of the character “v” is arbitrary: any
character other than “@”” would do, because we simply need to distinguish an

address from a value.

procedure execute_push(var the_stack : _stack ;, suffix : _string80) ;
var offset : integer ;
begin
if suffix ="7
then push(the_stack, —32000,'v') {v for value}
else if suffix[1] ='@’
then push(the_stack, ord(suffix(2]),’ @")
else push(the_stack, convert_signed_term(suffix),'v')
end ;

The procedure execute_pop is delicate. To translate the statement “pop[—i]”,
we begin by popping to collect the value at the top of the stack. We must then
remember that the plate into which we want to transfer this value is at level
—i 4+ 1 (and no longer at —i).

The variable garbage provides an elegant way to avoid introducing another
primitive for stack manipulation.

procedure execute_pop(var stack : _stack ; suffix : _string80 ;
var variable : _variable) ;

var I, garbage, value : integer ;

begin

if suffix = empty

then garbage := pop(stack)

else begin

case suffix[1] of

‘a’..'7 . begin

variable[suffix[1]] :== pop(stack) ;

write(suffix[1],” ="', variable[suffix(1]] : 1,” ; ')
end ;

'0"..'9": for i := 1 to convert_constant(suffix) do
garbage := pop(stack) ;

' begin

value := pop(stack) ; {attention, decreased offset}
transfer_value(stack, convert_offset(suffix) + 1, value)
end ;

end {case}

end

end ;

procedure execute_write(suffix : _string80 ; var see_stack : boolean) ;
begin

see_stack := false

if length(suffix) = 1

then writeln(variable[suffix[1]])

else if suffix(1] in ['[', =]

then writeln(convert_term(suffix))

else writeln(suffix)

end ;

procedure execute_read(variable_name : char
var variable : _variable ;
var see_stack : boolean)

begin

see_stack := false ;

write('value of ', variable_name,’ =") ;
readln(variable|variable_namel) ;
end ;

procedure execute_goto(suffix : _string80 ; var address : integer ;
var branching, see_stack : boolean) ;
begin
branching := true ;
address := convert_constant(suffix) ;
see_stack := false ;
writeln('goto’, address : 1) ;

end ;

procedure execute_return(var stack : _stack ; var address : integer ;
var branching, see_stack : boolean) ;

begin

branching = true ;

address := pop(stack) ;

see_stack := false ;

writeln('return’, address : 1) ;
end ;

procedure execute_assign_stack(var stack : _stack ;
prefix, suffix : _string80) ;
var
offset : integer ;
begin
case prefix[2] of
‘0..9":
offset := convert_constant(copy(prefix, 2, length(prefix) — 2)) ;

offset := —convert_constant(copy(prefix, 3, length(prefix) — 3)) ;
end ; {case}

separate(suffix, prefix, suffix) ; {prefix contains the sign ‘ ='}
transfer_value(stack, offset, convert_term(suffix)) ;

end ;

procedure execute_if (suffix : _string80 ; var address : integer ;
var branching : boolean) ;
var
prefix_1, prefix_2, prefix_3, garbage : _string80 ;
operand_1, operand_2, num_pop, lost, i : integer ;
begin
separate(suffix, prefix_1, suffix) ;
{prefix_1 contains the first operand)}
separate(suffix, prefix_2, suffix) ;
{prefix_2 contains the comparison}
separate(suffix, prefix_3, suffix) ;
{prefix_3 contains the secondoperand}
separate(suffix, garbage, suffix) ;
{suppresses the goto in suffix}
operand_1 := convert_term(prefix_1) ;
operand_2 := convert_term(prefix_3) ;
num_pop =0 ;

if (prefix_1 ='[0]) or (prefix_1 ='[—1])

then num_pop := num_pop + 1 ;

if (prefix_.3 ="'[0]') or (prefix_3 ="'[—1])
then num_pop := num_pop + 1 ;

case prefix_2[1] of

’

<’ if operand_1 < operand_2 then branching := true ;
"< if operand_1 < operand_2 then branching := true ;
"="1 if operand_1 = operand_2 then branching := true ;
"#': if operand_1 # operand_2 then branching := true ;
">". if operand_1 > operand_2 then branching := true ;
"> if operand_1 > operand_2 then branching := true ;
else
branching = false

end ; {case}

for i := 1 to num_pop do lost := pop(stack) ;

if branching then address := convert_constant(suffix)
end ;

procedure execute_ifx(suffix : _string80 ; var address : integer ;
var branching : boolean) ;
var
prefix_1, prefix_2, prefix_3, garbage : _string80 ;
operand_1, operand_2 : integer ;
begin
separate(suffix, prefix_1, suffix) ;
{prefix_1 contains the first operand)}
separate(suffix, prefix_2, suffix) ;
{prefix_2contains the comparison}
separate(suffix, prefix_3, suffix) ;
{prefix_3contains the second operand}
separate(suffix, garbage, suffix) ;
{suppresses the goto in suffix}
operand_1 := convert_term(prefix_1) ;
operand_2 := convert_term(prefix_3) ;
case preﬁx 2[1] of
"1 ifoperand_1 < operand_2 then branching := true
. if operand_1 < operand_2 then branching := true ;
. if operand_1 = operand_2 then branching = true ;
. if operand_1 # operand_2 then branching := true ;
. if operand_1 > operand_2 then branching := true ;
: if operand_1 > operand_2 then branching := true ;
else branching := false
end ; {case}
if branching then address := convert_constant(suffix)

vv*H{lIl/\/\

end ;

procedure execute_add(var stack : _stack ; suffix : _string80) ;
begin

| binary_operation(stack,’+")

end ;

procedure execute_sub(var stack : _stack ; suffix : _string80) ;
begin

| binary_operation(stack,'—")

end ;

procedure execute_mult(var stack : _stack ; suffix : _string80) ;
begin
| binary_operation(stack, *")
end ;
procedure execute_assign_variable(var variable : _variable ;
prefix, suffix : _string80 ; var see_stack : boolean) ;

var prefix_1 : _string80 ;
begin

separate(suffix, prefix_1, suffix) ; {prefix_1 contains the sign '="}
variable[prefix[1]] := convert_term(suffix) ;

see_stack := false ;

writeln
end ;

Advice for fine tuning

Type in the procedures by group and adjust them immediately by submitting
them to a complete battery of tests. Do not wait until the end of the program;
if you do, you will drown ...

13.3. How to Analyze an Arithmetic Expression

Suppose that we wish to write a program that calculates the numerical value
of the integral I = fa b f(x)dx by the trapezoid rule. What we would like
is a program that asks for the values of a and b, and then the function to
be integrated. The program should allow us to type a string of characters
representing the function, for example:

f(x) =sin(3*xx +exp(l +cos(x *x))) +3*xx*xx —Txx+ 1

When we type a program, the compiler knows how to convert a string of
characters into statements executable by the microprocessor. The trouble is
that the compiler is not there when our program kicks in.

We are going to try to understand what the compiler does by describing
the steps which separate the beginning (the string of characters) from the end
(the executable code). Taking this path, we shall learn to write an interpreter
capable of calculating the value of an arithmetic expression “on the fly” as
well as a compiler for the arithmetic expressions that we could insert into our
numerical integration program.

13.3.1. Arithmetic expressions

In this section, by an arithmetic expression we mean any string of characters
which only contains the following characters:

99 “_9.

« the letters “a” to “z”;
o the binary symbols “+” and “ x”;
« left and right parentheses.

We can divide arithmetic expressions into two classes: good and bad. We all
know, for example, that “axx*xx+bxx-+c” is a good expression and “axx+) b”
is a bad expression. But how do we distinguish good and bad expressions?

To better grasp the problem, we forbid any global reading and suppose that
we have before our eyes an arithmetic expression which occupies an entire
page. We would know that this expression is good if we were capable of
reconstructing it using only the following rules:

(i) A name of a variable is a good expression.

(ii) If o and B are good expressions then the string of characters obtained
by concatenating (in this order) o, “+”, 8 is a again a good expression.
Similarly, the string of characters obtained by concatenating o, “x”, 8 is
good.

(iii) If o is a good expression, the string of characters obtained by concatenat-
ing (in this order) a left parenthesis, & and a right parenthesis is a good
expression.

This definition, while correct, is not at all statisfactory.
« It is not adapted to reading from left to right.

« Consider the strings ¢ = “a + b” and 8 = “x + y”: the second part of
rule (ii) tells us that the string “a + b % x + y” is a good expression. But this
is a little troubling because the value of a + b x x + y is not the product of the
values of a + b and x + y.

Thus, we need a finer definition which is compatible with the direction
in which we read and which reflects the usual priorities (multiplication and
parenthesizing).

Definition 13.3.1. « We call good expression (or expression for short) an arith-
metic expression which is a term or a sum of terms; that is, a string of char-
acters obtained by concatenating a term, the sign “+”, another term, etc.

o We call term an arithmetic expression which is a factor or a product of
factors; that is, any string of characters obtained by concatenating a factor,

“, »

the sign “x”, another factor; etc.

o Finally, we call factor a name of variable (that is, one of the letters
“a,b,...,7”) or a parenthesized expression (that is, the string of characters
obtained by concatenating a left parenthesis, a good expression, and a right
parenthesis).

Notice the highly recursive character of this definition.

If we let “id” (for identifier) denote the set of lower case letters (the names
of variables) and &, T, and JF the sets strings of characters formed by the
expressions, the terms, and the factors, respectively, then we can summarize
the preceding definitions by the following equations:

E=TUT+TUT+T+TU---=T+---4+17, (13.1)
T=FUF+xFUFxFxFU-.. =F%---xF, (13.2)
F=idU(&). (13.3)

Here the notation T+ T denotes the set of strings obtained by concatenation
of an element of T, the character “+” and another element of 7.

Example

Is the string of characters
at+b+x+axy+u)

a good expression in the sense of our new definition?

» According to (13.1), the given string would be a good expression if we
knew how to prove that the subchains “a”, “b” and “(x +a*y +u)” are terms.

« By combining (13.2) and (13.3), we immediately see that the strings “a”
and “b” are terms because they are factors.

« Definition (13.2) shows that “(x +ax*y+u)” would be a term if we could
show that it is a factor.

 Speeding up a bit: the string “(x +a*y+u)” is a factor because “x +a *
y+u” is a good expression. In effect, “x”, “a % y” and “u” are three terms.
We can illustrate and sumarize our approach, which is called syntactic analy-

sis, by drawing a tree. This tree is called the synractic tree (see Fig. 13.6).

.
.
.
R
A
.
.
.
.
+

E

T + T T

| | |

F F F

a b (E)
T o+ T + T
| N |
F T F F
A E
LR
x a4 x5y u

Fig. 13.7. The syntactic tree associated to the expressiona + b+ (x +a x y + u)

Remarks

1) One can show that the two definitions define the same good arithmetic
expressions.

2) When we look at the syntactic tree, we find that it describes an order
in which the calculations should be done: a multiplication occurs before an
addition and a parenthesized expression is given priority. These priorities are
subtle consequences of (13.1), (13.2) and (13.3). In effect,

> when we say that “an expression is a sum of terms,” we automatically
give multiplication priority over addition since we must know the
value of the terms before adding them;

> when we say that “a parenthesized expression is a factor,” we give
parenthesized expressions priority because we must first know their
values if we want to multiply terms.

3) This remark will be very useful when we will generalize Defini-
tions (13.1), (13.2) and (13.3) to allow us to analyze richer arithmetic ex-
pressions which contain subtractions, divisions, function calls, etc.

4) One can show that a given expression has a single syntactic tree. This
seemingly harmless result is fundamental because it implies that an expression
has a single value.

13.3.2. How to recognize an arithmetic expression

If you want to easily understand what follows, do not go too fast; train yourself
first by doing the following exercises:

1) Sketch the syntactic trees of several good expressions.

2) When the first exercise becomes familiar, ask a friend to dictate a good
expression to you character by character. You must sketch corresponding part
of the syntactic tree as soon as you receive the character.

Do this until the construction of syntactic tree becomes natural and sponta-
neous.

The fundamental idea

Contemplating syntactic trees will sooner or later bring to mind trees of re-
cursive calls of the three procedures E, T, F. We have our program!

A good way to grasp what follows is to imagine that E, T, F are three
“pacmen” who eat?, respectively, the biggest expression, the biggest term, or
the factor that starts the given string of characters.

For programming clarity, we systematically work using context effects*: all
variables are global and the procedures do not have parameters, so there is
nothing to stop us from modifying certain global variables of the program.

The main body of the program

The variable expression contains the string of characters to analyze, token is
the current character in the string so that roken = expression|place_token] is
true at each instant.

type str255 = string[2595] ;

var expression : str255 ;
token : char
place_token : integer ;

After the indispensable initializations, we ask simply that the procedure E
devour the string expression.

We shall see later that in order to avoid trouble, it is necessary that token is
always followed by a character (if one forgets, the program will crash when E
finishes eating the string expression). We follow tradition and use the classical
trick of adding the indigestible character “$” at the end of the string to be
analysed. This character is not only a mouthguard: it allows one to detect bad
arithmetic expressions; that is strings that E does not eat entirely.

2 In order not to repeat ourselves, we shall, from time to time, replace the verb “eat”

by one of the verbs “devour”, “analyse”, “consume”, or “recognize”.
¥ Is it necessary to recall that this is not a good way to program?

begin

write('expression = ") ; readln(expression) ;

expression := concat(expression, '$Y ;

place_token := 1 ; token := expression| place_token] ;

E; {try to eat the whole expression!}

if token ='$'

then writeln('good expression’) {because E has eaten it all}
else writeln('bad expression’)

end .

Notice the context effect: without its presence, we should have had to write
E(place_token, token), these two parameters being passed in “var” since the
procedure E modifies the variables token and place_token on the sly.

The procedures E, T, F

Since our three pacmen mutually call each other (mutual recursion), we must
separate the declaration of the procedures from their respective bodies:

procedure E ; forward ;
procedure T ; forward ;
procedure F ; forward ;

The procedure E
The code is a faithful translation of Definition (3.1).

procedure E ;

begin
T ; {to eat the first term}
while token = '+’ do begin
next_token ; {get rid of the '+ sign}
T {to eat the term after the '+’ sign}
end

end ;

The procedure E begins by eating the first term (or asks instead that 7 takes
its place). If something remains, it eats as much as it can of the substrings of
the form “+ T by first calling next_token to get rid of the sign “+”, then the
procedure T.

Note (this is important) that one always finds oneself before the entrance of
the “while” loop when one leaves the procedure T.

The procedure next token

This procedure passes to the next token by modifying the global variable token.
Note that the context effects modify place_token and token.

procedure next_token :
begin

place_token .= place_token + 1 ;
token := expression[place_token)
end ;

The procedure T

This procedure eats the biggest term with which roken begins. Thus, its code
is analogous to that of the procedure E and is a faithful translation of (13.2).

procedure F ;

begin

F; {eat the first factor}

while roken = '+’ do begin
next_token ; {get rid of the 'x' sign}
F {to eat the term after the 'x' sign}
end

end ;

Again it is important to note that one always finds oneself at the entrance
to the “while” loop when leaving the procedure F.

The procedure F

This procedure eats the factor which begins with the character roken. Here
again, the code is a transparent translation of (13.3): if roken is the name of a
variable (that is, a lower case letter), F eats it by calling next_token; if token is
a left parenthesis, F eats it, then demands that E handle the expression situated
between the parentheses. If all goes well, E stops before the corresponding
right parenthesis which is devoured by next_token. Otherwise, there is an error.

procedure F ;
begin
case token of
‘a’..'7 . newt_token ; {get rid the name of the variable}

‘(" begin

newt_token ; {get rid of the left parenthesis}

E ; leats the biggest expression}

if token =)’

then newt_token {get rid of the right parenthesis}

else error {because the right parenthesis is absent)

end

else error {because token is not the beginning of a factor)
end ;

It is important to remember that one always finds oneself before the test
token =")" when one leaves the procedure E.

The procedure error

The first error is fatal; there is no attempt to repair the error or to produce any
diagnosis. Its action consists of giving (by context effect) an indigestible value
to token different than “$” (we have chosen “@”). We will see a little later
that token = '$’ or token = '@’ stops the program properly without a crash.

procedure error

begin
writeln('error on the token ', token) ;
token :='@’

end ;

How the program works

We analyze the string “a + b * (x + y)”. To better follow the action of our
program, we are going to sketch the the tree of recursive calls (Fig. 13.7)
by placing the value of the variable foken in the index at the moment the
procedure is called. Calls of next_token are represented by dotted lines.

Ea
/1N
T, | T,
/ /

F F .
Q — |)
EX
T/ | \T
x o1y
/ N\
F, F,
; ;

Fig. 13.8. Recursive calls for expression a + b x (x + y)

Before launching into the multiple recursive calls, it is worth keeping several
essential features in mind.

» Leaving a procedure means changing a level in the tree of recursive calls.

o We leave the procedure E in two ways: either through the root of the
the tree of recursive calls, which means that we are back in the main part

of the program or, in all other cases, we find ourselves inside the code of F
before the test token ="')'.

* When we leave the procedure 7, we always wind up in the interior of the
procedure E before the “while” loop token = '+'.

» When we leave the procedure F, we always wind up in the interior of the
procedure T, before the “while” loop roken = ¥’

The program begins by calling E, which calls T, which calls F,. The latter
procedure then asks next_token to consume the character ‘a’.

Then the program leaves F and finds itself in the procedure calling T,
before the “while” loop token = 'x’. Since token is now the character ‘+’, the
program then returns into the procedure E and finds itself before the “while”
loop token ='+'. It enters the loop, asks next_token to get rid of the ‘+’, then
calls T, which calls F;, which eats the character ‘b’ by next_token, etc.

We now examine how the program stops. When the program eats the last
character of the string being analyzed, token takes the value ‘$’; since this
shows up necessarily in the procedure F, the program leaves F and finds
itself in T before the “while” loop roken = '+'; since it is not able to penetrate
into this loop because of the value of roken, it leaves the procedure T and
finds itself before the “while” loop roken = "', which has the effect of making
it leave E through the root of the tree of calls.

The analysis stops and the program announces that the expression is a good
expression.

What provokes the climb in the tree of recursive calls and the exit by the
root is the indigestible value of the character ‘$’, because an expression can
only contain lower case letters, operations, and parentheses.

The procedure error has the same effect since it gives — always by context
effect! — the indigestible value ‘@’ to token. Thus we find ourselves at the
end of the main program which announces an error because token is different
from ‘$’.

For beginners

If you want to master this program, learn it by heart; to do this, copy it several
times; try to reconstruct it from memory until it appears natural to you. Do
not read what follows until you are at ease with the procedures E, T, F. They
must become evident to you!

To follow easily the dialogue between the three procedures, introduce the
global variable depth of integer type and initialize it to —1 in the main body
of the program. Add the following procedure.

procedure show_depth(word : str255) ;

begin

| writeln(' ' : 3 * depth, word,’, token =", token : 1) ;
end ;

Then modify the procedure E as follows:

procedure E ;
begin
depth .= depth 4 1 ;

T;

next_token ;
T,

depth := depth — |
end
end ;

show_depth('enter E') ;

while token = '+’ do begin

show_depth('leave E') ;

Modify the procedures 7 and F in a similar way.

Think as well about introducing a message in the procedure next_token, to
indicate (via the procedure print) which token is eaten.

The program will then display its activity on the screen, the indentations
translating the level of depth of the recursive calls.

expression = a+(b*x+c)
enter E, token = a
enter T, token = a
enter F, token = a
F, eat a
leave F, token = +
leave T, token = +
main loop of E, token = +
eat +
enter T, token = (
enter F, token = (
F, eat (
enter E, token=b
enter T, token=Db
enter F, token=b
F, eat b
leave F, token = *
main loop of T

eat *
enter F, token = x
F, eat x
leave F, token = +

leave T, token = +
main loop of E, token = +
eat +
enter T, token =c
enter F, token =c
F, eat c
leave F, token =)
leave T, token =)
leave E, token =)
F, eat)
leave F, token=$
leave T, token=§$
leave E, token=$
good expression

Fig. 13.9. Analysis by procedures E,T,F of the arithmetic expression a + (b * x + ¢)

First run the program with several simple arithmetic expressions, then com-
plicate things. Follow the recursive rules by sketching the syntactic tree as one

goes along.

Now do the contrary: sketch the branching of the recursive calls (with token
as index) before running the program. Repeat this operation until it is com-
pletely mechanical (the delicate points are the returns in the the principal loops
of E and T and the right parentheses in F). Try not to skip steps; this will
only slow you up.

Also send some erroneous expressions to the program and see how it detects
the errors. Try to enrich the code so that it emits a reasonable diagnosis in
case of error.

Remarks

1) We now know how to associate two trees (Fig. 13.9) to the same arith-
metic expression. These trees carry the same information, namely the order
in which we must do the calculations to obtain the value of the expression.
The tree on the left is binary; it is very compact, but difficult to realize by a
program. Although it is more complex, we prefer the tree on the right because
it can be realized very simply by recursive calls.

S

VAN

T
) /N
F L F

SN

a + b * x

Fig. 13.10. The two trees associated to the expression a + b * x.

2) Note the division of labor: the procedure next_token is the only one that
“eats” tokens. The procedures E, T, F are the white collar workers which
content themselves with giving the pertinent orders.

3) When you have analyzed several expressions by running the program
“by hand” and when you are at ease, you will realize that 90 % of the program
consists of (13.1), (13.2), and (13.3). The translation of these equations into
code is a mere formality.

13.4. How to Evaluate an Arithmetic Expression

We are going to perfect our program by asking that our procedures return the
value of an arithmetic expression such as

-2+ B%5—-14)+45—-1999.

The expressions that we want to analyze contain no variables (that is, no
letters) — these are replaced by integers with one or more digits. We remark
as well that the signs “4” and “—"" are at the same time binary and unary.

The presence of the integers and the new signs is going to require us to
enrich the description of expressions, terms and factors:

E=T+...£7, (13.4)
T=Fx*--- %7, (13.5)
F=intU@E)U+FU-F (13.6)

This new description (which contains 90% of the new program) has some
subtleties which are essential to understand well.

e We put the binary “+” and the “—” at the same level in (13.4), because
subtraction does not have priority over addition (or the contrary).

» Multiplication appears at the second level (13.5) in the terms: in this way,
it takes priority over addition and subtraction.

o The factors (13.6) contain the strings with the most priority. There one
finds: (i) the set “int” of strings of characters which represent integers, (ii)
parenthesized expressions, (iii) the unary signs “4” and “—", under the form
+F (in effect, when we write a * —b, we must change the sign of b before
carrying out the multiplication).

It is necessary to put £F, and not +¢&, in the factors because, when we
write a + —b + ¢, we want to change only the sign of b, not that of b + c.

The body of the program

The only novelty is the appearance of the variable value: we ask that the
procedure E return the value of the expression that it eats.

begin

write('expression =") ; readln(expression) ;
expression := concat(expression, '$y ;
place_token :=1;

token := expression[1] ;

E(value) ;

if token ='$

then writeln('value ="', value : 1)
else writeln('bad expression’)
end .

The procedure next_token

We ask this procedure to perform two services:

« to return the value of the next token in roken;

« to return the value of the token that it has just left in the variable value
when roken is a digit (the chronology is crucial).

procedure next_token(var value : integer) ;

var temp : integer ;

begin

if not (token in ['0'..'9'])

then place_token := place_token + |

else begin

value := 0 ;

while roken in ['0’. .’9’] do begin
value = 10 * value + ord(token) — ord('0') ;
place_token := place_token + 1 ;

end

end ;

token := expression|place_token)

end ;

Recall the roken contains only a single character at a time; when we have
to deal with a number of digits, token points to the first digit; it is only when
we leave a number (which requires us to traverse it) that next_token calculates
its value. As usual, we work by context effect on the variables token and
place_token.

The procedures E, T, F

These procedures are charged with returning the value of the expressions, the
terms or the factors that they are analyzing.

procedure E(var value : integer) ; forward ;
procedure T (var value : integer) ; forward ;
procedure F(var value : integer) ; forward ;

The procedure E

The role of this procedure is to add or to cut off terms it encounters. Since we
cannot go backwards, we must remember to store the binary operation which
separates two terms in the local variable op. Notice the appearance (a necessary
technique) of the global variable garbage in the statement next_token(garbage)
when E swallows a sign “+” or a sign “—".

procedure E ;

var new_val : integer ; op, garbage : char ;
begin

T (value) ;

while roken in ['+',’ —'] do begin

op := token ;
next_token(garbage) ;
T(new_val)

if op="4'

then value := value + new_val
else value = value — new_val
end

end ;

The procedure T

This is analogous to the procedure E, but simpler because there are only
products of factors.

procedure T ;
var new_val : integer ; garbage : char ;
begin

F(value) ;

while token = '’ do begin

next_token(garbage) ;

F(new_val) ;
value := value x new_val
end
end ;

The procedure F
We must bear in mind the integers and unary signs.

procedure F';

var garbage : char ;

begin

case token of

'‘0"..'9" : next_token(value) ; {token is obtained by context effect}
'(": begin

next_token(garbage) ;

E(value) ;

if token =")’

then next_token(garbage)

else error {missing right parenthesis}
end ;

‘+': begin

next_token(garbage) ;

F(value) ;

end ;

'—": begin

| next_token(garbage)

F(value) ;

value := —value {unary '—' sign}
end
else error {token is not the first character of a factor}
end {case}
end ;

It suffices to contemplate the syntactic tree below to understand how the
procedure F goes about distinguishing unary and binary signs.

E
T~
T T
| s |
F : F
P
P33

Exercise 8

1) Enrich the procedure F in order to evaluate arithmetic expressions such
as 26 x (—0.45 + 665) + 3.5 (the value returned is now a real number).

2) Refine the program so that it evaluates expressions such as:
—124+(13%x5—-5/7)/(84+5/4) — 1999.

The value returned must be an irreducible fraction. The difficult part of this
exercise is not programming, but comprehension. The procedure F only “sees”
integers which it converts into fractions of the form n/1. It is the procedure T
that first “sees” true fractions. The syntactic tree below shows you what hap-
pens with the expression 1/3 + 5/2.

17/6
'

\

T R
W
~

3) Enrich the procedures E, T, F and next_token to calculate in the ring
Z|[i] of Gaussian integers; that is, to be able to attribute a value to expressions
such as

—(1+2%i) x (145 + i % 1T) i — (=3 + (15 %i +9)).

4) We now want to evaluate an arithmetic expression containing function
calls and the variables a, b, x, y. To simplify and to safeguard the equation
“character = token” we suppose that functions are coded by an uppercase letter
(“L” for log, “C” for cos, “S” for sin, etc.) :

—a+bxL(1+x*xx)—Cx+y)/S(—Ax+1)).

The program uses the variables val_a, val_b, val_x, val_y which contain
the values of q, b, x, y (but you can also put the values in an array t['a’..’z']).
Use the following description:

E=T+...4+T (13.7)
T=%F...F (13.8)
F=idu)UIDE)utF (13.9)

o

where id = {'a’,’d’, 'x’,’y’} and where ID denotes the set of names of func-
tions (uppercase letters).

13.5. How to Compile an Arithmetic Expression

We now know how to interpret (that is, immediately evaluate without leaving
the program) an arithmetic expression entered on the keyboard. If we were to
decide to take advantage of our fresh knowledge to write a program which
calculates fab f(x)dx, we would be chagrinned by its slowness. It is easy to
understand why: if the program needs 1000 values of the function, it analyzes
and evaluates the same arithmetic expression 1000 times in a row.

However, a single analysis ought to be sufficient. Is it possible to separate
the analysis from the evaluation (this is the idea of compiling)? We would then
replace 1000 analyses and 1000 evaluations with a single analysis and 1000
evaluations.

13.5.1. Polish notation

How shall we reframe our results on recognition? We choose to use suffixed
polish notation.*

4 This notation was discovered in 1920 by the Polish mathematician Jan Lukasiewicz
(1878-1956) in the course of some work on logic where he was seeking to get rid
of parentheses.

compiler
at+bx(x+yxz) — — abxyzx+x+
E, T, F —_—
infixed notation suffixed Polish notation

As we have seen in Chapter 8, we can associate a binary tree (Fig. 13.11)
to each arithmetic expression (a tree which must not be confused with the
syntactic tree introduced in this chapter, which is bushier).

///AD\\\\
/®\@ SN
K/\\\

AN

c d

Fig. 13.11. The binary tree associated with the expression a + (b + ¢ xd) + (e + f).

The coding of an expression by a tree is remarkable because it very clearly
indicates the order of the calculations. Why not use it? Because trees are “bidi-
mensional” objects difficult to integrate into a text: imagine doing algebraic
calculations with trees . ..

The reason we use strings of characters to represent expressions is that
strings are “unidimensional” objects. But are there other ways of coding an
arbitrary binary tree “linearly”?

To answer this question, we are going to visit (that is, run over) the tree
writing what we encounter as we go along. There are three classical visits of
a binary tree:

(i) Visit the left child, visit the father, visit the right child.
(ii) Visit the left child, visit the right child, visit the father.
(iii) Visit the father, visit the left child, visit the right child.

We specify how we use these strategies. We leave from the root of the tree.
Each time that we begin to visit a subtree, we write a left parenthesis; when the
visit to the subtree is finished, we indicate that by writing a right parenthesis.
Between these parentheses we write the names of the objects (an interior node
or leaf) that we encounter.

o If we adopt the strategy “left child, father, right child,” we obtain
(Fig. 13.12) an ordinary, totally parenthesized arithmetic expression:

(@+ b+ (c*xd)))+ (c+ f)).

(a+
(a+(

(a+ (b
(a+ (b +
(a+ (b +(
(a+(b+(c
(a+ (b+ (c=*
(a+(b+(cxd
(a+(b+(cxd)
(a+(b+(cxd)
(a+(b+ (c
(a+(b+ (c
(a+(b+ (c
(a+ (b+(c
(a+ (b+ (c
(a+(b+ (c
(a+(b+(c
(a+(b+(c

*
QU

)
)))
)))
)))
)))
)))
)))
)))
)))

* X ¥ X ¥ ¥ *
QU QU QL
++ 4+ ++++
NN
+ 4+ + +

~

Fig. 13.12. Visit of the binary tree associated to a + b x (x + y *2) using the strategy
“left child, father, right child” (infixed notation)

Conversely, we can reconstruct the binary tree from such an arithmetic ex-
pression. (We remark in passing that the priority of multiplication is only an
artifice to limit the number of parentheses.)

o If we adopt the strategy “left child, right child, father,” we obtain
(Fig. 13.13) the following string of characters:

(Ca(b(cd*x)+)+)(ef+)+).

Conversely, we can reconstruct the tree from this string using the following
algorithm (see Fig. 13.14). We read the string from left to right; each time that
we meet a letter, we write it down; when we meet an operator, we join it to
the roots of the two last trees created (recall that a leaf is considered to be a
tree reduced to its root).

Now, we encounter a minor miracle. This algorithm does not need parenthe-
ses! In other words, we can suppress these and code our tree with the single
chain of characters:

abcdx++ef++.

(

(a

(a (b

(a(b(c

(a(b(cd

(a(b(cd=x*

(a(b(cd=x)

(a(b(cd=x*x)+
(a(b(cdx*x)+)+
(a(b(cdx*x)+)+)
(a(b(cdx*x)+)+)(
(a(b(cdx)+)+)(e
(a(b(cdx*x)+)+)(ef
(a(b(cdx)+)+)(e f+
(a(b(cdx)+)+)(ef+)
(a(b(cdx)+)+)(ef+)+
(a(b(cdx)+)+)(ef+)+)

Fig. 13.13. Visit of the binary tree associated to a + b x (x + y * 2) using the strategy
“left child, right child, father” (suffixed polish notation)

This way of coding a binary tree (or arithmetic expression) is called suffixed
polish notation.

Exercise 9

1) Translate more and more complicated arithmetic expressions “into Pol-
ish”, then reconstruct the binary trees from their polish notation. Do this until
you are perfectly at ease.

2) What strings of characters occur when you visit using the strategy “father,
left child, right child”? Can you get rid of the parentheses? How can one
reconstruct a tree from its coding?

Remark

The tree associated to an arithmetic expression which contains function calls
can be considered as a binary tree in which some right children are absent.
For example, the “polish translation” of the arithmetic expression 1 4 x * x +
log(a * x + b) — cos(u + v x x) is the string of charaters:

lxxx+axx*b+log uvxx+cos —.

N

* %

a b c/ \d a b c/ \d
+ +
//\+\ //\+\
a b c/ \d a b c/ \d
+
+ +/
//\ b //\ b
+ +.
' VRN * /N
a b c/ \d e f a b c/ \d e f

Fig. 13.14. Reconstruction of the binary tree associated to abcd x+ +ef + +

Evaluation of a polish expression

If we dispose of the polish translation w of an arithmetic expression w, the

evaluation of the value of w is very simple. It is done by using a stack called

the evaluation stack. The algorithm is the same as that for reconstructing the

binary tree; the only difference is that one manipulates values instead of trees.
We read the string = from left to right and the stack is initially empty.

o If the current token is a name of a variable or a number, we push the
corresponding value.

« If the current token is the sign “4”, we pop the last two stacked values
and push their sum.

o We proceed in a similar way when the current token is the sign “x”
(replacing, of course, addition by multiplication).

« When the string is read, the evaluation stack contains only a single number:
the value of the expression.

Example
We evaluate the polish expression “abcd * +e f + + +” knowing that:

a=1, b=2, ¢c=3, d=4, e=5, f=6.

5 5 11

141 |14 [14] | 14| |25
1 1 1 1 1

—_ N W A
N

3
2] |2
(] [[

26]

Evolution of the stack during the evaluation of abcd x +e f + + +

13.5.2. A Compiler for arithmetic expressions

We are going to lightly modify the procedures E, T, F to translate a given
arithmetic expression into the corresponding polish notation. The result of their
action is not a value, but a string of characters. More precisely, the result of
the call E(polish) will be a translation into “suffixed polish notation” of the
expression that F has analyzed. Similarly, the result of the calls T (polish)
and F(polish) will be “Polish translations” of the term or factor that T and F

would have analyzed. At the level of declarations, this gives:

procedure E(var polish : str255) ; forward ;
procedure T (var polish : str255) ; forward ;
procedure F(var polish : str255) ; forward ;

The procedure E

A schematic for the translation is as follows

(term) —> (polish),

(term,) + (termy) —— (polish,) (polish,) + .

The translation into code is immediate.

procedure E ;

var new_pol : str255 ;

begin

T(polish) ;

while token ='+’ do begin
next_token ;

T(new_pol) ;

polish .= concat(polish, new_pol,"+")
end

end ;

The procedure T

The schema of the translation is analogous except that we replace additions

by multiplications.

procedure T ;

var new_pol : str255 ;

begin
F(polish) ;

while roken = ¥’ do begin
next_token |
F(new_pol) ;
polish := concat(polish, new_pol, 'x')
end

end ;

The procedure F

The “Polish translation” of the expression “a” is “a” itself; and the expressions
“(w)” and “w” have the same translation.

procedure F
begin

case token of
‘a’..'7 . begin polish := token ; next_token end ;
‘(" begin
next_token |
E(polish) ;

if token =)’
then next_token
else error

end

else error

end {case}

end ;

Remark

What role do parentheses play?

Consider the expression “a + b 4 ¢”. The procedure E treats it as a sum
of three consecutive terms which gives the translations “a”, “ab + ” and
“ab+c+". Thecallsare ETFETFETF.

Now translate the expression “a + (b + ¢)”. The procedure E treats each
string as a sum of terms T, = “a” and T, = “(b+c¢)”. The “Polish translation”
of T, is “bc+". Thus, the translation of “a + (b + ¢)” is “abc + +” and the
callsare ETFETFE.

Thus, the parentheses serve to modulate the procedure calls and they modify
the form of the syntactic tree.

Exercise 10

When we translated arithmetic expressions into pseudocode, we used “Polish
translations” without explicit mention. Lightly modify the procedures E, T, F
to automatically translate arithmetic expressions into pseudocode.

The evaluation function

When an infixed arithmetic expression has been “translated into Polish,” we
must teach our program to calculate the value of the polish expression that is
obtained. We suppose that the values of the variables a, b, c, ... are stored in
the global variables val_a, val_b, val_c, etc.

function evaluation(polish : expression) : real ;
type table = array[1 . .50] of real ;

var stack : table ; h,i: integer ; token : char
begin

h =0 {the stack is empty}

for i := 1 to length(polish) do begin

token = polish[i] ;

case token of {val_a, val_, val_c contains the values of a, b, c}
‘a’ . begin h:=h+ 1; stacklh] := val_a end ;
‘b’ . begin h:=h+1; stack[h] ;= val_b end ;
‘¢’ . begin h:=h+1; stack[h] := val_c end ;

‘+": begin stack[h — 1] := stack[h — 1] + stack[h] ; h:=h—1 end
'—": begin stacklh — 1] := stacklh — 1] — stacklh] ; h :=h — 1 end
' . begin stack[h — 1] := stack[h — 1] x stack[h] ; h:=h— 1 end ;
end {case}

end ;

evaluation = stack|[1]

end ;

References

Books

Arsac, J., Foundations of programming, Academic Press, 1985.

Berstel, J., Pin, J.-E. and Pocchiola, M., Mathématiques et Informatique,
Mc Graw-Hill, 1991.

Hardy, G.H. and Wright, EXM., An Introduction to the Theory of Numbers,
Oxford Science Publications, Sth ed., 1979.

Hofstadter, Douglas R., Godel, Escher, Bach: an eternal golden braid, Basic
Books, 1979.

Krob, D., Algorithmes et structures de données, Ellipses, 1989.
Muller, J.-M., Arithmétique des ordinateurs, Masson, 1989.

Riesel, H., Primes Numbers and Computer Methods for Factorization, Progress
in Mathematics, vol. 57, Birkhduser, Boston-Basel-Stuttgart, 1958.

Articles

Blankinship, W.A., A new version of the Eulidean Algorithm, Amer. Math.
Monthly, 70 (1963), pp. 742-745.

Bujosa, A., Criado, R. and Vega, C., Jordan normal form via elementary
transformations, SIAM Review, 40 (1998), pp. 947-956.

Garner, H., The Residue Number System, IRE Trans., EC8 (1959), pp. 140-
147.

Hausmann, B.A., A new simplification of Kronecker’s method of factorization
of polynomials, Amer. Math. Monthly, 47 (1937), pp. 574-576.

Moler, C. and Van Loan, C., Nineteen dubious ways to compute the exponential
of a matrix, SIAM Review, 20 (1978), pp. 801-836.

Pittelkow and Runckel, A short and constructive approach to the Jordan
canonical form of a matrix, Serdica, 7 (1981), pp. 348-359.

Putzer, E.J., Avoiding the Jordan canonical form in the discussion of linear
systems with constant coefficients, Amer. Math. Monthly, 73 (1966), pp. 2-7.

Ramanujan, S., Highly Composite Numbers, Proc. London Math. Soc., XIV
(1915), pp. 347-400.

Strelitz, Sh., On the Routh-Hurwitz Problem, Amer. Math. Monthly, 84 (1977),
pp- 542-544.

Todd, J., A Problem on Arctangent Relations, Amer. Math. Monthly, 56 (1949),
pp- 517-528.

Zagier, D., A one-sentence proof that every prime p = |1 mod 4 is a sum of
two squares, Amer. Math. Monthly, 97 (1990), p. 144.

Index

accident (in a loop)................. 54
Ackermann function............... 343
addition

—ANtEEerS. . vt 112
—hidden............. ... 114
additive

— Euclid algorithm 159
—subgroups of Z"................. 298
address.............l 113
adjoint (of a matrix)............... 135
algebraic integer 152
algorithm

— Blankinship..................... 301
—CORDIC........ccv 74
—creationof —..................... 66
— expression in base 8 € Z[i]...... 238
—Euler(p=x2+y")............. 203
—Horner......................... 262
— incomplete basis 314
— irreducible factors............... 230
—Johnson........................ 213
-Kern............. L 245
— Kronecker...................... 288
—Leverriero il 146
— Pittelkow and Runckel........... 326
—proofof —.l 85
—Putzer.......................... 323
—traceof —. ... 59
arborescence (of recursive calls).... 340
Arctangent 249
argument............ ... 120
arithmetic expression 31, 401
ATAY . o e e 32, 113, 115
—declaration...................... 114
assignment 33, 34, 42
assoCIAtettt 225
baguenaudier 348
base of numeration 6, 234
basis.......cooiiiii 297

—change........... ... 273
—completion 297
—of asubgroup................... 316
—of Z". 301
Bernoulli numbers.................. 69
Bertrand’s postulate 7
binary tree................... 219, 416
Binet’s formula.................... 21
bit. ... 109
black

—boX . 119
—hole........ o 337
Blankinship algorithm.... 161, 301, 302
block (of statements) 37
body (of aloop) 35
boolean

— eXPression ..., 32
—variable oL 32
bordered matrix trick.............. 300
boustrophedon order-....... 45, 93, 101
branching
—outofaloop..................... 47
—statements 364
break.......... ...l 48
brute force, 184
Bézout

—equation 11, 301
—theoreml 10
call

—function 32
—procedure. ... 121
CAITY .ttt et 187
case Of ... 34
Catalan number................... 219
Cayley-Hamilton theorem.......... 323
Chinese remainder theorem. 12, 13, 294
choosing aloop.................... 51

clumsy programming 114, 117

code

— deferral writing 59
— from sequences 65
—industrial ool 96
—MONSLETttt 84
—Penelopeol 165
— prematurely written 157
— recurrent SEqUENCes. 59
—recyclingl 59
communication (for a procedure)... 122
companion matriX 151
compiling 415
— arithmetic expressions........... 420
complementary (to the base) 11
COMPpOSite types................... 116
conditional 33, 34, 43
congruence

— between integers integers 11
— modulo a Gaussian integer....... 235
CONStaNtvvvuneiie i, 117
content (of a polynomial).......... 287
context effects 125, 404
control variable 47, 364
convention (in mathematics) 92
coprime integers 10
CORDIC algorithm................. 74
creation of an algorithm 66
cyclotomic polynomial 265
decomposable integer 241
defered writing..................... 78
degree (of a polynomial) 254
Descartes (Discours de la méthode) ... 3
dichotomy sorting................. 353
discrete

—derivative............. ..ol 276
— Taylor polynomial............... 2717
divided differences................ 273
division............ 5, 194, 259
divisor (lowest function LD) 7,165
echelon form (for a matrix)........ 303
Egyptian fraction.................. 181
eigenvalue........................ 145
elementary

—MAtriX ... 299
— symmetric functions............. 278
else (dangling =) 40
empty

—product............. ...l 92
S SUM .t ettt et 92
equation

—ax+by=1.................. .. 11

—p=xt+y 228, 233

-x*+1=0inZ,....c....... 16, 203
X4 yi=n 206
-xX2+ Y+ 22+ =n...... ... 207
Eratosthenes sieve................. 169
Euclidean algorithm... 5, 159, 226, 259
—complexity ...l 160
Euler......l 203
— phi function................. 14, 266
—theorem 15
evaluation

— of a polish expression 419
— of an arithmetic expression 410
exact system of representatives. 235
exchange (of two variables)......... 91
exit (from a loop) 48, 53, 57, 62
expansion (Laplace)............... 135
exponential

—MATIX et 323
15 1 (5 F 67
EXPresSIONouuvvinennnennnnn. 402
—arithmetic........................ 31
—boolean............. ...l 32
factorl 402
factorial 226, 377
factoring (a polynomial)........... 286
Fermat (little theorem).............. 15
Fibonacci numbers 21, 98, 106, 160, 379
finite type (for groups)........ 297, 301
flea jumps (in code)............... 367
forloop........cooviiiiiiit. 34, 35
— protection (of the =) 50
function............o 127
—Ackermann..................... 343
—bizarrel 80
—call.........ooo 32, 370
—factorial 377
—GCD......oii 9, 86, 160
— Hofstadter............. 201, 351, 381
—LD. 7, 165
—MoebiusL 20, 167
—phi (Euler)................ ... 169
—“PIX) e 175
Gauss

—ANteersot 225
— lemma (for contents) 287
— lemma (for divisors).............. 10
— pivoting (with integers).......... 161
— sum of three squares 63
generator (of a group)............. 297
giving a name (method of).......... 70

global variable.................... 124
golden number................ 21, 161
goto statement 365
greatest common divisor (GCD) .. 9, 86

Hamilton Cayley theorem.......... 146
Hermite matrix 303
hidden

—addition 114
— multiplication................... 114
highly composite numbers 210
Hofstadter function 201, 351, 381
Horner’s method 261
identification (in mathematics) 258
identifier L 30
—givinganame.................... 70
if

—gotostatement 364
— ifx goto statement............... 364
—thenelse................olt. 34
incomplete basis theorem 312, 314
induction............ 22
—transfinite 24, 345
infinite
—descent...........c.iiiiiiiiia. 85
—loop.....oooiii 85
infixed notation................... 416
initialization.................... 54, 68
integerl 110
—algebraic.............. 152
—arithmetic....................... 110
—largeone............. ... 187
—part.......o 5, 197
—representation................... 111
integral domain................... 254
interpret 401, 415
interruption (of a loop).......... 55, 61
intersection (of two sets)............ 71
invariantof aloop 87
inversion

— formula (Moebius) 19
—of amatrix................. 135, 309
irreducible (Gaussian integer) . 225, 226
Jacobi’s theorem 19
Johnson’s algorithm............... 213
Jordan reduction.................. 326
Kronecker’s algorithm............. 288
Lagrange interpolation........ 270, 289
Lagrange theorem.................. 63
Lamé theorem 160
Laplace expansion 135

Laurel and Hardy 164, 229

layout (of a program)............... 38
laziness 58, 60
least divisor.................... 70, 71
leaving

—aloop.......oooiiiiit 48, 49
—aprocedure..................... 407
left-associative 31
Legendre formula................. 176
Leverrier algorithm................ 145

lexicographic order 23, 51, 93, 102, 345
linear systems (integral coefficients) 318

linear traverse (of aset) 101
ltter. ..ot 119, 132
loop ... 33,34
—body ... 35
— branchingout.................... 47
—eXit 53
—for.. 34, 35
—infinite 85
— interruption 55, 61
—invariant.................o0o.... 87
B 1110170 (N 52, 61
—TePeAl. .. 34, 35
— selecting the right one 51
—while........................ 34, 35
— with accidents.................... 54
=3l 85
Machin formula.............. 240, 241
mathematical

— CONVENLION.vviiiieiiiinnn, 92
—induction........................ 22
matrix

— bordered trick................... 300
—companion...................... 151
—elementary...................... 299
—exponential 323
—Hermite 303
—inverseof a................ 135, 309
— Jordan reduction 326
Bl 1111170 AP 135
—rACe . .ot 145
—unimodular..................... 298
maximum search................... 95
Meissel’s formula................. 180
memory (RAM)................... 109
Moebius

—function 20, 167
— inversion formula............ 19, 269
motor (of a loop) 52, 53, 61
mutual recursion.................. 339
naming (method of) 136

Newton

—basis.................. 270, 273, 276
= SUMS . e et tiieeeeenn 145
Newton-Girard formula....... 145, 278
nilpotent endomorphism........... 327
norm (for Gaussian integers)....... 225
null test.......................... 139
number of divisors 78, 208
numeration

—basebe N ... 6
—base BeZ[i]..........L. 236
— multiple bases..................... 6
numerical stability.................. 76
Occam’srazor.................... 137
10162 109
offset 113
order

— boustrophedon 45, 93, 101
— lexicographic.... 23, 51, 93, 102, 345
— television scanning 93
parameter 120
— passed by address 122
—passed by value................. 122
—withvar........................ 121
—withoutvar..................... 121
Penelope code........... 165, 261, 271
perfect number.................... 163
phi function (of Euler)......... 14, 169

pi(x) function (for prime numbers) . 175
ping pong (Euclidean algorithm) ... 159
Pitttelkow-Runckel algorithm .. 329, 327

polish notation............... 415, 418
polynomial 253
— basischange..................... 273
— change of origin 263
— composition 265
—content...........oiiiiiiinn. 287
—cyclotomic...................... 265
— discrete Taylor.................. 277
— factorization 286
— interpolation.................... 269
— Newton-Girard formulas.......... 278
—stable.......... ... L 280, 290
— SYMMELriC.....oovueenneannn... 278
107 o J A P 362
postage stamps..................... 60
POWET ..ottt 97
prematurely written code 157
prime number 7, 69, 175
procedure.............. ... 119
—call........... ... 121, 374

— communication. 122
—TECUISIVE .o vi et eeiiiiiaann.. 338
product

—equal sets..............oooeinn 115
—unequal sets 116
program

—clumsy ... 114
—typing in.............oia. 143
proof (of an algorithm)............. 85
protection (of the for loop).......... 50
pseudocodel 360
push 362
Putzer’s algorithm................. 323
quadratic
—form.............. 311
—residuel 17
quaterniono.iiiin... 207
quotient..............eiiiennn.. 5, 259
random access memory (RAM).... 109
real number....................... 110
recognition (arithmetic expressions) 404
record. 116
recurrence
—firstorder........................ 65
—secondorder................ 98, 168
recursive procedure 338
recyclingcode 60
remainder...................... 5, 259
repeat until loop................ 34, 35
representation (of integers)......... 111
return address..................... 369
role-play (when programming) 153
root (of atree).................... 340
SEMANtICS. ...\ttt 29
semicolon...................... 36, 40
set

—intersection, 71
— linear traversal 101
shadow (Gaussian integers) 229
sieve (Eratosthenes)............... 169
Smith reduction................... 305
sorting (by dichotomy)............ 353
squares (sum of) ... 18, 63, 64, 88, 203,
207, 233

stable polynomial 280, 290
stack..................... 99, 177, 360
SLAMPS .. vv et 60
statements

—block. ... 37

storage

— complex numbers 118
—fractions.............. 118
—integers..............oiii... 110
— prime numbers................... 81
stranger (for integers)............... 10
strong induction.................... 22
SUCCESSOT . . . vveeeaaeeeeanns 103
suffixed (polish notation) 418
sum

— four squares................. 63, 207
— threesquares 63, 88
—twosquares......... 18, 64, 203, 233
Sundaram sieve..................... 8
switch (in a loop)............... 57, 62
symbolic calculus 144
symmetric polynomial 278
syntactic

—analysis oL 402
—ree. ..t 219, 402, 416
SYNEAX ..ot 29
system (triangular Cramer).......... 96
Taylor formula.................... 271
television scanning order....... 93, 113
temporal breaks.................... 68
1055 11 KR 402

The Count is Good (TV game) 218, 355
theorem

—Bézout 10
— Cayley-Hamilton 146, 323
—Chinese...................... 12, 13
—Euler.................. 15
— Fermat (little) 15
—Fermat (p=x>+y*)............. 18
—Gauss.........oiiii. 10, 63, 287
—Jacobi........... ... 19
- Kéatai-Szabd 236
—Lagrange 63, 207
—Lamé 160
— Leavitt-Whaples. 325
— Legendre formula............... 176
— Meissel formula................. 180
— Moebius inversion................ 19
— Newton-Girard formula.......... 278
—Ramanujan 211
=Strelitz. ... 281
— Tchebycheff (Bertrand’s postulate) .. 8
— Todd (Machin formula).......... 241
—-Wilson....................... 16, 27
—Zeckendorf..................... 200
token ... i 404

totient function (Euler) 14

Towers of Hanoi 345, 382
trace
—algorithm........................ 59
—MAtriX....ooviii 145
transfinite induction 24
tree

—binary.............. ... 219, 416
tree syntactic............ 219, 402, 416
triangular Cramer system....... 96, 271
typing a program.................. 143
unimodular 162, 298
unit. ... 7,12, 225
value............. . 122
var (for parameters)............... 121
variable

—exchange 91
—boolean.......................... 32
—context effect................... 125
—control 47
—global.........ol 124
— visibilityl 124, 125
visible vector (from origin) 312
weak induction..................... 22
weathervane 213
weighing a real number............. 74
well-ordered set.................... 22
whiledo loop.................. 34,35
Wilson’s theorem 16, 27
Word. 177
Z-linear

—algebra......... ...l 297
—independance 297

Zeckendorf (for Fibonacci). ... 200, 351

	Preface
	Contents
	Programming Proverbs
	Review of Arithmetic
	Euclidean Division
	Numeration Systems
	Prime Numbers
	GCD
	Congruences
	Chinese Remainder Theorem
	Euler phi Function
	Theorems of Fermat & Euler
	Wilson Theorem
	Quadratic Residues
	Prime Number & Sum of 2 Squares
	Moebius Function
	Fibonacci Numbers
	Reasoning by Induction
	Solutions

	Algorithmic Description Language
	Identifiers
	Arithmetic Expressions
	Boolean Expressions
	Statements & their Syntax
	Semantics of Statements
	Which Loop to choose

	How to create an Algorithm
	Trace of Algorithm
	1st Method - recycling known Code
	2nd Method - using Sequences
	3rd Method - defered Writing
	Prove an Algorithm
	Solutions

	Algorithms & Classical Constructions
	Exchanging Contents of 2 Variables
	Diverse Sums
	Searching for Maximum
	Solving Triangular Cramer System
	Rapid Calculation of Powers
	Calculation of Fibonacci Numbers
	Notion of Stack
	Linear Traversal of Finite Set
	Lexicographic Order
	Solutions

	Pascal Language
	Storage of Usual Objects
	Integer Arithmetic in Pascal
	Arrays in Pascal
	Array Declaration
	Product Sets & Types
	Role of Constants
	Litter
	Procedures
	Visibility of Variables in Procedure
	Context Effects
	Procedures
	Solutions

	How to write a Program
	Inverse of Order 4 Matrix
	Characteristic Polynomial of Matrix
	Write a Program
	Poorly written Procedure

	Integers
	Euclidean Algorithm
	Blankinship Algorithm
	Perfect Numbers
	Lowest Divisor Function
	Moebius Function
	Sieve of Eratosthenes
	Function pi(x)
	Egyptian Fractions
	Operations on Large Integers
	Division in Base b
	Sums of Fibonacci Numbers
	Odd Primes as Sum of 2 Squares
	Sums of 4 Squares
	Highly Composite Numbers
	Permutations - Johnson Algorithm
	Count is good

	Complex Numbers
	Gaussian Integers
	Bases of Numeration in Gaussian Integers
	Machin Formulas

	Polynomials
	Definitions
	Degree of Polynomial
	Store Polynomial
	Conventions
	Euclidean Division
	Evaluation of Polynomials - Horner Method
	Translation & Composition
	Cyclotomic Polynomials
	Lagrange Interpolation
	Basis Change
	Diferentiation & Discrete Taylor Formulas
	Newton-Girard Formulas
	Stable Polynomials
	Factoring Polynomial with Integral Coefficients

	Matrices
	Z-Linear Algebra
	Linear Systems with Integral Coefficients
	Exponential of Matrix - Putzer Algorithm
	Jordan Reduction

	Recursion
	Presentation
	Ackermann Function
	Towers of Hanoi
	Baguenaudier
	Hofstadter Function
	Write recursive Code

	Elements of Compiler Theory
	Pseudocode
	Pseudocode Interpreter
	Analyze Arithmetic Expression
	Evaluate Arithmetic Expression
	Compile Arithmetic Expression

	Refs
	Index

