
XXI Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of Tokyo, Sunday, February 28, 2021

Problem A. Ascending Matrix
Let’s first forget the constraint AR,C = V . For each i = 1, 2, · · · ,K − 1, consider the boundary between
cells ≤ i and i <. Now the problem is to calculate the number of ways to write boundary paths so that
they don’t *cross over*. If we shift these paths so that the i-th path starts at (N − (i− 1),−(i− 1)), the
problem is just counting of non-intersecting paths, which can be done by the LGV formula.

Remember we have AR,C = V . We can rephrase this condition as "exactly V − 1 paths pass the lower
right side of the point p, and other paths pass the upper left side (no paths pass the p)". Here p is a point
determined by R,C and V . By introducing the invariant x and multiplying the weight of lower right paths
by x, our task boils down to calculating the determinant of a matrix as a polynomial of x. We can do this
by substituting x = 0, 1, · · · and interpolating the polynomial.

The whole complexity is O(K2(N +M) +K4).

Problem B. Bit Operation
We can rephrase the operation as ”choose an element, and then delete its left or right neighbor”. So we
need to know, for each i, in how many ways the i-th element remains in the last. It’s easy to derive
a recurrence formula, and it turns out the coefficient is https://oeis.org/A059366. So you can calculate
everything in O(N) time.

Problem C. Count Min Ratio
First, consider the following problem:

• you are given non-negative intgegers W,A and B. Count the number of lattice paths from (0, 0) to
(W,AW +B) that doesn’t pass above the line y = Ax+B.

We can see that the answer to this problem is
(
W+AW+B

W

)
− A ×

(
W+AW+B

W−1
)
. The proof is similar to

that of the Catalan Number. Consider a path that goes from (0, 0) to (W − 1, H + 1), and let p be the
x-coordinate where this path first pass above the line y = Ax + B (that is, move from (p,Ap + B) to
(p, pA+B+1)). If we fix p, the number of such paths is Z×

((W−p)(A+1)−1
W−p−1

)
, where Z denotes the number

of paths from (0, 0) to (p,Ap + B) that doesn’t pass above the line y = Ax + B. Using the fact that
A×

((W−p)(A+1)−1
W−p−1

)
=
((W−p)(A+1)−1

W−p
)
, we can prove the formula above.

Next, consider the following problem:

• You are given non-negative integers H,W,A and B. It is guaranteed that 0 ≤ B ≤ AW + B ≤ H.
Consider a lattice paths from (0, 0) to (W,H). We define the weight of a path as the number of
times the path passes a point Ax+B for some x. Find the sum of weights of all paths.

Let’s denote by f(H,W,A,B) the answer to the above problem. Then consider the value
z = f(H,W,A,B)− f(H + 1,W − 1, A,B)×A. Obviously, we have

z =
∑

0≤x≤W
(the number of paths from (0, 0) to (x,Ax+B))×

((the number of paths from (x,Ax+B) to (W,H))

− (the number of paths from (x,Ax+B) to (W − 1, H + 1))×A)

The second multiplicand can be rephrased as the number of paths from (x,Ax+B) to (W,H) that does
not pass below the line Ax+B. Now, we can see that z =

(
W+H+1

W

)
. Furthermore, we have

f(H,W,A,B) =
∑

0≤i≤W

(
W +H + 1

i

)
AW−i

Page 1 of 4

XXI Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of Tokyo, Sunday, February 28, 2021

Let’s get back to the original problem. By the observation above, we need to find the value of
∑

1≤x≤N g(x),

where N = bR/Bc and g(x) = (R + 1 − Bx) ×
(∑

0≤i≤B
(
R+B+1

i

)
xB−i

)
. To this end, we want to

know, for each k = 0, 1, . . . , B + 1, the value of
∑

1≤i≤N ik. This can be done by calculating the FPS
of exp(0x) + exp(1x) + · · · + exp(Nx) = (1 − exp((N + 1)x))/(1 − exp(x)). The whole complexity is
O(BlogB).

Problem D. Do Use FFT
The main idea is to apply the technique in Tellegen’s Principle into Practice
(https://specfun.inria.fr/bostan/publications/BoLeSc03.pdf).

Let Zk be the answer for a k. Now consider the following problem:

• You are given integers D1, D2, · · · , DN . Find the value of
∑

1≤k≤N DkZk.

The outline of the solution to this problem is:

• Calculate the polynomial f(x) =
∑

1≤k≤N
∏

1≤i≤k(x+Bi). We can do this by Divide-and-Conquer
and FFT in O(N log2N) time.

• Calculate the value of
∑

1≤i≤N Ci× f(Ai). We can do this by multipoint-evaluation in O(N log2N)
time.

Thus, transposing this algorithm gives a solution to the original problem which runs in O(N log2N) time.

More specifically, the transposition of the second part is to calculate
∑

1≤i≤N CiA
j
i for each j and can be

done by calculating
∑

1≤i≤N
Ci

1−Aix
. For the transposition of the first part, the following expression might

help you understand:
Z0

Z1

Z2

Z3

 =


1
B1 1

1
B3 1




1
1

B1B2 B1 +B2 1
B1B2 B1 +B2 1



∑

iCiA
0
i∑

iCiA
1
i∑

iCiA
2
i∑

iCiA
3
i



Problem E. Edge Subsets
We assume A < B and gcd(A,B) = 1. Let’s say we map a vertex v to the point (x, y), where
x = bv/Bc, y < B and yA ≡ v mod B. Then the graph is almost like a grid graph, except for the
edges like (0, B − 1) → (1, 0). So we can do a bitmask DP. If we do DP from left to right, we can do a
simple bitmask DP and the complexity is O(N2B). If we do DP from top to bottom, we need to remember
the information of the top row and the complexity is O(N4N/B). If we adopt the smaller one, the whole
complexity is O(N2

√
2N).

Problem F. Find the LCA
Let’s take an arbitrary subset S of vertices. We are going to calculate the number of trees such that
subtree of LCA(N − 1, N) = S.

The crucial part is to count the number of trees with n = |S| vertices such that LCA(n − 1, n) = 1.
It turns out that the count is (n − 1)!/2 when n ≥ 3. We can see that by creating a bijection between
trees with the property and trees without the property. More precisely, if LCA(n− 1, n) = 1, let y be the
unique child vertex of 1 that have n− 1 in its subtree. Then, take the subtree of y and insert it into the
path between vertices 1 and n. It’s easy to see that this is a bijection.

To compute the sum over all possible S, we can use Divide-and-Conquer and FFT, and the total complexity
is O(N log2N).

Page 2 of 4

XXI Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of Tokyo, Sunday, February 28, 2021

Problem G. Games
For a state of the game, the second player will win iff, (∗) considering the binary representation of the
number of the stones in each pile, for each bit position, the number of piles with that bit set is divisible
by 7.

Proof sketch. For a state satisfying (∗), any move results in a state not satisfying (∗) because at least
1 and at most 6 piles unset the highest bit affected by the move. For a state not satisfying (∗), we can
construct a move resulting in a state satisfying (∗) as follows: We adjust each bit from the highest to the
lowest. Looking at the highest bit where the number of piles with that bit set is not divisible by 7, we can
choose between 1 and 6 piles to unset that bit. We can now assume that all lower bits are set for those
piles. Continuing to the lower bits, we can always prioritize already chosen piles to unset the bit so that
the number of chosen piles does not exceed 6.

The counting problem is then just a convolution on (Z/7Z)d where d = dlog2(AN + 1)e ≤ 7. Luckily we
have a primitive 7-th root of unity in Z/998244353Z and we can compute DFT. You can either

• do the usual multidimensional DFT with naive DFTs on each dimension, taking 7d+1d
multiplications, or

• make use of the sparsity and add contribution of each Ai, taking 7dN multiplications.

The pointwise exponentiation takes O(7d logK) time (or 7d log 998244353). The final answer can be found
in O(7d) time as we do not need the whole inverse DFT.

Problem H. Harsh Comments
The answer is N plus the expected number of deleted comments other than yours. By the linearity of
expectation, it suffices to consider the case where M = 1.

Let S =
∑N

i=1Ai.

Instead of actually deleting the comments, consider adding a “deleted” tag whenever a comment is chosen.
The problem becomes to find the probability that there exists a moment where exactly your N comments
are tagged. This is equal to Bj

S+Bj
times the expected time the state continues. The expected time can be

found by the principle of inclusion-exclusion: For each I ⊆ {1, . . . , N}, find the expected time where the
comments in I and the other’s comment are kept untagged, multiply by (−1)|I| and add to the answer.
As this only depends

∑
i∈I Ai, we just need to find their distribution by O (NS) time DP. The total time

complexity of O (NS + SM logMOD) is enough to pass.

Another solution. Consider a comment with x downvotes as x balls labeled by the comment. The deletion
in the statement is equivalent to lining up all the balls in a row and then looking them one by one to
delete the corresponding comment if it is not deleted yet. The problem becomes to find the probability
that the first occurrence of a ball of the other’s comment comes after the first occurrence of a ball of
any of your comments. Using the principle of inclusion-exclusion, we can obtain the same formula as the
solution above.

Bonus. Achieve O (S logS + SM + logMOD) time.

Problem I. Inverse Problem
Let L be the largest integer such that X1 < X2 < . . . < XL. Then, the desired permutation is of the form
(zero or more elements larger than X1), X1, (zero or more elements larger than X2), X2, . . . , (zero or
more elements larger than XL), XL, (zero or more elements larger than XL) XL+1, XL+2, · · · , XM . We
can see that such permutations do satisfy the condition and other permutations don’t.

If we insert integers not present in X from smaller to larger, we know for each integer how many positions
we can insert it to, and the answer is just a product of them.

Page 3 of 4

XXI Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of Tokyo, Sunday, February 28, 2021

Problem J. Japanese Knowledge
For simplicity, we assume AN is O(N).

Let fk(A) be the answer for a k, and let g(A) =
∑

0≤k≤N f(A) (that is, g is an easy version of f where
you don’t need to care about k). We can prove that fk(A) = g((Ak+1 − 1, Ak+2 − 1, · · · , AN − 1)). We
can see this by induction, but here we present a more elegant approach.

Consider the following problem:

• You are given a sequence X of 0’s and 1’s and have a stack S which is initially empty. For each
i = 1, 2, · · · , |X|, you’ll do the following operation:

– Xi = 0: Push i to the S.

– Xi = 1: Pop zero or more elements from S. If the S becomes empty after the operation, we
call i good, and otherwise not.

Find the number of ways to perform operations so that exactly k indices are good.

It’s easy to see that this problem is equivalent to the original problem: finding fk(A). Next, let’s interpret
this problem in reverse order, and then the problem will be like this:

• You are given a sequence X of 0’s and 1’s and have a stack T which is initially empty. T will
maintain the candidates of good indices. For each i = |X|, |X| − 1, · · · , 1, you’ll do the following
operation:

– Xi = 0: Pop zero or more elements from T .

– Xi = 1: Push i to the T .

Find the number of ways to perform operations so that T contains exactly k elements at the end.

We can see that this is equivalent to finding g((Ak+1 − 1, Ak+2 − 1, · · · , AN − 1)).

Now our task is to count the number of paths in the young tableaux defined by A. We can do it by
Divide-and-Conquer and FFT. Precisely speaking, we split the tableaux into three parts:

• Lowerl left part: (A1, . . . , AN/2)

• Middle part: (AN/2, AN/2, . . . , AN/2)

• Upper right part (AN/2+1 −AN/2, AN/2+2 −AN/2, . . . , AN −AN/2)

We first compute the upper right part by recursion, then the middle part by FFT, and then the lower left
part by recursion. The total complexity is O(N log2N).

Page 4 of 4

